1932

Abstract

Plant mitochondria play a major role during respiration by producing the ATP required for metabolism and growth. ATP is produced during oxidative phosphorylation (OXPHOS), a metabolic pathway coupling electron transfer with ADP phosphorylation via the formation and release of a proton gradient across the inner mitochondrial membrane. The OXPHOS system is composed of large, multiprotein complexes coordinating metal-containing cofactors for the transfer of electrons. In this review, we summarize the current state of knowledge about assembly of the OXPHOS complexes in land plants. We present the different steps involved in the formation of functional complexes and the regulatory mechanisms controlling the assembly pathways. Because several assembly steps have been found to be ancestral in plants—compared with those described in fungal and animal models—we discuss the evolutionary dynamics that lead to the conservation of ancestral pathways in land plant mitochondria.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050718-100412
2019-04-29
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/arplant/70/1/annurev-arplant-050718-100412.html?itemId=/content/journals/10.1146/annurev-arplant-050718-100412&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Ackerman SH, Tzagoloff A 1990. Identification of two nuclear genes (ATP11, ATP12) required for assembly of the yeast F1-ATPase. PNAS 87:4986–90
    [Google Scholar]
  2. 2.  Allen JF 2015. Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression. PNAS 112:10231–38
    [Google Scholar]
  3. 3.  Allen JF, Martin WF 2016. Why have organelles retained genomes. ? Cell Syst 2:70–72
    [Google Scholar]
  4. 4.  Allen JW 2011. Cytochrome c biogenesis in mitochondria—Systems III and V. FEBS J 278:4198–216
    [Google Scholar]
  5. 5.  Attallah CV, Welchen E, Martin AP, Spinelli SV, Bonnard G et al. 2011. Plants contain two SCO proteins that are differentially involved in cytochrome c oxidase function and copper and redox homeostasis. J. Exp. Bot. 62:4281–94
    [Google Scholar]
  6. 6.  Attallah CV, Welchen E, Pujol C, Bonnard G, Gonzalez DH 2007. Characterization of Arabidopsis thaliana genes encoding functional homologues of the yeast metal chaperone Cox19p, involved in cytochrome c oxidase biogenesis. Plant Mol. Biol. 65:343–55
    [Google Scholar]
  7. 7.  Babbitt SE, Sutherland MC, San Francisco B, Mendez DL, Kranz RG 2015. Mitochondrial cytochrome c biogenesis: no longer an enigma. Trends Biochem. Sci. 40:446–55
    [Google Scholar]
  8. 8.  Balandin T, Castresana C 2002. AtCOX17, an Arabidopsis homolog of the yeast copper chaperone COX17. Plant Physiol 129:1852–57
    [Google Scholar]
  9. 9.  Balk J, Schaedler TA 2014. Iron cofactor assembly in plants. Annu. Rev. Plant Biol. 65:125–53
    [Google Scholar]
  10. 10.  Barrientos A, Gouget K, Horn D, Soto IC, Fontanesi F 2009. Suppression mechanisms of COX assembly defects in yeast and human: insights into the COX assembly process. Biochim. Biophys. Acta 1793:97–107
    [Google Scholar]
  11. 11.  Belt K, Van Aken O, Murcha MW, Millar AH, Huang S 2018. An assembly factor promotes assembly of flavinated SDH1 into the succinate dehydrogenase complex. Plant Physiol 177:1439–52
    [Google Scholar]
  12. 12.  Benz M, Soll J, Ankele E 2013. Arabidopsis thaliana Oxa proteins locate to mitochondria and fulfill essential roles during embryo development. Planta 237:573–88
    [Google Scholar]
  13. 13.  Bezawork-Geleta A, Rohlena J, Dong L, Pacak K, Neuzil J 2017. Mitochondrial complex II: at the crossroads. Trends Biochem. Sci. 42:312–25
    [Google Scholar]
  14. 14.  Binder S, Brennicke A 2003. Gene expression in plant mitochondria: transcriptional and post-transcriptional control. Philos. Trans. R. Soc. B 358:181–88
    [Google Scholar]
