1932

Abstract

Over several decades, glucosinolates have become a model system for the study of specialized metabolic diversity in plants. The near-complete identification of biosynthetic enzymes, regulators, and transporters has provided support for the role of gene duplication and subsequent changes in gene expression, protein function, and substrate specificity as the evolutionary bases of glucosinolate diversity. Here, we provide examples of how whole-genome duplications, gene rearrangements, and substrate promiscuity potentiated the evolution of glucosinolate biosynthetic enzymes, regulators, and transporters by natural selection. This in turn may have led to the repeated evolution of glucosinolate metabolism and diversity in higher plants.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050718-100152
2019-04-29
2024-05-28
Loading full text...

Full text loading...

/deliver/fulltext/arplant/70/1/annurev-arplant-050718-100152.html?itemId=/content/journals/10.1146/annurev-arplant-050718-100152&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Apic G, Gough J, Teichmann SA 2001. Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J. Mol. Biol. 310:311–25
    [Google Scholar]
  2. 2.  Bak S, Feyereisen R 2001. The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–18
    [Google Scholar]
  3. 3.  Bak S, Kahn RA, Nielsen HL, Møller BL, Halkier BA 1998. Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol. Biol. 36:393–405
    [Google Scholar]
  4. 4.  Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D et al. 2011. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:4402–10
    [Google Scholar]
  5. 5.  Barker MS, Vogel H, Schranz ME 2009. Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol. Evol. 1:391–99
    [Google Scholar]
  6. 6.  Barthole G, To A, Marchive C, Brunaud V, Soubigou-Taconnat L et al. 2014. MYB118 represses endosperm maturation in seeds of Arabidopsis. Plant Cell 26:3519–37
    [Google Scholar]
  7. 7.  Bednarek P, Piślewska-Bednarek M, Svatoš A, Schneider B, Doubský J et al. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–6
    [Google Scholar]
  8. 8.  Bednarek P, Piślewska-Bednarek M, van Themaat EVL, Maddula RK, Svatoš A, Schulze-Lefert P 2011. Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in Arabidopsis thaliana relatives. New Phytol 192:713–26
    [Google Scholar]
  9. 9.  Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V et al. 2008. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLOS ONE 3:e2068
    [Google Scholar]
  10. 10.  Bekaert M, Edger PP, Hudson CM, Pires JC, Conant GC 2012. Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis. New Phytol 196:596–605
    [Google Scholar]
  11. 11.  Blanchard DJ, Cicek M, Chen J, Esen A 2001. Identification of β-glucosidase aggregating factor (BGAF) and mapping of BGAF binding regions on maize β-glucosidase. J. Biol. Chem. 276:11895–901
    [Google Scholar]
  12. 12.  Bones A, Iversen TH 1985. Myrosin cells and myrosinase. Isr. J. Bot. 34:2–4351–76
    [Google Scholar]
  13. 13.  Bowers JE, Chapman BA, Rong J, Paterson AH 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–38
    [Google Scholar]
  14. 14.  Brader G, Mikkelsen MD, Halkier BA, Tapio Palva E 2006. Altering glucosinolate profiles modulates disease resistance in plants. Plant J 46:5758–67Seminal structure-function study on GSL diversity.
