1932

Abstract

The acquisition of quantitative information on plant development across a range of temporal and spatial scales is essential to understand the mechanisms of plant growth. Recent years have shown the emergence of imaging methodologies that enable the capture and analysis of plant growth, from the dynamics of molecules within cells to the measurement of morphometricand physiological traits in field-grown plants. In some instances, these imaging methods can be parallelized across multiple samples to increase throughput. When high throughput is combined with high temporal and spatial resolution, the resulting image-derived data sets could be combined with molecular large-scale data sets to enable unprecedented systems-level computational modeling. Such image-driven functional genomics studies may be expected to appear at an accelerating rate in the near future given the early success of the foundational efforts reviewed here. We present new imaging modalities and review how they have enabled a better understanding of plant growth from the microscopic to the macroscopic scale.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050718-100038
2020-04-29
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/arplant/71/1/annurev-arplant-050718-100038.html?itemId=/content/journals/10.1146/annurev-arplant-050718-100038&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adão T, Hruška J, Pádua L, Bessa J, Peres E et al. 2017. Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens 9:111110
    [Google Scholar]
  2. 2. 
    Agudelo CG, Sanati Nezhad A, Ghanbari M, Naghavi M, Packirisamy M, Geitmann A 2013. TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J 73:61057–68
    [Google Scholar]
  3. 3. 
    Aufrecht JA, Timm CM, Bible A, Morrell-Falvey JL, Pelletier DA et al. 2018. Quantifying the spatiotemporal dynamics of plant root colonization by beneficial bacteria in a microfluidic habitat. Adv. Biosyst. 2:61800048
    [Google Scholar]
  4. 4. 
    Bacia K, Schwille P. 2003. A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods 29:174–85
    [Google Scholar]
  5. 5. 
    Barton CVM, Montagu KD. 2004. Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiol 24:121323–31
    [Google Scholar]
  6. 6. 
    Bascom CS, Wu S-Z, Nelson K, Oakey J, Bezanilla M 2016. Long-term growth of moss in microfluidic devices enables subcellular studies in development. Plant Physiol 172:128–37
    [Google Scholar]
  7. 7. 
    Beer S, Streun M, Hombach T, Buehler J, Jahnke S et al. 2010. Design and initial performance of PlanTIS: a high-resolution positron emission tomograph for plants. Phys. Med. Biol. 55:3635–46
    [Google Scholar]
  8. 8. 
    Berthet B, Maizel A. 2016. Light sheet microscopy and live imaging of plants. J. Microsc. 263:2158–64
    [Google Scholar]
  9. 9. 
    Bhuvaneswari TV, Solheim B. 1985. Root hair deformation in the white clover/Rhizobium trifolii symbiosis. Physiol. Plant. 63:125–34
    [Google Scholar]
  10. 10. 
    Bindels DS, Haarbosch L, van Weeren L, Postma M, Wiese KE et al. 2016. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14:53–56
    [Google Scholar]
  11. 11. 
    Blaser SRGA, Schlüter S, Vetterlein D 2018. How much is too much?—Influence of X-ray dose on root growth of faba bean (Vicia faba) and barley (Hordeum vulgare). PLOS ONE 13:3e0193669
    [Google Scholar]
  12. 12. 
    Boer DR, Freire-Rios A, van den Berg WAM, Saaki T, Manfield IW et al. 2014. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 156:3577–89
    [Google Scholar]
  13. 13. 
    Bücherl CA, van Esse GW, Kruis A, Luchtenberg J, Westphal AH et al. 2013. Visualization of BRI1 and BAK1(SERK3) membrane receptor heterooligomers during brassinosteroid signaling. Plant Physiol 162:41911–25
    [Google Scholar]
  14. 14. 
    Buckner E, Madison I, Chou H, Matthiadis A, Melvin CE et al. 2019. Automated imaging, tracking, and analytics pipeline for differentiating environmental effects on root meristematic cell division. Front. Plant Sci. 10:1487
    [Google Scholar]
  15. 15. 
    Burr-Hersey JE, Mooney SJ, Glyn Bengough A, Mairhofer S, Ritz K 2017. Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography. PLOS ONE 12:7e0181872
    [Google Scholar]
  16. 16. 
    Burri JT, Vogler H, Läubli NF, Hu C, Grossniklaus U, Nelson BJ 2018. Feeling the force: how pollen tubes deal with obstacles. New Phytol 220:1187–95
    [Google Scholar]
  17. 17. 
    Busch W, Moore BT, Martsberger B, Mace DL, Twigg RW et al. 2012. A microfluidic device and computational platform for high-throughput live imaging of gene expression. Nat. Methods 9:111101–6
    [Google Scholar]
  18. 18. 
    Candeo A, Doccula FG, Valentini G, Bassi A, Costa A 2017. Light sheet fluorescence microscopy quantifies calcium oscillations in root hairs of Arabidopsis thaliana. Plant Cell Physiol 58:71161–72
    [Google Scholar]
  19. 19. 