  15. 15.  Bode M, Woellhaf MW, Bohnert M, van der Laan M, Sommer F et al. 2015. Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in the intermembrane space of mitochondria facilitates biogenesis of cytochrome c oxidase. Mol. Biol. Cell 26:2385–401
    [Google Scholar]
  16. 16.  Bourens M, Barrientos A 2017. A CMC1-knockout reveals translation-independent control of human mitochondrial complex IV biogenesis. EMBO Rep 18:477–94
    [Google Scholar]
  17. 17.  Bourens M, Barrientos A 2017. Human mitochondrial cytochrome c oxidase assembly factor COX18 acts transiently as a membrane insertase within the subunit 2 maturation module. J. Biol. Chem. 292:7774–83
    [Google Scholar]
  18. 18.  Boyer PD 1997. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66:717–49
    [Google Scholar]
  19. 19.  Braun HP, Kruft V, Schmitz UK 1994. Molecular identification of the ten subunits of cytochrome-c reductase from potato mitochondria. Planta 193:99–106
    [Google Scholar]
  20. 20.  Bultema JB, Braun HP, Boekema EJ, Kouril R 2009. Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Biochim. Biophys. Acta 1787:60–67
    [Google Scholar]
  21. 21.  Carrie C, Venne AS, Zahedi RP, Soll J 2015. Identification of cleavage sites and substrate proteins for two mitochondrial intermediate peptidases in Arabidopsis thaliana. J. Exp. Bot 66:2691–708
    [Google Scholar]
  22. 22.  Carrie C, Weißenberger S, Soll J 2016. Plant mitochondria contain the protein translocase subunits TatB and TatC. J. Cell Sci. 129:3935–47
    [Google Scholar]
  23. 23.  Chen Y, Dalbey RE 2018. Oxa1 superfamily: new members found in the ER. Trends Biochem. Sci. 43:151–53
    [Google Scholar]
  24. 24.  Chow KS, Singh DP, Walker AR, Smith AG 1998. Two different genes encode ferrochelatase in Arabidopsis: mapping, expression and subcellular targeting of the precursor proteins. Plant J 15:531–41
    [Google Scholar]
  25. 25.  Clemente P, Peralta S, Cruz-Bermudez A, Echevarria L, Fontanesi F et al. 2013. hCOA3 stabilizes cytochrome c oxidase 1 (COX1) and promotes cytochrome c oxidase assembly in human mitochondria. J. Biol. Chem. 288:8321–31
    [Google Scholar]
  26. 26.  Cogliati S, Enríquez JA, Scorrano L 2016. Mitochondrial cristae: where beauty meets functionality. Trends Biochem. Sci. 41:261–73
    [Google Scholar]
  27. 27.  Colas des Francs-Small C, Small I 2014. Surrogate mutants for studying mitochondrially encoded functions. Biochimie 100:234–42
    [Google Scholar]
  28. 28.  Comelli RN, Viola IL, Gonzalez DH 2009. Characterization of promoter elements required for expression and induction by sucrose of the Arabidopsis COX5b-1 nuclear gene, encoding the zinc-binding subunit of cytochrome c oxidase. Plant Mol. Biol. 69:729–43
    [Google Scholar]
  29. 29.  Corvest V, Murrey DA, Hirasawa M, Knaff DB, Guiard B, Hamel PP 2012. The flavoprotein Cyc2p, a mitochondrial cytochrome c assembly factor, is a NAD(P)H-dependent haem reductase. Mol. Microbiol. 83:968–80
    [Google Scholar]
  30. 30.  Couvillion MT, Soto IC, Shipkovenska G, Churchman LS 2016. Synchronized mitochondrial and cytosolic translation programs. Nature 533:499–503
    [Google Scholar]
  31. 31.  Crofts AR 2004. The cytochrome bc1 complex: function in the context of structure. Annu. Rev. Physiol. 66:689–733
    [Google Scholar]
  32. 32.  Dacks JB, Field MC, Buick R, Eme L, Gribaldo S et al. 2016. The changing view of eukaryogenesis—fossils, cells, lineages and how they all come together. J. Cell Sci. 129:3695–703
    [Google Scholar]
  33. 33.  Davies KM, Blum TB, Kühlbrandt W 2018. Conserved in situ arrangement of complex I and III2 in mitochondrial respiratory chain supercomplexes of mammals, yeast, and plants. PNAS 115:3024–29
    [Google Scholar]
  34. 34.  DiMauro S, Tanji K, Schon EA 2012. The many clinical faces of cytochrome c oxidase deficiency. Adv. Exp. Med. Biol. 748:341–57