    [Google Scholar]
  15. 15.  Burow M, Bergner A, Gershenzon J, Wittstock U 2007. Glucosinolate hydrolysis in Lepidium sativum—identification of the thiocyanate-forming protein. Plant Mol. Biol. 63:49–61
    [Google Scholar]
  16. 16.  Burow M, Losansky A, Müller R, Plock A, Kliebenstein DJ, Wittstock U 2009. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis. Plant Physiol 149:561–74
    [Google Scholar]
  17. 17.  Burow M, Markert J, Gershenzon J, Wittstock U 2006. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. FEBS J 273:2432–46
    [Google Scholar]
  18. 18.  Burow M, Müller R, Gershenzon J, Wittstock U 2006. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J. Chem. Ecol 32:112333–49
    [Google Scholar]
  19. 19.  Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR et al. 2005. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137:253–62
    [Google Scholar]
  20. 20.  Chae L, Kim T, Nilo-Poyanco R, Rhee SY 2014. Genomic signatures of specialized metabolism in plants. Science 344:510–13
    [Google Scholar]
  21. 21.  Chezem WR, Clay NK 2016. Regulation of plant specialized metabolism and associated specialized cell development by MYBs and bHLHs. Phytochemistry 131:26–43
    [Google Scholar]
  22. 22.  Cipollini D, Gruner B 2007. Cyanide in the chemical arsenal of garlic mustard, Alliaria petiolata. J. Chem. Ecol 33:85–94
    [Google Scholar]
  23. 23.  Clarke DB 2010. Glucosinolates, structures and analysis in food. Anal. Methods 2:310–25
    [Google Scholar]
  24. 24.  Clausen M, Kannangara RM, Olsen CE, Blomstedt CK, Gleadow RM et al. 2015. The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways. Plant J 84:558–73
    [Google Scholar]
  25. 25.  Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101
    [Google Scholar]
  26. 26.  Davis RH, Nahrstedt A 1987. Biosynthesis of cyanogenic glucosides in butterflies and moths: effective incorporation of 2-methylpropanenitrile and 2-methylbutanenitrile into linamarin and lotaustralin by Zygaena and Heliconius species (Lepidoptera). Insect Biochem 17:689–93
    [Google Scholar]
  27. 27.  Doolittle RF 1995. The multiplicity of domains in proteins. Annu. Rev. Biochem. 64:287–314
    [Google Scholar]
  28. 28.  Edger PP, Hall JC, Harkess A, Tang M, Coombs J et al. 2018. Brassicales phylogeny inferred from 72 plastid genes: a reanalysis of the phylogenetic localization of two paleopolyploid events and origin of novel chemical defenses. Am. J. Bot. 105:463–69
    [Google Scholar]
  29. 29.  Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. PNAS 112:8362–66Gives the most comprehensive phylogenetic history of WGD events on GSL diversity (see also 52).
    [Google Scholar]
  30. 30.  Esen A, Blanchard DJ 2000. A specific β-glucosidase-aggregating factor is responsible for the β-glucosidase null phenotype in maize. Plant Physiol 122:563–72
    [Google Scholar]
  31. 31.  Fahey JW, Zalcmann AT, Talalay P 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51
    [Google Scholar]
  32. 32.  Falk A, Taipalensuu J, Ek B, Lenman M, Rask L 1995. Characterization of rapeseed myrosinase-binding protein. Planta 195:387–95
    [Google Scholar]
  33. 33.  Fan J, Crooks C, Creissen G, Hill L, Fairhurst S et al. 2011. Pseudomonas sax genes overcome aliphatic isothiocyanate–mediated non-host resistance in Arabidopsis. Science 331:1185–88
    [Google Scholar]
  34. 34.  Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J-M, Gimenez-Ibanez S et al. 2011. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–15
    [Google Scholar]
  35. 35.  Field B, Cardon G, Traka M, Botterman J, Vancanneyt G, Mithen R 2004. Glucosinolate and amino acid biosynthesis in Arabidopsis. Plant Physiol 135:828–39
    [Google Scholar]
  36. 36.  Fischer HM, Wheat CW, Heckel DG, Vogel H 2008. Evolutionary origins of a novel host plant detoxification gene in butterflies. Mol. Biol. Evol. 25:5809–20
    [Google Scholar]
  37. 37.  Force AM, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–45
    [Google Scholar]
  38. 38.  Francisco M, Joseph B, Caligagan H, Li B, Corwin JA et al. 2016. Genome wide association mapping in Arabidopsis thaliana identifies novel genes involved in linking allyl glucosinolate to altered biomass and defense. Front. Plant Sci. 7:1010
    [Google Scholar]
  39. 39.  Francisco M, Joseph B, Caligagan H, Li B, Corwin JA et al. 2016. The defense metabolite, allyl glucosinolate, modulates Arabidopsis thaliana biomass dependent upon the endogenous glucosinolate pathway. Front. Plant Sci. 7:774