    Chairungsee N, Gay F, Thaler P, Kasemsap P, Thanisawanyangkura S et al. 2013. Impact of tapping and soil water status on fine root dynamics in a rubber tree plantation in Thailand. Front. Plant Sci. 4:538
    [Google Scholar]
  20. 20. 
    Chang C-W, Mycek M-A. 2012. Quantitative molecular imaging in living cells via FLIM. Reviews in Fluorescence 2010 C Geddes 173–98 New York: Springer
    [Google Scholar]
  21. 21. 
    Clark NM, Buckner E, Fisher AP, Nelson EC, Nguyen TT et al. 2019. Stem-cell-ubiquitous genes spatiotemporally coordinate division through regulation of stem-cell-specific gene networks. bioRxiv 517250. https://doi.org/10.1101/517250
    [Crossref]
  22. 22. 
    Clark NM, Hinde E, Winter CM, Fisher AP, Crosti G et al. 2016. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy. eLife 5:e14770
    [Google Scholar]
  23. 23. 
    Clark NM, Sozzani R. 2017. Measuring protein movement, oligomerization state, and protein–protein interaction in Arabidopsis roots using scanning fluorescence correlation spectroscopy (scanning FCS). . In Plant Genomics: Methods and Protocols W Busch 251–66 New York: Humana Press
    [Google Scholar]
  24. 24. 
    Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR et al. 2011. Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:2455–65
    [Google Scholar]
  25. 25. 
    Clegg RM. 2009. Förster resonance energy transfer—FRET what is it, why do it, and how it's done. FRET and Film Techniques TWJ Gadella 1–57 Amsterdam: Elsevier
    [Google Scholar]
  26. 26. 
    Costa A, Candeo A, Fieramonti L, Valentini G, Bassi A 2013. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy. PLOS ONE 8:10e75646
    [Google Scholar]
  27. 27. 
    Cuneo IF, Knipfer T, Brodersen CR, McElrone AJ 2016. Mechanical failure of fine root cortical cells initiates plant hydraulic decline during drought. Plant Physiol 172:31669–78
    [Google Scholar]
  28. 28. 
    de Luis Balaguer MA, Ramos-Pezzotti M, Rahhal MB, Melvin CE, Johannes E et al. 2016. Multi-sample Arabidopsis Growth and Imaging Chamber (MAGIC) for long term imaging in the ZEISS Lightsheet Z.1. Dev. Biol. 419:119–25
    [Google Scholar]
  29. 29. 
    Delgado A, Hays DB, Bruton RK, Ceballos H, Novo A et al. 2017. Ground penetrating radar: a case study for estimating root bulking rate in cassava (Manihot esculenta Crantz). Plant Methods 13:65
    [Google Scholar]
  30. 30. 
    Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T et al. 2014. Male–female communication triggers calcium signatures during fertilization in Arabidopsis. Nat. Commun 5:14645
    [Google Scholar]
  31. 31. 
    Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E 2005. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89:21317–27
    [Google Scholar]
  32. 32. 
    Digman MA, Dalal R, Horwitz AF, Gratton E 2008. Mapping the number of molecules and brightness in the laser scanning microscope. Biophys J 94:62320–32
    [Google Scholar]
  33. 33. 
    Digman MA, Gratton E. 2011. Lessons in fluctuation correlation spectroscopy. Annu. Rev. Phys. Chem. 62:645–68
    [Google Scholar]
  34. 34. 
    Digman MA, Gratton E. 2012. Scanning image correlation spectroscopy. Bioessays 34:5377–85
    [Google Scholar]
  35. 35. 
    Digman MA, Wiseman PW, Horwitz AR, Gratton E 2009. Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method. Biophys. J. 96:2707–16
    [Google Scholar]
  36. 36. 
    Downie H, Holden N, Otten W, Spiers AJ, Valentine TA, Dupuy LX 2012. Transparent soil for imaging the rhizosphere. PLOS ONE 7:9e44276
    [Google Scholar]
  37. 37. 
    Dupuy L, Mimault M, Patko D, Ladmiral V, Ameduri B et al. 2018. Micromechanics of root development in soil. Curr. Opin. Genet. Dev. 51:18–25
    [Google Scholar]
  38. 38. 
    Elson EL. 2011. Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101:122855–70
    [Google Scholar]
  39. 39. 
    Espeleta JF, West JB, Donovan LA 2009. Tree species fine-root demography parallels habitat specialization across a sandhill soil resource gradient. Ecology 90:71773–87
    [Google Scholar]
  40. 40. 
    Fahlgren N, Gehan MA, Baxter I 2015. Lights, camera, action: High-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 24:93–99
    [Google Scholar]
  41. 41. 
    Fåhraeus G. 1957. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. Microbiology 16:2374–81
    [Google Scholar]
  42. 42. 
