1932

Abstract

Stem cell populations in meristematic tissues at distinct locations in the plant body provide the potency of continuous plant growth. Primary meristems, at the apices of the plant body, contribute mainly to the elongation of the main plant axes, whereas secondary meristems in lateral positions are responsible for the thickening of these axes. The stem cells of the vascular cambium—a secondary lateral meristem—produce the secondary phloem (bast) and secondary xylem (wood). The sites of primary and secondary growth are spatially separated, and mobile signals are expected to coordinate growth rates between apical and lateral stem cell populations. Although the underlying mechanisms have not yet been uncovered, it seems likely that hormones, peptides, and mechanical cues orchestrate primary and secondary growth. In this review, we highlight the current knowledge and recent discoveries of how cambial stem cell activity is regulated, with a focus on mobile signals and the response of cambial activity to environmental and stress factors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050718-100402
2019-04-29
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/arplant/70/1/annurev-arplant-050718-100402.html?itemId=/content/journals/10.1146/annurev-arplant-050718-100402&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K et al. 2011. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. PNAS 108:20242–47
    [Google Scholar]
  2. 2.  Agusti J, Lichtenberger R, Schwarz M, Nehlin L, Greb T 2011. Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLOS Genet 7:e1001312
    [Google Scholar]
  3. 3.  Andersson-Gunnerås S, Hellgren JM, Björklund S, Regan S, Moritz T, Sundberg B 2003. Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood. Plant J 34:339–49
    [Google Scholar]
  4. 4.  Andersson-Gunnerås S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y et al. 2006. Biosynthesis of cellulose-enriched tension wood in Populus: Global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45:144–65
    [Google Scholar]
  5. 5.  Baba K, Karlberg A, Schmidt J, Schrader J, Hvidsten TR et al. 2011. Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. PNAS 108:3418–23Describes modulation of cambial auxin response underlying activity-dormancy cycles in the cambium.
    [Google Scholar]
  6. 6.  Bailey IW, Zirkle C 1931. The cambium and its derivative tissues: VI. The effects of hydrogen ion concentration in vital staining. J. Gen. Physiol. 14:363–83
    [Google Scholar]
  7. 7.  Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D et al. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602
    [Google Scholar]
  8. 8.  Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk MG et al. 2016. Connective auxin transport in the shoot facilitates communication between shoot apices. PLOS Biol 14:e1002446
    [Google Scholar]
  9. 9.  Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O 2006. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol. 16:553–63
    [Google Scholar]
  10. 10.  Besson S, Dumais J 2014. Stochasticity in the symmetric division of plant cells: when the exceptions are the rule. Front. Plant Sci. 5:538
    [Google Scholar]
  11. 11.  Bethel JS 1940. Loblolly pine pulping qualities. Pap. Ind. Pap. World 22:358–59
    [Google Scholar]
  12. 12.  Bhalerao RP, Fischer U 2014. Auxin gradients across wood-instructive or incidental?. Physiol. Plant 151:43–51
    [Google Scholar]
  13. 13.  Bishopp A, Help H, El-Showk S, Weijers D, Scheres B et al. 2011. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr. Biol. 21:917–26
    [Google Scholar]
  14. 14.  Björklund S, Antti H, Uddestrand I, Moritz T, Sundberg B 2007. Cross-talk between gibberellin and auxin in development of Populus wood: Gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511
    [Google Scholar]
  15. 15.  Bolduc N, Hake S 2009. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 21:1647–58
    [Google Scholar]
  16. 16.  Bossinger G, Spokevicius AV 2018. Sector analysis reveals patterns of cambium differentiation in poplar tree stems. J. Exp. Bot. 69:4339–48
    [Google Scholar]
  17. 17.  Brackmann K, Qi J, Gebert M, Jouannet V, Schlamp T et al. 2018. Spatial specificity of auxin responses coordinates wood formation. Nat. Commun. 9:875
    [Google Scholar]
  18. 18.  Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–19
    [Google Scholar]
  19. 19.  Brandt R, Salla-Martret M, Bou-Torrent J, Musielak T, Stahl M et al. 2012. Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. Plant J 72:31–42