    [Google Scholar]
  40. 40.  Frerigmann H, Berger B, Gigolashvili T 2014. bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis. Plant Physiol 166:349–69
    [Google Scholar]
  41. 41.  Frisch T, Motawia MS, Olsen CE, Agerbirk N, Møller BL, Bjarnholt N 2015. Diversified glucosinolate metabolism: biosynthesis of hydrogen cyanide and of the hydroxynitrile glucoside alliarinoside in relation to sinigrin metabolism in Alliaria petiolata. Front. Plant Sci 6:926
    [Google Scholar]
  42. 42.  Geshi N, Brandt A 1998. Two jasmonate-inducible myrosinase-binding proteins from Brassica napus L. seedlings with homology to jacalin. Planta 204:295–304
    [Google Scholar]
  43. 43.  Gigolashvili T, Berger B, Mock HP, Müller C, Weisshaar B, Flügge UI 2007. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 50:886–901
    [Google Scholar]
  44. 44.  Gigolashvili T, Engqvist M, Yatusevich R, Müller C, Flügge UI 2008. HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol 177:627–42
    [Google Scholar]
  45. 45.  Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge UI 2007. The R2R3‐MYB transcription factor HAG1/MYB28 is a regulator of methionine‐derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51:247–61
    [Google Scholar]
  46. 46.  Hansen BG, Kliebenstein DJ, Halkier BA 2007. Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J 50:902–10
    [Google Scholar]
  47. 47.  He Y, Chen L, Zhou Y, Mawhinney TP, Chen B et al. 2011. Functional characterization of Arabidopsis thaliana isopropylmalate dehydrogenases reveals their important roles in gametophyte development. New Phytol 189:160–75
    [Google Scholar]
  48. 48.  He Y, Galant A, Pang Q, Strul JM, Balogun SF et al. 2011. Structural and functional evolution of isopropylmalate dehydrogenases in the leucine and glucosinolate pathways of Arabidopsis thaliana.J. Biol. Chem 286:28794–801Defines the structural basis of enzyme substrate selectivity between paralogs in primary and specialized metabolism.
    [Google Scholar]
  49. 49.  He Y, Mawhinney TP, Preuss ML, Schroeder AC, Chen B et al. 2009. A redox-active isopropylmalate dehydrogenase functions in the biosynthesis of glucosinolates and leucine in Arabidopsis. Plant J 60:679–90
    [Google Scholar]
  50. 50.  Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC 2003. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol. 20:735–47
    [Google Scholar]
  51. 51.  Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T et al. 2007. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. PNAS 104:6478–83
    [Google Scholar]
  52. 52.  Hofberger JA, Lyons E, Edger PP, Pires JC, Schranz ME 2013. Whole genome and tandem duplicate retention facilitated glucosinolate pathway diversification in the mustard family. Genome Biol. Evol. 5:112155–73
    [Google Scholar]
  53. 53.  Hopkins RJ, van Dam NM, van Loon JJA 2009. Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54:57–83
    [Google Scholar]
  54. 54.  Hossain MS, Ye W, Hossain MA, Okuma E, Uraji M et al. 2013. Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana.Biosci.Biotechnol. Biochem 77:977–83
    [Google Scholar]
  55. 55.  Irmisch S, McCormick AC, Günther J, Schmidt A, Boeckler GA et al. 2014. Herbivore-induced poplar cytochrome P450 enzyme CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar. Plant J 30:1095–107
    [Google Scholar]
  56. 56.  Irmisch S, Zeltner P, Handrick V, Gershenzon J, Köllner TG 2015. The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation. BMC Plant Biol 15:128
    [Google Scholar]
  57. 57.  Jensen LM, Halkier BA, Burow M 2014. How to discover a metabolic pathway? An update on gene identification in aliphatic glucosinolate biosynthesis, regulation and transport. Biol. Chem. 395:529–43
    [Google Scholar]
  58. 58.  Jensen LM, Jepsen HS, Halkier BA, Kliebenstein DJ, Burow M 2015. Natural variation in cross-talk between glucosinolates and onset of flowering in Arabidopsis. Front. Plant Sci 6:697
    [Google Scholar]
  59. 59.  Jørgensen K, Morant AV, Morant M, Jensen NB, Olsen CE et al. 2011. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol 155:282–92
    [Google Scholar]
  60. 60.  Jørgensen ME, Xu D, Crocoll C, Ramírez D, Motawia MS et al. 2017. Origin and evolution of transporter substrate specificity within the NPF family. eLife 6:e19466Provides the first evolutionary analysis of GSL and cyanogenic glycoside transporters.