    Farooque AA, Chang YK, Zaman QU, Groulx D, Schumann AW, Esau TJ 2013. Performance evaluation of multiple ground based sensors mounted on a commercial wild blueberry harvester to sense plant height, fruit yield and topographic features in real-time. Comput. Electron. Agric. 91:135–44
    [Google Scholar]
  43. 43. 
    Faucher C, Maillet F, Vasse J, Rosenberg C, van Brussel AAN et al. 1988. Rhizobium meliloti host range nodH gene determines production of an alfalfa-specific extracellular signal. J. Bacteriol. 170:125489–99
    [Google Scholar]
  44. 44. 
    Fendrych M, Akhmanova M, Merrin J, Glanc M, Hagihara S et al. 2018. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4:7453–59
    [Google Scholar]
  45. 45. 
    Flavel RJ, Guppy CN, Tighe M, Watt M, McNeill A, Young IM 2012. Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography. J. Exp. Bot. 63:72503–11
    [Google Scholar]
  46. 46. 
    Förster T. 1946. Energiewanderung und fluoreszenz. Naturwissenschaften 33:6166–75
    [Google Scholar]
  47. 47. 
    Furbank RT, Tester M. 2011. Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:12635–44
    [Google Scholar]
  48. 48. 
    Gamon JA, Peñuelas J, Field CB 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41:135–44
    [Google Scholar]
  49. 49. 
    Garbout A, Munkholm LJ, Hansen SB, Petersen BM, Munk OL, Pajor R 2012. The use of PET/CT scanning technique for 3D visualization and quantification of real-time soil/plant interactions. Plant Soil 352:1–2113–27
    [Google Scholar]
  50. 50. 
    Ghanbari M, Nezhad AS, Agudelo CG, Packirisamy M, Geitmann A 2014. Microfluidic positioning of pollen grains in lab-on-a-chip for single cell analysis. J. Biosci. Bioeng. 117:4504–11
    [Google Scholar]
  51. 51. 
    Ghanbari M, Packirisamy M, Geitmann A 2018. Measuring the growth force of invasive plant cells using Flexure integrated Lab-on-a-Chip (FiLoC). Technology 6:3101–9
    [Google Scholar]
  52. 52. 
    Goedhart J, van Weeren L, Hink MA, Vischer NOE, Jalink K, Gadella TWJ Jr 2010. Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat. Methods 7:2137
    [Google Scholar]
  53. 53. 
    Goedhart J, Von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L et al. 2012. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat. Commun. 3:751
    [Google Scholar]
  54. 54. 
    Goergen CJ, Sosnovik DE. 2011. From molecules to myofibers: multiscale imaging of the myocardium. J. Cardiovasc. Transl. Res. 4:4493–503
    [Google Scholar]
  55. 55. 
    Gooh K, Ueda M, Aruga K, Park J, Arata H et al. 2015. Live-cell imaging and optical manipulation of Arabidopsis early embryogenesis. Dev. Cell 34:2242–51
    [Google Scholar]
  56. 56. 
    Gray SB, Strellner RS, Puthuval KK, Ng C, Shulman RE et al. 2013. Minirhizotron imaging reveals that nodulation of field-grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress. Funct. Plant Biol. 40:137–47
    [Google Scholar]
  57. 57. 
    Gros M-FS, Shinde SV, Akins C, Johnson JL, Zerbs S et al. 2018. RMI-chip: a microfluidics setup for functional imaging of microbial interactions with tree roots. bioRxiv 506774. https://doi.org/10.1101/506774
    [Crossref]
  58. 58. 
    Grossmann G, Guo W-J, Ehrhardt DW, Frommer WB, Sit RV et al. 2011. The RootChip: an integrated microfluidic chip for plant science. Plant Cell 23:124234–40
    [Google Scholar]
  59. 59. 
    Grossmann G, Meier M, Cartwright HN, Sosso D, Quake SR et al. 2012. Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip. J. Vis. Exp. 65:e4290
    [Google Scholar]
  60. 60. 
    Guo W, Fukatsu T, Ninomiya S 2015. Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images. Plant Methods 11:7
    [Google Scholar]
  61. 61. 
    Haberland JA. 2001. AgIIS, Agricultural Irrigation Imaging System, design and application PhD Thesis, Univ. Ariz Tucson, AZ:
    [Google Scholar]
  62. 62. 
    Harter K, Meixner AJ, Schleifenbaum F 2012. Spectro-microscopy of living plant cells. Mol. Plant 5:114–26
    [Google Scholar]
  63. 63. 
    Heidstra R, Geurts R, Franssen H, Spaink HP, van Kammen A, Bisseling T 1994. Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol 105:3787–97
    [Google Scholar]
  64. 64. 
    Heinze KG, Jahnz M, Schwille P 2004. Triple-color coincidence analysis: one step further in following higher order molecular complex formation. Biophys. J. 86:1506–16
    [Google Scholar]
  65. 65. 