    [Google Scholar]
  20. 20.  Brereton NJ, Ray MJ, Shield I, Martin P, Karp A, Murphy RJ 2012. Reaction wood—a key cause of variation in cell wall recalcitrance in willow. Biotechnol. Biofuels 5:83
    [Google Scholar]
  21. 21.  Chan T, Hölttä T, Berninger F, Mäkinen H, Nöjd P et al. 2016. Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant Cell Environ 39:233–44
    [Google Scholar]
  22. 22.  Chano V, Collada C, Soto A 2017. Transcriptomic analysis of wound xylem formation in Pinus canariensis. BMC Plant Biol 17:234
    [Google Scholar]
  23. 23.  Chen H, Banerjee AK, Hannapel DJ 2004. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J 38:276–84
    [Google Scholar]
  24. 24.  Chen Y, Yordanov YS, Ma C, Strauss S, Busov VB 2013. DR5 as a reporter system to study auxin response in Populus. Plant Cell Rep 32:453–63
    [Google Scholar]
  25. 25.  Chiatante D, Rost T, Bryant J, Scippa GS 2018. Regulatory networks controlling the development of the root system and the formation of lateral roots: a comparative analysis of the roles of pericycle and vascular cambium. Ann. Bot. 122:697–710
    [Google Scholar]
  26. 26.  Cosgrove DJ 2016. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J. Exp. Bot. 67:463–76
    [Google Scholar]
  27. 27.  de Reuille PB, Bohn-Courseau I, Ljung K, Morin H, Carraro N et al. 2006. Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. PNAS 103:1627–32
    [Google Scholar]
  28. 28.  De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME et al. 2014. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345:1255215
    [Google Scholar]
  29. 29.  De Rybel B, Möller B, Yoshida S, Grabowicz I, Barbier de Reuille P et al. 2013. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev. Cell 24:426–37
    [Google Scholar]
  30. 30.  Deb Y, Marti D, Frenz M, Kuhlemeier C, Reinhardt D 2015. Phyllotaxis involves auxin drainage through leaf primordia. Development 142:1992–2001
    [Google Scholar]
  31. 31.  Denis E, Kbiri N, Mary V, Claisse G, Conde ESN et al. 2017. WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis. Plant J 90:560–72
    [Google Scholar]
  32. 32.  Dharmasiri N, Dharmasiri S, Estelle M 2005. The F-box protein TIR1 is an auxin receptor. Nature 435:441–45
    [Google Scholar]
  33. 33.  Dubreuil C, Jin X, Grönlund A, Fischer U 2018. A local auxin gradient regulates root cap self-renewal and size homeostasis. Curr. Biol. 28:P2581–87
    [Google Scholar]
  34. 34.  Eriksson ME, Israelsson M, Olsson O, Moritz T 2000. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat. Biotechnol. 18:784–88
    [Google Scholar]
  35. 35.  Espinosa-Ruiz A, Saxena S, Schmidt J, Mellerowicz E, Miskolczi P et al. 2004. Differential stage-specific regulation of cyclin-dependent kinases during cambial dormancy in hybrid aspen. Plant J 38:603–15
    [Google Scholar]
  36. 36.  Etchells JP, Mishra LS, Kumar M, Campbell L, Turner SR 2015. Wood formation in trees is increased by manipulating PXY-regulated cell division. Curr. Biol. 25:P1050–55
    [Google Scholar]
  37. 37.  Etchells JP, Provost CM, Mishra L, Turner SR 2013. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140:2224–34
    [Google Scholar]
  38. 38.  Etchells JP, Provost CM, Turner SR 2012. Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling. PLOS Genet 8:e1002997
    [Google Scholar]
  39. 39.  Etchells JP, Turner SR 2010. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137:767–74
    [Google Scholar]
  40. 40.  Evert RF 2006. Esau's Plant Anatomy New York: Wiley
    [Google Scholar]
  41. 41.  Felten J, Sundberg B 2013. Biology, chemistry and structure of tension wood. Cellular Aspects of Wood Formation J Fromm 203–24 Berlin: Springer
    [Google Scholar]
  42. 42.  Fisher K, Turner S 2007. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr. Biol. 17:1061–66
    [Google Scholar]
  43. 43.  Funada R, Miura T, Shimizu Y, Kinase T, Nakaba S et al. 2008. Gibberellin-induced formation of tension wood in angiosperm trees. Planta 227:1409–14
    [Google Scholar]
  44. 44.  Gallo de Carvalho MC, Caldas DG, Carneiro RT, Moon DH, Salvatierra GR et al. 2008. SAGE transcript profiling of the juvenile cambial region of Eucalyptus grandis. Tree Physiol 28:905–19
    [Google Scholar]
  45. 45.  Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K et al. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–30
    [Google Scholar]
  46. 46.  Garcés M, Le Provost G, Lalanne C, Claverol S, Barre A et al. 2014. Proteomic analysis during ontogenesis of secondary xylem in maritime pine. Tree Physiol 34:1263–77