    [Google Scholar]
  61. 61.  Katz E, Chamovitz DA 2017. Wounding of Arabidopsis leaves induces indole-3-carbinol-dependent autophagy in roots of Arabidopsis thaliana. Plant J 91:779–87
    [Google Scholar]
  62. 62.  Katz E, Nisani S, Yadav BS, Woldemariam MG, Shai B et al. 2015. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana. Plant J 82:547–55
    [Google Scholar]
  63. 63.  Kelly PJ, Bones A, Rossiter JT 1998. Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta 206:3370–77
    [Google Scholar]
  64. 64.  Kerwin RE, Jimenez-Gomez JM, Fulop D, Harmer SL, Maloof JN, Kliebenstein DJ 2011. Network quantitative trait loci mapping of circadian clock outputs identifies metabolic pathway-to-clock linkages in Arabidopsis. Plant Cell 23:471–85
    [Google Scholar]
  65. 65.  Khokon MA, Jahan MS, Rahman T, Hossain MA, Muroyama D et al. 2011. Allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis. Plant Cell Environ 34:1900–6
    [Google Scholar]
  66. 66.  Kliebenstein D, Kroymann J, Brown P, Figuth A, Pedersen D et al. 2001. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–25
    [Google Scholar]
  67. 67.  Kliebenstein D, Lambrix V, Reichelt M, Gershenzon J, Mitchell-Olds T 2001. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:681–93
    [Google Scholar]
  68. 68.  Knoch E, Motawie MS, Olsen CE, Møller BL, Lyngkjaer MF 2016. Biosynthesis of the leucine derived α-, β- and γ-hydroxynitrile glucosides in barley (Hordeum vulgare L.). Plant J 88:247–56
    [Google Scholar]
  69. 69.  Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R 2000. Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124:2599–608
    [Google Scholar]
  70. 70.  Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T 2003. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. PNAS 100:14587–92
    [Google Scholar]
  71. 71.  Kroymann J, Textor S, Tokuhisa JG, Falk KL, Bartram S et al. 2001. A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol 127:1077–88
    [Google Scholar]
  72. 72.  Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J 2001. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusiani herbivory. Plant Cell 13:2793–807
    [Google Scholar]
  73. 73.  Lee S, Kaminaga Y, Cooper B, Pichersky E, Dudareva N, Chapple C 2012. Benzoylation and sinapoylation of glucosinolate R‐groups in Arabidopsis. Plant J 72:411–22
    [Google Scholar]
  74. 74.  Lee SG, Nwumeh R, Jez JM 2016. Structure and mechanism of isopropylmalate dehydrogenase from Arabidopsis thaliana: insights on leucine and aliphatic glucosinolate biosynthesis. J. Biol. Chem. 291:13421–30
    [Google Scholar]
  75. 75.  Lenman M, Rödin J, Josefsson LG, Rask L 1990. Immunological characterization of rapeseed myrosinase. Eur. J. Biochem. 194:747–53
    [Google Scholar]
  76. 76.  Leong BJ, Last RL 2017. Promiscuity, impersonation and accommodation: evolution of plant specialized metabolism. Curr. Opin. Struct. Biol. 47:105–12
    [Google Scholar]
  77. 77.  Li J, Hansen BG, Ober JA, Kliebenstein DJ, Halkier BA 2008. Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis. Plant Physiol 148:1721–33
    [Google Scholar]
  78. 78.  Luthy B, Matile P 1984. The mustard oil bomb: rectified analysis of the subcellular organization of the myrosinase system. Biochem. Physiol. Pflanz. 179:5–12
    [Google Scholar]
  79. 79.  Lynch M, Conery JS 2000. The evolutionary fate and consequences of duplicate genes. Science 290:1151–55
    [Google Scholar]
  80. 80.  Malinovsky FG, Thomsen MF, Nintemann SJ, Jagd LM, Bourgine B et al. 2017. An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway. eLife 6:e29353Demonstrates convincing evidence for a novel nondefense signaling role for GSL molecules.