    Hida H, Ozoe K, Kanno I, Higashiyama T, Notaguchi M 2014. On-chip force measurement system for investigating plant-root growth Paper presented at 2014 International Symposium on Micro-NanoMechatronics and Human Science (MHS), Nagoya Japan: Nov 10–12
    [Google Scholar]
  66. 66. 
    Hillnhütter C, Sikora RA, Oerke E-C, van Dusschoten D 2012. Nuclear magnetic resonance: a tool for imaging belowground damage caused by Heterodera schachtii and Rhizoctonia solani on sugar beet. J. Exp. Bot. 63:1319–27
    [Google Scholar]
  67. 67. 
    Hinde E, Cardarelli F, Digman MA, Kershner A, Kimble J, Gratton E 2011. The impact of mitotic versus interphase chromatin architecture on the molecular flow of EGFP by pair correlation analysis. Biophys. J. 100:71829–36
    [Google Scholar]
  68. 68. 
    Horade M, Kanaoka MM, Kuzuya M, Higashiyama T, Kaji N 2013. A microfluidic device for quantitative analysis of chemoattraction in plants. RSC Adv 3:4422301–7
    [Google Scholar]
  69. 69. 
    Hu C, Munglani G, Vogler H, Ndinyanka Fabrice T, Shamsudhin N et al. 2017. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device. Lab Chip 17:182–90
    [Google Scholar]
  70. 70. 
    Chai HH, Chen F, Zhang SJ, Li YD, Lu ZS et al. 2019. Multi-chamber petaloid root-growth chip for the non-destructive study of the development and physiology of the fibrous root system of Oryza sativa. Lab Chip 19:2383–93
    [Google Scholar]
  71. 71. 
    Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK 2004. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:56861007–9
    [Google Scholar]
  72. 72. 
    Immink RGH, Gadella TWJ Jr, Ferrario S, Busscher M, Angenent GC 2002. Analysis of MADS box protein–protein interactions in living plant cells. PNAS 99:42416–21
    [Google Scholar]
  73. 73. 
    Immink RGH, Tonaco IAN, de Folter S, Shchennikova A, van Dijk ADJ et al. 2009. SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol 10:2R24
    [Google Scholar]
  74. 74. 
    Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H et al. 2010. Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:31148–57
    [Google Scholar]
  75. 75. 
    Jahnke S, Menzel MI, Van Dusschoten D, Roeb GW, Bühler J et al. 2009. Combined MRI–PET dissects dynamic changes in plant structures and functions. Plant J 59:4634–44
    [Google Scholar]
  76. 76. 
    Johnson MG, Tingey DT, Phillips DL, Storm MJ 2001. Advancing fine root research with minirhizotrons. Environ. Exp. Bot. 45:3263–89
    [Google Scholar]
  77. 77. 
    Jones AM, Danielson JÅH, ManojKumar SN, Lanquar V, Grossmann G, Frommer WB 2014. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife 3:e01741
    [Google Scholar]
  78. 78. 
    Karve AA, Alexoff D, Kim D, Schueller MJ, Ferrieri RA, Babst BA 2015. In vivo quantitative imaging of photoassimilate transport dynamics and allocation in large plants using a commercial positron emission tomography (PET) scanner. BMC Plant Biol 15:1273
    [Google Scholar]
  79. 79. 
    Kazmi W, Foix S, Alenyà G, Andersen HJ 2014. Indoor and outdoor depth imaging of leaves with time-of-flight and stereo vision sensors: analysis and comparison. ISPRS J. Photogramm. Remote Sens. 88:128–46
    [Google Scholar]
  80. 80. 
    Keinath NF, Waadt R, Brugman R, Schroeder JI, Grossmann G et al. 2015. Live cell imaging with R-GECO1 sheds light on flg22- and chitin-induced transient [Ca2+]cyt patterns in Arabidopsis. Mol. Plant 8:81188–200
    [Google Scholar]
  81. 81. 
    Keyes SD, Zygalakis KC, Roose T 2017. An explicit structural model of root hair and soil interactions parameterised by synchrotron X-ray computed tomography. Bull. Math. Biol. 79:122785–813
    [Google Scholar]
  82. 82. 
    Kise M, Zhang Q, Rovira Más F 2005. A stereovision-based crop row detection method for tractor-automated guidance. Biosyst. Eng. 90:4357–67
    [Google Scholar]
  83. 83. 
    Klose R, Penlington J, Ruckelshausen A 2009. Usability study of 3D Time-of-Flight cameras for automatic plant phenotyping. Bornimer Agrartech. Ber. 69:93–105
    [Google Scholar]
  84. 84. 
    Koizumi K, Hayashi T, Gallagher KL 2012. SCARECROW reinforces SHORT-ROOT signaling and inhibits periclinal cell divisions in the ground tissue by maintaining SHR at high levels in the endodermis. Plant Signal. Behav. 7:121573–77
    [Google Scholar]
  85. 85. 