    [Google Scholar]
  47. 47.  Gartner BL 1996. Does photosynthetic bark have a role in the production of core versus outer wood. ? Wood Fiber Sci 28:53–61
    [Google Scholar]
  48. 48.  Groover A 2016. Gravitropisms and reaction woods of forest trees—evolution, functions and mechanisms. New Phytol 211:790–802
    [Google Scholar]
  49. 49.  Gursanscky NR, Jouannet V, Grunwald K, Sanchez P, Laaber-Schwarz M et al. 2016. MOL1 is required for cambium homeostasis in Arabidopsis. Plant J 86:210–20
    [Google Scholar]
  50. 50.  Hall HC, Fakhrzadeh A, Luengo Hendriks CL, Fischer U 2016. Precision automation of cell type classification and sub-cellular fluorescence quantification from laser scanning confocal images. Front. Plant Sci. 7:119
    [Google Scholar]
  51. 51.  Han S, Cho H, Noh J, Qi J, Jung HJ et al. 2018. BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth. Nat. Plants 4:605–14Shows that PXY signaling crosstalks with cytokinin through repression of MP, which promotes A-type ARR7 and ARR15.
    [Google Scholar]
  52. 52.  Hayward A, Stirnberg P, Beveridge C, Leyser O 2009. Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–12
    [Google Scholar]
  53. 53.  Hellgren JM, Olofsson K, Sundberg B 2004. Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135:212–20
    [Google Scholar]
  54. 54.  Hirakawa Y, Kondo Y, Fukuda H 2010. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22:2618–29Discovers the first peptide signaling components steering vascular cambial activity through regulation of WOX4.
    [Google Scholar]
  55. 55.  Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I et al. 2008. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. PNAS 105:15208–13Discovers the first peptide signaling components steering vascular cambial activity in a non-cell-autonomous way.
    [Google Scholar]
  56. 56.  Ikematsu S, Tasaka M, Torii KU, Uchida N 2017. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. New Phytol 213:1697–709
    [Google Scholar]
  57. 57.  Immanen J, Nieminen K, Smolander OP, Kojima M, Alonso Serra J et al. 2016. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Curr. Biol. 26:1990–97Shows that biomass production can be improved dramatically by increasing cytokinin levels specifically in the stem.
    [Google Scholar]
  58. 58.  Israelsson M, Sundberg B, Moritz T 2005. Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J 44:494–504
    [Google Scholar]
  59. 59.  Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S et al. 2006. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–45
    [Google Scholar]
  60. 60.  Jaccard P 1938. Exzentrisches Dickenwachstum und anatomisch-histologische Differenzierung des Holzes. Ber. Schweiz. Bot. Ges. 48:491–537
    [Google Scholar]
  61. 61.  Jasinski S, Piazza P, Craft J, Hay A, Woolley L et al. 2005. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr. Biol. 15:1560–65
    [Google Scholar]
  62. 62.  Jiang S, Furukawa I, Honma T, Mori M, Nakamura T, Yamamoto F 1998. Effects of applied gibberellins and uniconazole-P on gravitropism and xylem formation in horizontally positioned Fraxinus mandshurica seedlings. J. Wood Sci. 44:385–91
    [Google Scholar]
  63. 63.  Johnsson C, Fischer U 2016. Cambial stem cells and their niche. Plant Sci 252:239–45
    [Google Scholar]
  64. 64.  Johnsson C, Jin X, Xue W, Dubreuil C, Lezhneva L, Fischer U 2018. The plant hormone auxin directs timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors. Physiol. Plant. https://doi.org/10.1111/ppl.12766
    [Crossref] [Google Scholar]
  65. 65.  Katayama H, Iwamoto K, Kariya Y, Asakawa T, Kan T et al. 2015. A negative feedback loop controlling bHLH complexes is involved in vascular cell division and differentiation in the root apical meristem. Curr. Biol. 25:3144–50
    [Google Scholar]
  66. 66.  Kepinski S, Leyser O 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–51
    [Google Scholar]
  67. 67.  Ko JH, Han KH, Park S, Yang J 2004. Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol 135:1069–83
    [Google Scholar]
  68. 68.  Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M et al. 2014. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling. Nat. Commun. 5:3504
    [Google Scholar]
  69. 69.  Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O 2017. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytol 215:642–57Highlights that WOX4, a positive regulator of cambial meristem activity, plays a prominent role in the regulation of secondary growth in trees.