    [Google Scholar]
  81. 81.  Malitsky S, Blum E, Less H, Venger I, Elbaz M et al. 2008. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol 148:2021–49
    [Google Scholar]
  82. 82.  Martínez-Ballesta Mdel C, Muries B, Moreno , Dominguez-Perles R, García-Viguera C, Carvajal M 2014. Involvement of a glucosinolate (sinigrin) in the regulation of water transport in Brassica oleracea grown under salt stress. Physiol. Plant. 150:145–60
    [Google Scholar]
  83. 83.  Matich AJ, McKenzie MJ, Lill RE, Brummell DA, McGhie TK et al. 2012. Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate. Phytochemistry 75:140–52
    [Google Scholar]
  84. 84.  Matile PH 1980. “The mustard oil bomb”: compartmentation of the myrosinase system. Biochem. Physiol. Pflanz. 175:722–31
    [Google Scholar]
  85. 85.  Moghe GD, Leong BJ, Hurney SM, Jones AD, Last RL 2017. Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. eLife 6:e28468
    [Google Scholar]
  86. 86.  Moghe GD, Shiu SH 2014. The causes and molecular consequences of polyploidy in flowering plants. Ann. NY Acad. Sci. 1320:16–34
    [Google Scholar]
  87. 87.  Müller R, De Vos M, Sun JY, Sønderby IE, Halkier BA et al. 2010. Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J. Chem. Ecol. 36:8905–13
    [Google Scholar]
  88. 88.  Nagano AJ, Fukao Y, Fujiwara M, Nishimura M, Hara-Nishimura I 2008. Antagonistic jacalin-related lectins regulate the size of ER body–type β-glucosidase complexes in Arabidopsis thaliana. Plant Cell Physiol 49:969–80
    [Google Scholar]
  89. 89.  Nagano AJ, Matsushima R, Hara-Nishimura I 2005. Activation of an ER-body-localized β-glucosidase via a cytosolic binding partner in damaged tissues of Arabidopsis thaliana. Plant Cell Physiol 46:1140–48
    [Google Scholar]
  90. 90.  Nahrstedt A 1985. Cyanogenic compounds as protecting agents for organisms. Plant Syst. Evol. 150:35–47
    [Google Scholar]
  91. 91.  Nakano RT, Piślewska‐Bednarek M, Yamada K, Edger PP, Miyahara M et al. 2017. PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana. Plant J 89:204–20Gives a comprehensive phylogenetic history of gene duplication events in the Brassicaceae myrosinase family.