    [Google Scholar]
  35. 35.  D'Imprima E, Mills DJ, Parey K, Brandt U, Kühlbrandt W et al. 2016. Cryo-EM structure of respiratory complex I reveals a link to mitochondrial sulfur metabolism. Biochim. Biophys. Acta 1857:1935–42
    [Google Scholar]
  36. 36.  Elurbe DM, Huynen MA 2016. The origin of the supernumerary subunits and assembly factors of complex I: a treasure trove of pathway evolution. Biochim. Biophys. Acta 1857:971–79
    [Google Scholar]
  37. 37.  Enríquez JA 2016. Supramolecular organization of respiratory complexes. Annu. Rev. Physiol. 78:533–61
    [Google Scholar]
  38. 38.  Eubel H, Heinemeyer J, Braun HP 2004. Identification and characterization of respirasomes in potato mitochondria. Plant Physiol 134:1450–59
    [Google Scholar]
  39. 39.  Eubel H, Jänsch L, Braun HP 2003. New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol 133:274–86
    [Google Scholar]
  40. 40.  Fernandez-Vizarra E, Tiranti V, Zeviani M 2009. Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects. Biochim. Biophys. Acta 1793:200–11
    [Google Scholar]
  41. 41.  Formosa LE, Dibley MG, Stroud DA, Ryan MT 2018. Building a complex complex: assembly of mitochondrial respiratory chain complex I. Semin. Cell Dev. Biol. 76:154–62
    [Google Scholar]
  42. 42.  Garcia L, Welchen E, Gey U, Arce AL, Steinebrunner I, Gonzalez DH 2016. The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis. Plant Cell Environ 39:628–44
    [Google Scholar]
  43. 43.  Gehl B, Lee CP, Bota P, Blatt MR, Sweetlove LJ 2014. An Arabidopsis stomatin-like protein affects mitochondrial respiratory supercomplex organization. Plant Physiol 164:1389–400
    [Google Scholar]
  44. 44.  Giancaspero TA, Locato V, de Pinto MC, De Gara L, Barile M 2009. The occurrence of riboflavin kinase and FAD synthetase ensures FAD synthesis in tobacco mitochondria and maintenance of cellular redox status. FEBS J 276:219–31
    [Google Scholar]
  45. 45.  Giege P, Grienenberger JM, Bonnard G 2008. Cytochrome c biogenesis in mitochondria. Mitochondrion 8:61–73
    [Google Scholar]
  46. 46.  Giege P, Sweetlove LJ, Cognat V, Leaver CJ 2005. Coordination of nuclear and mitochondrial genome expression during mitochondrial biogenesis in Arabidopsis. Plant Cell 17:1497–512
    [Google Scholar]
  47. 47.  Giraud E, Ng S, Carrie C, Duncan O, Low J et al. 2010. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. Plant Cell 22:3921–34
    [Google Scholar]
  48. 48.  Glaser E, Eriksson A, Sjoling S 1994. Bifunctional role of the bc1 complex in plants. Mitochondrial bc1 complex catalyses both electron transport and protein processing. FEBS Lett 346:83–87
    [Google Scholar]
  49. 49.  Gonzalez DH, Welchen E, Attallah CV, Comelli RN, Mufarrege EF 2007. Transcriptional coordination of the biogenesis of the oxidative phosphorylation machinery in plants. Plant J 51:105–16
    [Google Scholar]
  50. 50.  Gray MW 2015. Mosaic nature of the mitochondrial proteome: implications for the origin and evolution of mitochondria. PNAS 112:10133–38
    [Google Scholar]
  51. 51.  Gruschke S, Kehrein K, Römpler K, Gröne K, Israel L et al. 2011. Cbp3–Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assembly. J. Cell Biol. 193:1101–14
    [Google Scholar]
  52. 52.  Gruschke S, Römpler K, Hildenbeutel M, Kehrein K, Kühl I et al. 2012. The Cbp3–Cbp6 complex coordinates cytochrome b synthesis with bc1 complex assembly in yeast mitochondria. J. Cell Biol. 199:137–50
    [Google Scholar]
  53. 53.  Guerrero-Castillo S, Baertling F, Kownatzki D, Wessels HJ, Arnold S et al. 2017. The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab 25:128–39
    [Google Scholar]
  54. 54.  Hao HX, Khalimonchuk O, Schraders M, Dephoure N, Bayley JP et al. 2009. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325:1139–42