    Komis G, Mistrik M, Šamajová O, Ovečka M, Bartek J, Šamaj J 2015. Superresolution live imaging of plant cells using structured illumination microscopy. Nat. Protoc. 10:81248–63
    [Google Scholar]
  86. 86. 
    Komis G, Novák D, Ovečka M, Šamajová O, Šamaj J 2018. Advances in imaging plant cell dynamics. Plant Physiol 176:180–93
    [Google Scholar]
  87. 87. 
    Kriechbaumer V, Botchway SW, Slade SE, Knox K, Frigerio L et al. 2015. Reticulomics: Protein-protein interaction studies with two plasmodesmata-localized reticulon family proteins identify binding partners enriched at plasmodesmata, endoplasmic reticulum, and the plasma membrane. Plant Physiol 169:31933–45
    [Google Scholar]
  88. 88. 
    Lanquar V, Grossmann G, Vinkenborg JL, Merkx M, Thomine S, Frommer WB 2014. Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology. New Phytol 202:1198–208
    [Google Scholar]
  89. 89. 
    Le Marié C, Kirchgessner N, Flütsch P, Pfeifer J, Walter A, Hund A 2016. RADIX: rhizoslide platform allowing high throughput digital image analysis of root system expansion. Plant Methods 12:140
    [Google Scholar]
  90. 90. 
    Li L, Zhang Q, Huang D 2014. A review of imaging techniques for plant phenotyping. Sensors 14:1120078–111
    [Google Scholar]
  91. 91. 
    Liu X, Dong X, Xue Q, Leskovar DI, Jifon J et al. 2018. Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field. Plant Soil 423:517–31
    [Google Scholar]
  92. 92. 
    Long Y, Stahl Y, Weidtkamp-Peters S, Postma M, Zhou W et al. 2017. In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots. Nature 548:97–102
    [Google Scholar]
  93. 93. 
    Lucas M, Kenobi K, von Wangenheim D, Voß U, Swarup K et al. 2013. Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. PNAS 110:135229–34
    [Google Scholar]
  94. 94. 
    Ma L, Shi Y, Siemianowski O, Yuan B, Egner TK et al. 2019. Hydrogel-based transparent soils for root phenotyping in vivo. PNAS 116:2211063–68
    [Google Scholar]
  95. 95. 
    Mahesh M. 2002. Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 22:4949–62
    [Google Scholar]
  96. 96. 
    Mairhofer S, Sturrock CJ, Bennett MJ, Mooney SJ, Pridmore TP 2015. Extracting multiple interacting root systems using X-ray microcomputed tomography. Plant J 84:51034–43
    [Google Scholar]
  97. 97. 
    Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer EHK 2011. High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:2377–85
    [Google Scholar]
  98. 98. 
    Massalha H, Korenblum E, Malitsky S, Shapiro OH, Aharoni A 2017. Live imaging of root-bacteria interactions in a microfluidics setup. PNAS 114:174549–54
    [Google Scholar]
  99. 99. 
    Mathieu L, Lobet G, Tocquin P, Périlleux C 2015. “Rhizoponics”: a novel hydroponic rhizotron for root system analyses on mature Arabidopsis thaliana plants. Plant Methods 11:3
    [Google Scholar]
  100. 100. 
    Meier M, Lucchetta EM, Ismagilov RF 2010. Chemical stimulation of the Arabidopsis thaliana root using multi-laminar flow on a microfluidic chip. Lab Chip 10:162147–53
    [Google Scholar]
  101. 101. 
    Metzner R, van Dusschoten D, Bühler J, Schurr U, Jahnke S 2014. Belowground plant development measured with magnetic resonance imaging (MRI): exploiting the potential for non-invasive trait quantification using sugar beet as a proxy. Front. Plant Sci. 5:469
    [Google Scholar]
  102. 102. 
    Miller ND, Parks BM, Spalding EP 2007. Computer-vision analysis of seedling responses to light and gravity. Plant J 52:2374–81
    [Google Scholar]
  103. 103. 
    Mohamed A, Monnier Y, Mao Z, Lobet G, Maeght J-L et al. 2017. An evaluation of inexpensive methods for root image acquisition when using rhizotrons. Plant Methods 13:11
    [Google Scholar]
  104. 104. 
    Mooney SJ, Pridmore TP, Helliwell J, Bennett MJ 2012. Developing X-ray Computed Tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil 352:11–22
    [Google Scholar]
  105. 105. 
    Mueller-Sim T, Jenkins M, Abel J, Kantor G 2017. The Robotanist: a ground-based agricultural robot for high-throughput crop phenotyping Paper presented at 2017 IEEE International Conference on Robotics and Automation (ICRA) Singapore:May 29–June 3
    [Google Scholar]
  106. 106. 
    Mulla DJ. 2013. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst. Eng. 114:4358–71
    [Google Scholar]
  107. 107. 
    Nagy P, Claus J, Jovin TM, Arndt-Jovin DJ 2010. Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis. PNAS 107:3816524–29
    [Google Scholar]
  108. 108. 