    [Google Scholar]
  92. 92.  Nakano RT, Yamada K, Bednarek P, Nishimura M, Hara-Nishimura I 2014. ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. Front. Plant Sci. 5:73
    [Google Scholar]
  93. 93.  Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H et al. 2003. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63–72
    [Google Scholar]
  94. 94.  Nelson D, Werck-Reichhart D 2011. A P450-centric view of plant evolution. Plant J 66:194–211
    [Google Scholar]
  95. 95.  Nitz I, Berkefeld H, Puzio PS, Grundler FM 2001. Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci 161:337–46
    [Google Scholar]
  96. 96.  Niu Y, Figueroa P 2011. Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. J. Exp. Bot 62:2143–54
    [Google Scholar]
  97. 97.  Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jørgensen ME et al. 2012. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488:531–35
    [Google Scholar]
  98. 98.  Ohno S 1970. Evolution by Gene Duplication Heidelberg, Germany: Springer-Verlag
  99. 99.  Ohta T 2010. Gene conversion and the evolution of gene families: an overview. Genes 1:349–56
    [Google Scholar]
  100. 100.  Olafsdottir ES, Jørgensen LB, Jaroszewski JW 2002. Cyanogenesis in glucosinolate-producing plants: Carica papaya and Carica quercifolia. Phytochemistry 60:269–73
    [Google Scholar]
  101. 101.  Olsen CE, Huang XC, Hansen CI, Cipollini D, Ørgaard M et al. 2016. Glucosinolate diversity within a phylogenetic framework of the tribe Cardamineae (Brassicaceae) unraveled with HPLC-MS/MS and NMR-based analytical distinction of 70 desulfoglucosinolates. Phytochemistry 132:33–56
    [Google Scholar]
  102. 102.  Pfalz M, Mikkelsen MD, Bednarek P, Olsen CE, Halkier BA, Kroymann J 2011. Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification. Plant Cell 23:716–29
    [Google Scholar]
  103. 103.  Pfalz M, Mukhaimar M, Perreau F, Kirk J, Hansen CI et al. 2016. Methyl transfer in glucosinolate biosynthesis mediated by indole glucosinolate O-methyltransferase 5. Plant Physiol 172:2190–203
    [Google Scholar]
  104. 104.  Pfalz M, Vogel H, Kroymann J 2009. The gene controlling the Indole Glucosinolate Modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell 21:985–99
    [Google Scholar]
  105. 105.  Pires N, Dolan L 2010. Origin and diversification of basic-helix-loop-helix proteins in plants. Mol. Biol. Evol. 27:862–74
    [Google Scholar]
  106. 106.  Prasad KV, Song BH, Olson-Manning C, Anderson JT, Lee CR et al. 2012. A gain-of-function polymorphism controlling complex traits and fitness in nature. Science 337:1081–84
    [Google Scholar]
  107. 107.  Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J 2002. Disarming the mustard oil bomb. PNAS 99:11223–28
    [Google Scholar]
  108. 108.  Rodman JE, Soltis PS, Soltis DE, Sytsma KJ, Karol KG 1998. Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am. J. Bot. 85:997–1006
    [Google Scholar]
  109. 109.  Schranz ME, Edger PP, Pires JC, van Dam NM, Wheat CW 2011. Comparative genomics in the Brassicales: ancient genome duplications, glucosinolate diversification and Pierinae herbivore radiation. Genetics, Genomics and Breeding of Oilseed Brassicas D Edwards, J Batley, I Parkin, C Kole 206–18 Boca Raton, Florida: CRC PressAn early study of WGD events affecting Arabidopsis GSL regulation and biosynthesis (see also 10).
    [Google Scholar]
  110. 110.  Schweizer F, Fernández-Calvo P, Zander M, Diez-Diaz M, Fonseca S et al. 2013. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25:3117–32
    [Google Scholar]
  111. 111.  Sobahan MA, Akter N, Okuma E, Uraji M, Ye W et al. 2015. Allyl isothiocyanate induces stomatal closure in Vicia faba.Biosci. Biotechnol. Biochem 79:1737–42
    [Google Scholar]
  112. 112.  Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 98:704–30
    [Google Scholar]
  113. 113.  Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ 2007. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLOS ONE 2:e1322
    [Google Scholar]
  114. 114.  Sørensen M, Neilson EH, Møller BL 2018. Oximes: unrecognized chameleons in general and specialized plant metabolism. Mol. Plant 11:95–117