    [Google Scholar]
  55. 55.  He J, Ford HC, Carroll J, Douglas C, Gonzales E et al. 2018. Assembly of the membrane domain of ATP synthase in human mitochondria. PNAS 115:2988–93
    [Google Scholar]
  56. 56.  Hennon SW, Soman R, Zhu L, Dalbey RE 2015. YidC/Alb3/Oxa1 family of insertases. J. Biol. Chem. 290:14866–74
    [Google Scholar]
  57. 57.  Hildenbeutel M, Hegg EL, Stephan K, Gruschke S, Meunier B, Ott M 2014. Assembly factors monitor sequential hemylation of cytochrome b to regulate mitochondrial translation. J. Cell Biol. 205:511–24
    [Google Scholar]
  58. 58.  Hirst J 2013. Mitochondrial complex I. Annu. Rev. Biochem. 82:551–75
    [Google Scholar]
  59. 59.  Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM 2010. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos. Trans. R. Soc. B 365:713–27
    [Google Scholar]
  60. 60.  Howell KA, Millar AH, Whelan J 2006. Ordered assembly of mitochondria during rice germination begins with pro-mitochondrial structures rich in components of the protein import apparatus. Plant Mol. Biol. 60:201–23
    [Google Scholar]
  61. 61.  Huang S, Taylor NL, Narsai R, Eubel H, Whelan J, Millar AH 2010. Functional and composition differences between mitochondrial complex II in Arabidopsis and rice are correlated with the complex genetic history of the enzyme. Plant Mol. Biol. 72:331–42
    [Google Scholar]
  62. 62.  Huang S, Taylor NL, Stroher E, Fenske R, Millar AH 2013. Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis. Plant J 73:429–41
    [Google Scholar]
  63. 63.  Ikeda K, Shiba S, Horie-Inoue K, Shimokata K, Inoue S 2013. A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat. Commun. 4:2147
    [Google Scholar]
  64. 64.  Jett KA, Leary SC 2018. Building the CuA site of cytochrome c oxidase: a complicated, redox-dependent process driven by a surprisingly large complement of accessory proteins. J. Biol. Chem. 293:4644–52
    [Google Scholar]
  65. 65.  Johnston IG, Williams BP 2016. Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention. Cell Syst 2:101–11
    [Google Scholar]
  66. 66.  Kolli R, Soll J, Carrie C 2019. OXA2b is crucial for proper membrane insertion of COX2 during biogenesis of complex IV in plant mitochondria. Plant Physiol 179:601–15
    [Google Scholar]
  67. 67.  Kolli R, Soll J, Carrie C 2018. Plant mitochondrial inner membrane protein insertion. Int. J. Mol. Sci. 19:641
    [Google Scholar]
  68. 68.  Koopman WJ, Distelmaier F, Smeitink JA, Willems PH 2013. OXPHOS mutations and neurodegeneration. EMBO J 32:9–29
    [Google Scholar]
  69. 69.  Kühn K, Richter U, Meyer EH, Delannoy E, de Longevialle AF et al. 2009. Phage-type RNA polymerase RPOTmp performs gene-specific transcription in mitochondria of Arabidopsis thaliana. Plant Cell 21:2762–79
    [Google Scholar]
  70. 70.  Kwasniak M, Majewski P, Skibior R, Adamowicz A, Czarna M et al. 2013. Silencing of the nuclear RPS10 gene encoding mitochondrial ribosomal protein alters translation in Arabidopsis mitochondria. Plant Cell 25:1855–67
    [Google Scholar]
  71. 71.  Law SR, Narsai R, Taylor NL, Delannoy E, Carrie C et al. 2012. Nucleotide and RNA metabolism prime translational initiation in the earliest events of mitochondrial biogenesis during Arabidopsis germination. Plant Physiol 158:1610–27
    [Google Scholar]
  72. 72.  Law SR, Narsai R, Whelan J 2014. Mitochondrial biogenesis in plants during seed germination. Mitochondrion 19:Part B214–21
    [Google Scholar]
  73. 73.  Lee CP, Eubel H, O'Toole N, Millar AH 2011. Combining proteomics of root and shoot mitochondria and transcript analysis to define constitutive and variable components in plant mitochondria. Phytochemistry 72:1092–108
    [Google Scholar]
  74. 74.  Lenaz G, Genova ML 2009. Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. Int. J. Biochem. Cell Biol. 41:1750–72