    Novák D, Kuchařová A, Ovečka M, Komis G, Šamaj J 2016. Developmental nuclear localization and quantification of GFP-tagged EB1c in Arabidopsis root using light-sheet microscopy. Front. Plant Sci. 6:1187
    [Google Scholar]
  109. 109. 
    O'Callaghan FE, Braga RA, Neilson R, MacFarlane SA, Dupuy LX 2018. New live screening of plant-nematode interactions in the rhizosphere. Sci. Rep. 8:11440
    [Google Scholar]
  110. 110. 
    Orman-Ligeza B, Morris EC, Parizot B, Lavigne T, Babé A et al. 2018. The xerobranching response represses lateral root formation when roots are not in contact with water. Curr. Biol. 28:193165–73
    [Google Scholar]
  111. 111. 
    Ovečka M, Vaškebová L, Komis G, Luptovčiak I, Smertenko A, Šamaj J 2015. Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat. Protoc. 10:81234–47
    [Google Scholar]
  112. 112. 
    Ovečka M, von Wangenheim D, Tomančák P, Šamajová O, Komis G, Šamaj J 2018. Multiscale imaging of plant development by light-sheet fluorescence microscopy. Nat. Plants 4:9639–50
    [Google Scholar]
  113. 113. 
    Ozoe K, Hida H, Kanno I, Higashiyama T, Notaguchi M 2015. Early characterization method of plant root adaptability to soil environments Paper presented at 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal Jan 18–22
    [Google Scholar]
  114. 114. 
    Parashar A, Pandey S. 2011. Plant-in-chip: microfluidic system for studying root growth and pathogenic interactions in Arabidopsis. Appl. Phys. Lett 98:26263703
    [Google Scholar]
  115. 115. 
    Park J, Kurihara D, Higashiyama T, Arata H 2014. Fabrication of microcage arrays to fix plant ovules for long-term live imaging and observation. Sens. Actuators B Chem. 191:178–85
    [Google Scholar]
  116. 116. 
    Pérez-Torres E, Kirchgessner N, Pfeifer J, Walter A 2015. Assessing potato tuber diel growth by means of X-ray computed tomography. Plant Cell Environ 38:112318–26
    [Google Scholar]
  117. 117. 
    Petrásek Z, Schwille P. 2008. Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys. J. 94:41437–48
    [Google Scholar]
  118. 118. 
    Pinkert T, Furkert D, Korte T, Herrmann A, Arenz C 2017. Amplification of a FRET probe by lipid-water partition for the detection of acid sphingomyelinase in live cells. Angew. Chem. Int. Ed. 56:102790–94
    [Google Scholar]
  119. 119. 
    Power RM, Huisken J. 2017. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 14:4360–73
    [Google Scholar]
  120. 120. 
    Powers SK, Holehouse AS, Korasick DA, Schreiber KM, Clark N et al. 2019. Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Mol. Cell 76:1177–90.e5
    [Google Scholar]
  121. 121. 
    Qu W, Robert CAM, Erb M, Hibbard BE, Paven M et al. 2016. Dynamic precision phenotyping reveals mechanism of crop tolerance to root herbivory. Plant Physiol 172:2776–88
    [Google Scholar]
  122. 122. 
    Rademacher EH, Lokerse AS, Schlereth A, Llavata-Peris CI, Bayer M et al. 2012. Different auxin response machineries control distinct cell fates in the early plant embryo. Dev. Cell 22:1211–22
    [Google Scholar]
  123. 123. 
    Rellán-Álvarez R, Lobet G, Lindner H, Pradier P-L, Sebastian J et al. 2015. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. eLife 4:e07597
    [Google Scholar]
  124. 124. 
    Reynaud EG, Peychl J, Huisken J, Tomancak P 2015. Guide to light-sheet microscopy for adventurous biologists. Nat. Methods 12:130–34
    [Google Scholar]
  125. 125. 
    Richard CA, Hickey LT, Fletcher S, Jennings R, Chenu K, Christopher JT 2015. High-throughput phenotyping of seminal root traits in wheat. Plant Methods 11:13
    [Google Scholar]
  126. 126. 
    Ries J, Schwille P. 2012. Fluorescence correlation spectroscopy. Bioessays 34:5361–68
    [Google Scholar]
  127. 127. 
    Rizza A, Walia A, Lanquar V, Frommer WB, Jones AM 2017. In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat. Plants 3:10803–13
    [Google Scholar]
  128. 128. 
    Rogers ED, Monaenkova D, Mijar M, Nori A, Goldman DI, Benfey PN 2016. X-ray computed tomography reveals the response of root system architecture to soil texture. Plant Physiol 171:32028–40
    [Google Scholar]
  129. 129. 
    Rogers HH, Bottomley PA. 1987. In situ nuclear magnetic resonance imaging of roots: influence of soil type, ferromagnetic particle content, and soil water. Agron. J. 79:6957–65
    [Google Scholar]
  130. 130. 