    [Google Scholar]
  70. 70.  Kucukoglu M, Nilsson O 2015. CLE peptide signaling in plants—the power of moving around. Physiol. Plant 155:74–87
    [Google Scholar]
  71. 71.  Landrein B, Kiss A, Sassi M, Chauvet A, Das P et al. 2015. Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. eLife 4:e07811
    [Google Scholar]
  72. 72.  Larson PR 1994. The Vascular Cambium: Development and Structure Berlin: Springer
    [Google Scholar]
  73. 73.  Li X, Wu HX, Southerton SG 2012. Identification of putative candidate genes for juvenile wood density in Pinus radiata. Tree Physiol 32:1046–57
    [Google Scholar]
  74. 74.  Liebsch D, Sunaryo W, Holmlund M, Norberg M, Zhang J et al. 2014. Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development 141:4311–19Demonstrates that STM and KNAT1 are local factors, which positively regulate cambial activity and which may integrate hormonal signaling and metabolism.
    [Google Scholar]
  75. 75.  Little CHA, Bonga JM 1974. Rest in the cambium of Abies balsamea. Can. J. Bot 52:1723–30
    [Google Scholar]
  76. 76.  Long JA, Barton MK 1998. The development of apical embryonic pattern in Arabidopsis. Development 125:3027–35
    [Google Scholar]
  77. 77.  Louveaux M, Julien JD, Mirabet V, Boudaoud A, Hamant O 2016. Cell division plane orientation based on tensile stress in Arabidopsis thaliana. PNAS 113:E4294–303
    [Google Scholar]
  78. 78.  Love J, Björklund S, Vahala J, Hertzberg M, Kangasjärvi J, Sundberg B 2009. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. PNAS 106:5984–89
    [Google Scholar]
  79. 79.  Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K et al. 2006. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98
    [Google Scholar]
  80. 80.  Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y 2000. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14:2938–43
    [Google Scholar]
  81. 81.  Mähönen AP, Higuchi M, Törmäkangas K, Miyawaki K, Pischke MS et al. 2006. Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr. Biol 16:1116–22
    [Google Scholar]
  82. 82.  Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K et al. 2008. Cytokinins are central regulators of cambial activity. PNAS 105:20027–31
    [Google Scholar]
  83. 83.  Mauriat M, Moritz T 2009. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J 58:989–1003
    [Google Scholar]
  84. 84.  Mauriat M, Petterle A, Bellini C, Moritz T 2014. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. Plant J 78:372–84
    [Google Scholar]
  85. 85.  Mazur E, Kurczyńska EU, Friml J 2014. Cellular events during interfascicular cambium ontogenesis in inflorescence stems of Arabidopsis. Protoplasma 251:1125–39
    [Google Scholar]
  86. 86.  Melnyk CW, Gabel A, Hardcastle TJ, Robinson S, Miyashima S et al. 2018. Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. PNAS 115:E2447–56
    [Google Scholar]
  87. 87.  Melnyk CW, Meyerowitz EM 2015. Plant grafting. Curr. Biol. 25:R183–88
    [Google Scholar]
  88. 88.  Melnyk CW, Schuster C, Leyser O, Meyerowitz EM 2015. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Curr. Biol 25:1306–18
    [Google Scholar]
  89. 89.  Miyashima S, Roszak P, Sevilem I, Toyokura K, Blob B et al. 2019. Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature 565:490–94Describes a regulatory mechanism between mobile PEAR transcription factors and HD-ZIPIIIs for the procambial development.