    [Google Scholar]
  75. 75.  Letts JA, Sazanov LA 2017. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 24:800–8
    [Google Scholar]
  76. 76.  Li L, Carrie C, Nelson C, Whelan J, Millar AH 2012. Accumulation of newly synthesized F1 in vivo in Arabidopsis mitochondria provides evidence for modular assembly of the plant F1FO ATP synthase. J. Biol. Chem. 287:25749–57
    [Google Scholar]
  77. 77.  Li L, Nelson CJ, Carrie C, Gawryluk RM, Solheim C et al. 2013. Subcomplexes of ancestral respiratory complex I subunits rapidly turn over in vivo as productive assembly intermediates in Arabidopsis. J. Biol. Chem 288:5707–17
    [Google Scholar]
  78. 78.  Ligas J, Pineau E, Bock R, Huynen MA, Meyer EH 2019. The assembly pathway of complex I in Arabidopsis thaliana. Plant J 97:447–59
    [Google Scholar]
  79. 79.  Lister R, Chew O, Rudhe C, Lee MN, Whelan J 2001. Arabidopsis thaliana ferrochelatase-I and -II are not imported into Arabidopsis mitochondria. FEBS Lett 506:291–95
    [Google Scholar]
  80. 80.  Lister R, Whelan J 2006. Mitochondrial protein import: convergent solutions for receptor structure. Curr. Biol. 16:R197–99
    [Google Scholar]
  81. 81.  Lynch M, Koskella B, Schaack S 2006. Mutation pressure and the evolution of organelle genomic architecture. Science 311:1727–30
    [Google Scholar]
  82. 82.  Mansilla N, Garcia L, Gonzalez DH, Welchen E 2015. AtCOX10, a protein involved in haem o synthesis during cytochrome c oxidase biogenesis, is essential for plant embryogenesis and modulates the progression of senescence. J. Exp. Bot. 66:6761–75
    [Google Scholar]
  83. 83.  Mansilla N, Racca S, Gras DE, Gonzalez DH, Welchen E 2018. The complexity of mitochondrial complex IV: an update of cytochrome c oxidase biogenesis in plants. Int. J. Mol. Sci. 19:662
    [Google Scholar]
  84. 84.  Meyer EH 2012. Proteomic investigations of complex I composition: how to define a subunit. ? Front. Plant Sci. 3:106
    [Google Scholar]
  85. 85.  Meyer EH, Giege P, Gelhaye E, Rayapuram N, Ahuja U et al. 2005. AtCCMH, an essential component of the c-type cytochrome maturation pathway in Arabidopsis mitochondria, interacts with apocytochrome c. PNAS 102:16113–18
    [Google Scholar]
  86. 86.  Meyer EH, Lehmann C, Boivin S, Brings L, De Cauwer I et al. 2018. CMS-G from Beta vulgaris ssp. maritima is maintained in natural populations despite containing an atypical cytochrome c oxidase. Biochem. J. 475:759–73
    [Google Scholar]
  87. 87.  Meyer EH, Solheim C, Tanz SK, Bonnard G, Millar AH 2011. Insights into the composition and assembly of the membrane arm of plant complex I through analysis of subcomplexes in Arabidopsis mutant lines. J. Biol. Chem. 286:26081–92
    [Google Scholar]
  88. 88.  Meyer EH, Taylor NL, Millar AH 2008. Resolving and identifying protein components of plant mitochondrial respiratory complexes using three dimensions of gel electrophoresis. J. Proteome Res. 7:786–94
    [Google Scholar]
  89. 89.  Meyer EH, Tomaz T, Carroll AJ, Estavillo G, Delannoy E et al. 2009. Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night. Plant Physiol 151:603–19
    [Google Scholar]
  90. 90.  Migdal I, Skibior-Blaszczyk R, Heidorn-Czarna M, Kolodziejczak M, Garbiec A, Janska H 2017. AtOMA1 affects the OXPHOS system and plant growth in contrast to other newly identified ATP-independent proteases in Arabidopsis mitochondria. Front. Plant Sci. 8:1543
    [Google Scholar]
  91. 91.  Milenkovic D, Blaza JN, Larsson NG, Hirst J 2017. The enigma of the respiratory chain supercomplex. Cell Metab 25:765–76
    [Google Scholar]
  92. 92.  Millar AH, Eubel H, Jänsch L, Kruft V, Heazlewood JL, Braun HP 2004. Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes contain plant specific subunits. Plant Mol. Biol. 56:77–90
    [Google Scholar]