    [Google Scholar]
  115. 115.  Taipalensuu J, Eriksson S, Rask L 1997. The myrosinase-binding protein from Brassica napus seeds possesses lectin activity and has a highly similar vegetatively expressed wound-inducible counterpart. Eur. J. Biochem. 250:680–88
    [Google Scholar]
  116. 116.  Takos AM, Knudsen C, Lai D, Kannangara R, Mikkelsen L et al. 2011. Genomic clustering of cyanogenic glucoside biosynthetic genes aids in their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Plant J 68:273–86
    [Google Scholar]
  117. 117.  Textor S, de Kraker J-W, Hause B, Gershenzon J, Tokuhisa JG 2007. MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol 144:60–71
    [Google Scholar]
  118. 118.  Thangstad OP, Iversen TH, Slupphaug G, Bones A 1990. Immunocytochemical localization of myrosinase in Brassica napus L. Planta 180:2245–48
    [Google Scholar]
  119. 119.  Vik D, Mitarai N, Wulff N, Halkier BA, Burow M 2018. Dynamic modeling of indole glucosinolate hydrolysis and its impact on auxin signaling. Front. Plant Sci. 9:550
    [Google Scholar]
  120. 120.  Vision TJ, Brown DG, Tanksley SD 2000. The origins of genomic duplications in Arabidopsis. Science 290:2114–17
    [Google Scholar]
  121. 121.  Wang X, Niu Q-W, Teng C, Li C, Mu J et al. 2009. Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis. Cell Res 19:224–35
    [Google Scholar]
  122. 122.  Weng JK, Philippe RN, Noel JP 2012. The rise of chemodiversity in plants. Science 336:1667–70
    [Google Scholar]
  123. 123.  Wink M 2010. Introduction: biochemistry, physiology and ecological functions of secondary metabolites. Annual Plant Reviews 40 M Wink 1–19 Oxford, UK: Wiley-Blackwell
    [Google Scholar]
  124. 124.  Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenzon J 2003. Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. Recent Adv. Phytochem. 37:101–25
    [Google Scholar]
  125. 125.  Wurtzel ET, Kutchan TM 2016. Plant metabolism, the diverse chemistry set of the future. Science 353:1232–36
    [Google Scholar]
  126. 126.  Xu Z, Escamilla-Treviño L, Zeng L, Lalgondar M, Bevan D et al. 2004. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol. Biol. 55:343–67An early study of tandem gene duplication events affecting Arabidopsis GSL activation.
    [Google Scholar]
  127. 127.  Yamaguchi T, Noge K, Asano Y 2016. Cytochrome P450 CYP71AT96 catalyzes the final step of herbivore-induced phenylacetonitrile biosynthesis in the giant knotweed, Fallopia sachalinensis. Plant Mol. Biol 91:229–39
    [Google Scholar]
  128. 128.  Yamaguchi T, Yamamoto K, Asano Y 2014. Identification and characterization of CYP79D16 and CYP71AN24 catalyzing the first and second steps in L-phenylalanine-derived cyanogenic glycoside biosynthesis in the Japanese apricot, Prunus mume Sieb. . et Zucc Plant Mol. Biol. 86:215–23
    [Google Scholar]
  129. 129.  Yanai I, Wolf YI, Koonin EV 2002. Evolution of gene fusions: horizontal transfer versus independent events. Genome Biol 3:research0024
    [Google Scholar]
  130. 130.  Zagrobelny M, Bak S, Møller BL 2008. Cyanogenesis in plants and arthropods. Phytochemistry 69:1457–68
    [Google Scholar]
  131. 131.  Zagrobelny M, Olsen CE, Bak S, Møller BL 2007. Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae). Insect Biochem. Mol. Biol. 37:1180–97
    [Google Scholar]
  132. 132.  Zhang Y, Cao G, Qu LJ, Gu H 2009. Involvement of an R2R3-MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis. Plant Cell Rep 28:337–46
    [Google Scholar]
  133. 133.  Zhang Y, Li B, Huai D, Zhou Y, Kliebenstein DJ 2015. The conserved transcription factors, MYB115 and MYB118, control expression of the newly evolved benzoyloxy glucosinolate pathway in Arabidopsis thaliana. Front. Plant Sci 6:343Discovers regulatory capture of an evolutionarily novel GSL by MYB transcription factors.
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-050718-100152
Loading
/content/journals/10.1146/annurev-arplant-050718-100152
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error