    Rokitta M, Peuke AD, Zimmermann U, Haase A 1999. Dynamic studies of phloem and xylem flow in fully differentiated plants by fast nuclear-magnetic-resonance microimaging. Protoplasma 209:1–2126–31
    [Google Scholar]
  131. 131. 
    Rosquete MR, von Wangenheim D, Marhavý P, Barbez E, Stelzer EHK et al. 2013. An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr. Biol. 23:9817–22
    [Google Scholar]
  132. 132. 
    Rousseau D, Chéné Y, Belin E, Semaan G, Trigui G et al. 2015. Multiscale imaging of plants: current approaches and challenges. Plant Methods 11:6
    [Google Scholar]
  133. 133. 
    Sakai K, Charlot F, Le Saux T, Bonhomme S, Nogué F et al. 2019. Design of a comprehensive microfluidic and microscopic toolbox for the ultra-wide spatio-temporal study of plant protoplasts development and physiology. Plant Methods 15:79
    [Google Scholar]
  134. 134. 
    Sanati Nezhad A, Naghavi M, Packirisamy M, Bhat R, Geitmann A 2013. Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling. PNAS 110:208093–98
    [Google Scholar]
  135. 135. 
    Sanati Nezhad A, Packirisamy M, Geitmann A 2014. Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J 80:1185–95
    [Google Scholar]
  136. 136. 
    Scheenen TW, van Dusschoten D, de Jager PA, Van As H 2000. Quantification of water transport in plants with NMR imaging. J. Exp. Bot. 51:3511751–59
    [Google Scholar]
  137. 137. 
    Schubert V. 2017. Super-resolution microscopy—applications in plant cell research. Front. Plant Sci. 8:531
    [Google Scholar]
  138. 138. 
    Schwille P, Meyer-Almes FJ, Rigler R 1997. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 72:41878–86
    [Google Scholar]
  139. 139. 
    Sena G, Frentz Z, Birnbaum KD, Leibler S 2011. Quantitation of cellular dynamics in growing Arabidopsis roots with light sheet microscopy. PLOS ONE 6:6e21303
    [Google Scholar]
  140. 140. 
    Shamsudhin N, Laeubli N, Atakan HB, Vogler H, Hu C et al. 2016. Massively parallelized pollen tube guidance and mechanical measurements on a lab-on-a-chip platform. PLOS ONE 11:12e0168138
    [Google Scholar]
  141. 141. 
    Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL et al. 2008. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5:6545–51
    [Google Scholar]
  142. 142. 
    Siemianowski O, Lind KR, Tian X, Cain M, Xu S et al. 2018. From petri dishes to model ecosystems. Trends Plant Sci 23:5378–81
    [Google Scholar]
  143. 143. 
    Smékalová V, Luptovčiak I, Komis G, Šamajová O, Ovečka M et al. 2014. Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation. New Phytol 203:41175–93
    [Google Scholar]
  144. 144. 
    Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM et al. 2010. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466:7302128–32
    [Google Scholar]
  145. 145. 
    Stahl Y, Grabowski S, Bleckmann A, Kühnemuth R, Weidtkamp-Peters S et al. 2013. Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr. Biol. 23:5362–71
    [Google Scholar]
  146. 146. 
    Stanley CE, Grossmann G, Casadevall i Solvas X, deMello AJ 2016. Soil-on-a-Chip: microfluidic platforms for environmental organismal studies. Lab Chip 16:2228–41
    [Google Scholar]
  147. 147. 
    Stanley CE, Shrivastava J, Brugman R, Heinzelmann E, van Swaay D, Grossmann G 2018. Dual-flow-RootChip reveals local adaptations of roots towards environmental asymmetry at the physiological and genetic levels. New Phytol 217:31357–69
    [Google Scholar]
  148. 148. 
    Stelzer EHK. 2015. Light-sheet fluorescence microscopy for quantitative biology. Nat. Methods 12:123–26
    [Google Scholar]
  149. 149. 
    Stingaciu L, Schulz H, Pohlmeier A, Behnke S, Zilken H et al. 2013. In situ root system architecture extraction from magnetic resonance imaging for water uptake modeling. Vadose Zone J. 12:vzj2012.0019
    [Google Scholar]
  150. 150. 
    Stover DB, Day FP, Butnor JR, Drake BG 2007. Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar. Ecology 88:51328–34
    [Google Scholar]
  151. 151. 
    Sturrock CJ, Woodhall J, Brown M, Walker C, Mooney SJ, Ray RV 2015. Effects of damping-off caused by Rhizoctonia solani anastomosis group 2–1 on roots of wheat and oil seed rape quantified using X-ray Computed Tomography and real-time PCR. Front. Plant Sci. 6:461
    [Google Scholar]
  152. 152. 