  93. 93.  Millar AH, Whelan J, Soole KL, Day DA 2011. Organization and regulation of mitochondrial respiration in plants. Annu. Rev. Plant Biol. 62:79–104
    [Google Scholar]
  94. 94.  Mitsopoulos P, Chang YH, Wai T, Konig T, Dunn SD et al. 2015. Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function. Mol. Cell. Biol. 35:1838–47
    [Google Scholar]
  95. 95.  Mourier A, Matic S, Ruzzenente B, Larsson NG, Milenkovic D 2014. The respiratory chain supercomplex organization is independent of COX7a2l isoforms. Cell Metab 20:1069–75
    [Google Scholar]
  96. 96.  Murcha MW, Kmiec B, Kubiszewski-Jakubiak S, Teixeira PF, Glaser E, Whelan J 2014. Protein import into plant mitochondria: signals, machinery, processing, and regulation. J. Exp. Bot. 65:6301–35
    [Google Scholar]
  97. 97.  Murcha MW, Wang Y, Whelan J 2012. A molecular link between mitochondrial preprotein transporters and respiratory chain complexes. Plant Signal. Behav. 7:1594–97
    [Google Scholar]
  98. 98.  Na U, Yu W, Cox J, Bricker DK, Brockmann K et al. 2014. The LYR factors SDHAF1 and SDHAF3 mediate maturation of the iron-sulfur subunit of succinate dehydrogenase. Cell Metab 20:253–66
    [Google Scholar]
  99. 99.  Naumenko N, Morgenstern M, Rucktaschel R, Warscheid B, Rehling P 2017. INA complex liaises the F1FO-ATP synthase membrane motor modules. Nat. Commun. 8:1237
    [Google Scholar]
  100. 100.  Ndi M, Marin-Buera L, Salvatori R, Singh AP, Ott M 2018. Biogenesis of the bc1 complex of the mitochondrial respiratory chain. J. Mol. Biol. 430:3892–905
    [Google Scholar]
  101. 101.  Ott M, Herrmann JM 2010. Co-translational membrane insertion of mitochondrially encoded proteins. Biochim. Biophys. Acta 1803:767–75
    [Google Scholar]
  102. 102.  Pan R, Hu J 2015. Plant mitochondrial dynamics and the role of membrane lipids. Plant Signal. Behav. 10:e1050573
    [Google Scholar]
  103. 103.  Perez-Perez R, Lobo-Jarne T, Milenkovic D, Mourier A, Bratic A et al. 2016. COX7A2L is a mitochondrial complex III binding protein that stabilizes the III2+IV supercomplex without affecting respirasome formation. Cell Rep 16:2387–98
    [Google Scholar]
  104. 104.  Peters K, Belt K, Braun HP 2013. 3D gel map of Arabidopsis complex I. Front. Plant Sci. 4:153
    [Google Scholar]
  105. 105.  Pierron D, Wildman DE, Huttemann M, Markondapatnaikuni GC, Aras S, Grossman LI 2012. Cytochrome c oxidase: evolution of control via nuclear subunit addition. Biochim. Biophys. Acta 1817:590–97
    [Google Scholar]
  106. 106.  Pineau B, Bourge M, Marion J, Mauve C, Gilard F et al. 2013. The importance of cardiolipin synthase for mitochondrial ultrastructure, respiratory function, plant development, and stress responses in Arabidopsis. Plant Cell 25:4195–208
    [Google Scholar]
  107. 107.  Planchard N, Bertin P, Quadrado M, Dargel-Graffin C, Hatin I et al. 2018. The translational landscape of Arabidopsis mitochondria. Nucleic Acids Res 46:6218–28
    [Google Scholar]
  108. 108.  Preuten T, Cincu E, Fuchs J, Zoschke R, Liere K, Borner T 2010. Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J 64:948–59
    [Google Scholar]
  109. 109.  Radin I, Mansilla N, Rödel G, Steinebrunner I 2015. The Arabidopsis COX11 homolog is essential for cytochrome c oxidase activity. Front. Plant Sci. 6:1091
    [Google Scholar]
  110. 110.  Rayapuram N, Hagenmuller J, Grienenberger JM, Bonnard G, Giege P 2008. The three mitochondrial encoded CcmF proteins form a complex that interacts with CCMH and c-type apocytochromes in Arabidopsis. J. Biol. Chem 283:25200–8
    [Google Scholar]
  111. 111.  Rayapuram N, Hagenmuller J, Grienenberger JM, Giege P, Bonnard G 2007. AtCCMA interacts with AtCcmB to form a novel mitochondrial ABC transporter involved in cytochrome c maturation in Arabidopsis. J. Biol. Chem 282:21015–23
    [Google Scholar]