    [Google Scholar]
  90. 90.  Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S et al. 2002. Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Plant J 31:675–85
    [Google Scholar]
  91. 91.  Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P et al. 2008. Cytokinin signaling regulates cambial development in poplar. PNAS 105:20032–37
    [Google Scholar]
  92. 92.  Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E et al. 2008. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843–55
    [Google Scholar]
  93. 93.  Nugroho WD, Yamagishi Y, Nakaba S, Fukuhara S, Begum S et al. 2012. Gibberellin is required for the formation of tension wood and stem gravitropism in Acacia mangium seedlings. Ann. Bot. 110:887–95
    [Google Scholar]
  94. 94.  Ohashi-Ito K, Saegusa M, Iwamoto K, Oda Y, Katayama H et al. 2014. A bHLH complex activates vascular cell division via cytokinin action in root apical meristem. Curr. Biol. 24:2053–58
    [Google Scholar]
  95. 95.  Ohyama K, Ogawa M, Matsubayashi Y 2008. Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant J 55:152–60
    [Google Scholar]
  96. 96.  Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y 1991. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–84
    [Google Scholar]
  97. 97.  Omelyanchuk NA, Kovrizhnykh VV, Oshchepkova EA, Pasternak T, Palme K, Mironova VV 2016. A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root. BMC Plant Biol 16:Suppl. 15
    [Google Scholar]
  98. 98.  Pang Y, Zhang J, Cao J, Yin SY, He XQ, Cui KM 2008. Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv. J. Exp. Bot. 59:1341–51
    [Google Scholar]
  99. 99.  Paul S, Wildhagen H, Janz D, Polle A 2018. Drought effects on the tissue- and cell-specific cytokinin activity in poplar. AoB Plants 10:plx067
    [Google Scholar]
  100. 100.  Paux E, Carocha V, Marques C, Mendes de Sousa A, Borralho N et al. 2005. Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytol 167:89–100
    [Google Scholar]
  101. 101.  Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS 2011. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23:1322–36Identifies gibberellic acid as a shoot-derived signal promoting cambial activity.
    [Google Scholar]
  102. 102.  Randall RS, Miyashima S, Blomster T, Zhang J, Elo A et al. 2015. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins. Biol. Open 4:1229–36
    [Google Scholar]
  103. 103.  Ranocha P, Dima O, Nagy R, Felten J, Corratgé-Faillie C et al. 2013. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat. Commun. 4:2625
    [Google Scholar]
  104. 104.  Rathgeber CB, Cuny HE, Fonti P 2016. Biological basis of tree-ring formation: a crash course. Front. Plant Sci. 7:734
    [Google Scholar]
  105. 105.  Robischon M, Du J, Miura E, Groover A 2011. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiol 155:1214–25
    [Google Scholar]
  106. 106.  Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M 2001. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–90
    [Google Scholar]
  107. 107.  Sauer M, Balla J, Luschnig C, Wiśniewska J, Reinöhl V et al. 2006. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–11
    [Google Scholar]
  108. 108.  Sawada D, Kalluri UC, O'Neill H, Urban V, Langan P et al. 2018. Tension wood structure and morphology conducive for better enzymatic digestion. Biotechnol. Biofuels 11:44
    [Google Scholar]
  109. 109.  Scheres B, Di Laurenzio L, Willemsen V, Hauser MT, Janmaat K et al. 1995. Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62
    [Google Scholar]
  110. 110.  Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E et al. 1994. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–87
    [Google Scholar]
  111. 111.  Schlereth A, Möller B, Liu W, Kientz M, Flipse J et al. 2010. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464:913–16
    [Google Scholar]
  112. 112.  Schniewind AP 1962. Horizontal specific gravity variation in tree stems in relation to their support function. For. Sci. 8:111–18
    [Google Scholar]
  113. 113.  Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T 2000. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–44
    [Google Scholar]
  114. 114.  Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J et al. 2004. Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40:173–87
    [Google Scholar]
  115. 115.  Sehr EM, Agusti J, Lehner R, Farmer EE, Schwarz M, Greb T 2010. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J 63:811–22
    [Google Scholar]
  116. 116.  Sheng D, Fukuju Y 2007. An overview of the biology of reaction wood formation. J. Integr. Plant Biol. 49:131–43
    [Google Scholar]
  117. 117.  Shi D, Lebovka I, López-Salmerón V, Sanchez P, Greb T 2019. Bifacial cambium stem cells generate xylem and phloem during radial plant growth. Development 146:dev171355
    [Google Scholar]
  118. 118.  Shu W, Zhou H, Jiang C, Zhao S, Wang L et al. 2019. The auxin receptor TIR1 homolog (PagFBL1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus. Plant Biotechnol. J 17:338–49
    [Google Scholar]
  119. 119.  Siedlecka A, Wiklund S, Péronne MA, Micheli F, Lesniewska J et al. 2008. Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol 146:554–65
    [Google Scholar]
  120. 120.  Smet W, Sevilem I, de Luis Balaguer MA, Wybouw B, Mor E et al. 2019. DOF2.1 controls cytokinin-dependent vascular cell proliferation downstream of TMO5/LHW. Curr. Biol. 29:520–29.e6
    [Google Scholar]
  121. 121.  Smetana O, Mäkilä R, Lyu M, Amiryousefi A, Sánchez Rodríguez F et al. 2019. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565:485–89Defines a stem cell organizer in xylem identity cells of the vascular cambium and describes spatial regulation of stem cells via high auxin signaling in the organizer.