    Thapa S, Zhu F, Walia H, Yu H, Ge Y 2018. A novel LiDAR-based instrument for high-throughput, 3D measurement of morphological traits in maize and sorghum. Sensors 18:41187
    [Google Scholar]
  153. 153. 
    Tonaco IAN, Borst JW, de Vries SC, Angenent GC, Immink RGH 2005. In vivo imaging of MADS-box transcription factor interactions. J. Exp. Bot. 57:133–42
    [Google Scholar]
  154. 154. 
    Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee C-R, Zurek PR et al. 2013. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. PNAS 110:18E1695–704
    [Google Scholar]
  155. 155. 
    Trachsel S, Messmer R, Stamp P, Hund A 2009. Mapping of QTLs for lateral and axile root growth of tropical maize. Theor. Appl. Genet. 119:81413–24
    [Google Scholar]
  156. 156. 
    Tracy SR, Roberts JA, Black CR, McNeill A, Davidson R, Mooney SJ 2010. The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography. J. Exp. Bot. 61:2311–13
    [Google Scholar]
  157. 157. 
    Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8:2127–50
    [Google Scholar]
  158. 158. 
    Unger MA. 2000. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:5463113–16
    [Google Scholar]
  159. 159. 
    van Dusschoten D, Metzner R, Kochs J, Postma JA, Pflugfelder D et al. 2016. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiol 170:31176–88
    [Google Scholar]
  160. 160. 
    Vermeer JEM, von Wangenheim D, Barberon M, Lee Y, Stelzer EHK et al. 2014. A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343:6167178–83
    [Google Scholar]
  161. 161. 
    von Wangenheim D, Fangerau J, Schmitz A, Smith RS, Leitte H et al. 2016. Rules and self-organizing properties of post-embryonic plant organ cell division patterns. Curr. Biol. 26:4439–49
    [Google Scholar]
  162. 162. 
    von Wangenheim D, Hauschild R, Friml J 2017. Light sheet fluorescence microscopy of plant roots growing on the surface of a gel. J. Vis. Exp. 119:e55044
    [Google Scholar]
  163. 163. 
    von Wangenheim D, Rosero A, Komis G, Šamajová O, Ovečka M et al. 2016. Endosomal interactions during root hair growth. Front. Plant Sci. 6:1262
    [Google Scholar]
  164. 164. 
    Voss TC, Demarco IA, Day RN 2005. Quantitative imaging of protein interactions in the cell nucleus. Biotechniques 38:3413–24
    [Google Scholar]
  165. 165. 
    Wang P, Shu M, Mou P, Weiner J 2018. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies. Ecol. Evol. 8:63367–75
    [Google Scholar]
  166. 166. 
    Wang Q, Mathews AJ, Li K, Wen J, Komarov S et al. 2014. A dedicated high-resolution PET imager for plant sciences. Phys. Med. Biol. 59:195613–29
    [Google Scholar]
  167. 167. 
    Weber M, Huisken J. 2011. Light sheet microscopy for real-time developmental biology. Curr. Opin. Genet. Dev. 21:5566–72
    [Google Scholar]
  168. 168. 
    Weissleder R, Pittet MJ. 2008. Imaging in the era of molecular oncology. Nature 452:7187580–89
    [Google Scholar]
  169. 169. 
    White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA et al. 2012. Field-based phenomics for plant genetics research. Field Crop Res 133:101–12
    [Google Scholar]
  170. 170. 
    Whitesides GM. 2006. The origins and the future of microfluidics. Nature 442:7101368–73
    [Google Scholar]
  171. 171. 
    Windt CW, Gerkema E, Van As H 2009. Most water in the tomato truss is imported through the xylem, not the phloem: a nuclear magnetic resonance flow imaging study. Plant Physiol 151:2830–42
    [Google Scholar]
  172. 172. 
    Yanagisawa N, Sugimoto N, Arata H, Higashiyama T, Sato Y 2017. Capability of tip-growing plant cells to penetrate into extremely narrow gaps. Sci. Rep. 7:1403
    [Google Scholar]
  173. 173. 
    Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y 2011. A microsystem-based assay for studying pollen tube guidance in plant reproduction. J. Micromech. Microeng. 21:554018
    [Google Scholar]
  174. 174. 
    Young SN, Kayacan E, Peschel JM 2018. Design and field evaluation of a ground robot for high-throughput phenotyping of energy sorghum. Precis. Agric. 20:4697–22
    [Google Scholar]
  175. 175. 
    Zappala S, Helliwell JR, Tracy SR, Mairhofer S, Sturrock CJ et al. 2013. Effects of X-ray dose on rhizosphere studies using X-ray computed tomography. PLOS ONE 8:6e67250
    [Google Scholar]
  176. 176. 
    Zhang C, Kovacs JM. 2012. The application of small unmanned aerial systems for precision agriculture: a review. Precis. Agric. 13:6693–712
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-050718-100038
Loading
/content/journals/10.1146/annurev-arplant-050718-100038
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error