  112. 112.  Rhein VF, Carroll J, Ding S, Fearnley IM, Walker JE 2013. NDUFAF7 methylates arginine-85 in the NDUFS2 subunit of human complex I. J. Biol. Chem. 288:33016–26
    [Google Scholar]
  113. 113.  Rhein VF, Carroll J, Ding S, Fearnley IM, Walker JE 2016. NDUFAF5 hydroxylates NDUFS7 at an early stage in the assembly of human complex I. J. Biol. Chem. 291:14851–60
    [Google Scholar]
  114. 114.  Richter-Dennerlein R, Oeljeklaus S, Lorenzi I, Ronsor C, Bareth B et al. 2016. Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell 167:471–83.e10
    [Google Scholar]
  115. 115.  Roger AJ, Munoz-Gomez SA, Kamikawa R 2017. The origin and diversification of mitochondria. Curr. Biol. 27:R1177–92
    [Google Scholar]
  116. 116.  Ruhle T, Leister D 2015. Assembly of F1F0-ATP synthases. Biochim. Biophys. Acta 1847:849–60
    [Google Scholar]
  117. 117.  Schagger H, Pfeiffer K 2001. The ratio of oxidative phosphorylation complexes I–V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J. Biol. Chem. 276:37861–67
    [Google Scholar]
  118. 118.  Schertl P, Braun HP 2014. Respiratory electron transfer pathways in plant mitochondria. Front. Plant Sci. 5:163
    [Google Scholar]
  119. 119.  Schikowsky C, Senkler J, Braun HP 2017. SDH6 and SDH7 contribute to anchoring succinate dehydrogenase to the inner mitochondrial membrane in Arabidopsis thaliana. Plant Physiol 173:1094–108
    [Google Scholar]
  120. 120.  Schimmeyer J, Bock R, Meyer EH 2016. l-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis. Plant Mol. Biol 90:117–26
    [Google Scholar]
  121. 121.  Schimo S, Wittig I, Pos KM, Ludwig B 2017. Cytochrome c oxidase biogenesis and metallochaperone interactions: steps in the assembly pathway of a bacterial complex. PLOS ONE 12:e0170037
    [Google Scholar]
  122. 122.  Seelert H, Dencher NA 2011. ATP synthase superassemblies in animals and plants: two or more are better. Biochim. Biophys. Acta 1807:1185–97
    [Google Scholar]
  123. 123.  Senkler J, Rugen N, Eubel H, Hegermann J, Braun HP 2018. Absence of complex I implicates re-arrangement of the respiratory chain in European mistletoe. Curr. Biol. 28:1606–13.e4
    [Google Scholar]
  124. 124.  Senkler J, Senkler M, Eubel H, Hildebrandt T, Lengwenus C et al. 2017. The mitochondrial complexome of Arabidopsis thaliana. Plant J 89:1079–92
    [Google Scholar]
  125. 125.  Sheftel AD, Stehling O, Pierik AJ, Netz DJ, Kerscher S et al. 2009. Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Mol. Cell. Biol. 29:6059–73
    [Google Scholar]
  126. 126.  Smakowska E, Skibior-Blaszczyk R, Czarna M, Kolodziejczak M, Kwasniak-Owczarek M et al. 2016. Lack of FTSH4 protease affects protein carbonylation, mitochondrial morphology, and phospholipid content in mitochondria of Arabidopsis: new insights into a complex interplay. Plant Physiol 171:2516–35
    [Google Scholar]
  127. 127.  Solheim C, Li L, Hatzopoulos P, Millar AH 2012. Loss of Lon1 in Arabidopsis changes the mitochondrial proteome leading to altered metabolite profiles and growth retardation without an accumulation of oxidative damage. Plant Physiol 160:1187–203
    [Google Scholar]
  128. 128.  Soto IC, Barrientos A 2016. Mitochondrial cytochrome c oxidase biogenesis is regulated by the redox state of a heme-binding translational activator. Antioxid. Redox Signal. 24:281–98
    [Google Scholar]
  129. 129.  Soto IC, Fontanesi F, Liu J, Barrientos A 2012. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. Biochim. Biophys. Acta 1817:883–97
    [Google Scholar]
  130. 130.  Spielewoy N, Schulz H, Grienenberger JM, Thony-Meyer L, Bonnard G 2001. CCME, a nuclear-encoded heme-binding protein involved in cytochrome c maturation in plant mitochondria. J. Biol. Chem. 276:5491–97
    [Google Scholar]