    [Google Scholar]
  122. 122.  Stahl Y, Wink RH, Ingram GC, Simon R 2009. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr. Biol. 19:909–14
    [Google Scholar]
  123. 123.  Stobbe H, Schmitt U, Eckstein D, Dujesiefken D 2002. Developmental stages and fine structure of surface callus formed after debarking of living lime trees (Tilia sp.). Ann. Bot. 89:773–82
    [Google Scholar]
  124. 124.  Suer S, Agusti J, Sanchez P, Schwarz M, Greb T 2011. WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell 23:3247–59
    [Google Scholar]
  125. 125.  Sundberg B, Uggla C 1998. Origin and dynamics of indoleacetic acid under polar transport in Pinus sylvestris. Physiol. Plant 104:22–29
    [Google Scholar]
  126. 126.  Sundberg B, Uggla C, Tuominen H 2000. Cambial growth and auxin gradients. Cell and Molecular Biology of Wood Formation BJ Savidge, R Napier 169–88 Oxford, UK: BIOS Scientific Publishers
    [Google Scholar]
  127. 127.  Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M et al. 2017. Asp wood: High-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. Plant Cell 29:1585–604Describes high-spatial-resolution transcription profiling across the secondary phloem, vascular cambium, and secondary xylem of Populus tremula trees.
    [Google Scholar]
  128. 128.  Tal I, Zhang Y, Jorgensen ME, Pisanty O, Barbosa IC et al. 2016. The Arabidopsis NPF3 protein is a GA transporter. Nat. Commun. 7:11486
    [Google Scholar]
  129. 129.  Teichmann T, Bolu-Arianto WH, Olbrich A, Langenfeld-Heyser R, Göbel C et al. 2008. GH3::GUS reflects cell-specific developmental patterns and stress-induced changes in wood anatomy in the poplar stem. Tree Physiol 28:1305–15
    [Google Scholar]
  130. 130.  ten Hove CA, Lu KJ, Weijers D 2015. Building a plant: cell fate specification in the early Arabidopsis embryo. Development 142:420–30
    [Google Scholar]
  131. 131.  Tuominen H, Puech L, Fink S, Sundberg B 1997. A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol 115:577–85
    [Google Scholar]
  132. 132.  Tuominen H, Puech L, Regan S, Fink S, Olsson O, Sundberg B 2000. Cambial-region-specific expression of the Agrobacterium iaa genes in transgenic aspen visualized by a linked uidA reporter gene. Plant Physiol 123:531–42
    [Google Scholar]
  133. 133.  Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A et al. 2018. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360:212–15
    [Google Scholar]
  134. 134.  Uchida N, Lee JS, Horst RJ, Lai HH, Kajita R et al. 2012. Regulation of inflorescence architecture by intertissue layer ligand-receptor communication between endodermis and phloem. PNAS 109:6337–42
    [Google Scholar]
  135. 135.  Uchida N, Tasaka M 2013. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases. J. Exp. Bot. 64:5335–43
    [Google Scholar]
  136. 136.  Uggla C, Magel E, Moritz T, Sundberg B 2001. Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Physiol 125:2029–39
    [Google Scholar]
  137. 137.  Uggla C, Mellerowicz EJ, Sundberg B 1998. Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117:113–21
    [Google Scholar]
  138. 138.  Uggla C, Moritz T, Sandberg G, Sundberg B 1996. Auxin as a positional signal in pattern formation in plants. PNAS 93:9282–86
    [Google Scholar]
  139. 139.  Vahala J, Felten J, Love J, Gorzsás A, Gerber L et al. 2013. A genome-wide screen for ethylene-induced ethylene response factors (ERFs) in hybrid aspen stem identifies ERF genes that modify stem growth and wood properties. New Phytol 200:511–22
    [Google Scholar]
  140. 140.  Vera-Sirera F, De Rybel B, Úrbez C, Kouklas E, Pesquera M et al. 2015. A bHLH-based feedback loop restricts vascular cell proliferation in plants. Dev. Cell 35:432–43
    [Google Scholar]
  141. 141.  von Wangenheim D, Hauschild R, Fendrych M, Barone V, Benková E, Friml J 2017. Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife 6:26792
    [Google Scholar]
  142. 142.  Wellwood RW, Smith JGH 1962. Variation in some important qualities of wood from young Douglas fir and Hemlock trees Res. Pap. 50, Faculty Forestry, Univ. British Columbia Vancouver:
    [Google Scholar]
  143. 143.  Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P 2008. Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. PNAS 105:18625–30
    [Google Scholar]
  144. 144.  Wu HX, Ivković M, Gapare WJ, Matheson AC, Baltunis BS et al. 2008. Breeding for wood quality and profit in Pinus radiata: a review of genetic parameter estimates and implications for breeding and deployment. N. Z. J. For. Sci. 38:56–87
    [Google Scholar]
  145. 145.  Wu SZ, Bezanilla M 2014. Myosin VIII associates with microtubule ends and together with actin plays a role in guiding plant cell division. eLife 3:e03498
    [Google Scholar]
  146. 146.  Wunderling A, Ripper D, Barra-Jimenez A, Mahn S, Sajak K et al. 2018. A molecular framework to study periderm formation in Arabidopsis. New Phytol 219:216–29
    [Google Scholar]
  147. 147.  Yang KC, Hazenberg G 1994. Impact of spacing on tracheid length, relative density, and growth rate of juvenile wood and mature wood in Picea mariana. Can. J. For. Res 24:996–1007
    [Google Scholar]
  148. 148.  Yeoman MM, Brown R 1971. Effects of mechanical stress on the plane of cell division in developing callus cultures. Ann. Bot. 35:1101–12
    [Google Scholar]
  149. 149.  Yoshida S, Barbier de Reuille P, Lane B, Bassel GW, Prusinkiewicz P et al. 2014. Genetic control of plant development by overriding a geometric division rule. Dev. Cell 29:75–87
    [Google Scholar]
  150. 150.  Zhang H, Lin X, Han Z, Wang J, Qu LJ, Chai J 2016. SERK family receptor-like kinases function as co-receptors with PXY for plant vascular development. Mol. Plant 9:1406–14
    [Google Scholar]
  151. 151.  Zhang J, Gao G, Chen JJ, Taylor G, Cui KM, He XQ 2011. Molecular features of secondary vascular tissue regeneration after bark girdling in Populus. New Phytol 192:869–84
    [Google Scholar]
  152. 152.  Zhong R, Ye ZH 2001. Alteration of auxin polar transport in the Arabidopsis ifl1 mutants. Plant Physiol 126:549–63
    [Google Scholar]
  153. 153.  Zinkgraf M, Gerttula S, Zhao S, Filkov V, Groover A 2018. Transcriptional and temporal response of Populus stems to gravi-stimulation. J. Integr. Plant Biol. 60:578–90
    [Google Scholar]
  154. 154.  Zobel BJ 1961. Inheritance of wood properties in conifers. Silvae Genet 10:65–70
    [Google Scholar]
  155. 155.  Zobel BJ, Sprague JR 1998. General concepts of juvenile wood. Juvenile Wood in Forest Trees1–20 Berlin: Springer
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-050718-100402
Loading
/content/journals/10.1146/annurev-arplant-050718-100402
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error