  131. 131.  Steinebrunner I, Gey U, Andres M, Garcia L, Gonzalez DH 2014. Divergent functions of the Arabidopsis mitochondrial SCO proteins: HCC1 is essential for COX activity while HCC2 is involved in the UV-B stress response. Front. Plant Sci. 5:87
    [Google Scholar]
  132. 132.  Steinebrunner I, Landschreiber M, Krause-Buchholz U, Teichmann J, Rödel G 2011. HCC1, the Arabidopsis homologue of the yeast mitochondrial copper chaperone SCO1, is essential for embryonic development. J. Exp. Bot. 62:319–30
    [Google Scholar]
  133. 133.  Stevens JM, Mavridou DA, Hamer R, Kritsiligkou P, Goddard AD, Ferguson SJ 2011. Cytochrome c biogenesis System I. FEBS J 278:4170–78
    [Google Scholar]
  134. 134.  Stoldt S, Wenzel D, Kehrein K, Riedel D, Ott M, Jakobs S 2018. Spatial orchestration of mitochondrial translation and OXPHOS complex assembly. Nat. Cell Biol. 20:528–34
    [Google Scholar]
  135. 135.  Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE et al. 2016. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538:123–26
    [Google Scholar]
  136. 136.  Sunderhaus S, Dudkina NV, Jänsch L, Klodmann J, Heinemeyer J et al. 2006. Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants. J. Biol. Chem. 281:6482–88
    [Google Scholar]
  137. 137.  Sweetlove LJ, Beard KF, Nunes-Nesi A, Fernie AR, Ratcliffe RG 2010. Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci 15:462–70
    [Google Scholar]
  138. 138.  Tanaka R, Tanaka A 2007. Tetrapyrrole biosynthesis in higher plants. Annu. Rev. Plant Biol. 58:321–46
    [Google Scholar]
  139. 139.  Taylor NG, Swenson S, Harris NJ, Germany EM, Fox JL, Khalimonchuk O 2017. The assembly factor Pet117 couples heme a synthase activity to cytochrome oxidase assembly. J. Biol. Chem. 292:1815–25
    [Google Scholar]
  140. 140.  Timon-Gomez A, Nyvltova E, Abriata LA, Vila AJ, Hosler J, Barrientos A 2018. Mitochondrial cytochrome c oxidase biogenesis: recent developments. Semin. Cell Dev. Biol. 76:163–78
    [Google Scholar]
  141. 141.  Torraco A, Peralta S, Iommarini L, Diaz F 2015. Mitochondrial diseases part I: mouse models of OXPHOS deficiencies caused by defects in respiratory complex subunits or assembly factors. Mitochondrion 21:76–91
    [Google Scholar]
  142. 142.  Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H et al. 1995. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269:1069–74
    [Google Scholar]
  143. 143.  van Dongen JT, Gupta KJ, Ramirez-Aguilar SJ, Araujo WL, Nunes-Nesi A, Fernie AR 2011. Regulation of respiration in plants: a role for alternative metabolic pathways. J. Plant Physiol. 168:1434–43
    [Google Scholar]
  144. 144.  Van Vranken JG, Bricker DK, Dephoure N, Gygi SP, Cox JE et al. 2014. SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab 20:241–52
    [Google Scholar]
  145. 145.  Vidoni S, Harbour ME, Guerrero-Castillo S, Signes A, Ding S et al. 2017. MR-1S interacts with PET100 and PET117 in module-based assembly of human cytochrome c oxidase. Cell Rep 18:1727–38
    [Google Scholar]
  146. 146.  Wang Y, Carrie C, Giraud E, Elhafez D, Narsai R et al. 2012. Dual location of the mitochondrial preprotein transporters B14.7 and Tim23-2 in complex I and the TIM17:23 complex in Arabidopsis links mitochondrial activity and biogenesis. Plant Cell 24:2675–95
    [Google Scholar]
  147. 147.  Wang Z, Wu M 2014. Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. PLOS ONE 9:e110685
    [Google Scholar]
  148. 148.  Welchen E, Garcia L, Mansilla N, Gonzalez DH 2014. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements. Front. Plant Sci. 4:551
    [Google Scholar]
  149. 149.  Welchen E, Gonzalez DH 2006. Overrepresentation of elements recognized by TCP-domain transcription factors in the upstream regions of nuclear genes encoding components of the mitochondrial oxidative phosphorylation machinery. Plant Physiol 141:540–45
    [Google Scholar]
  150. 150.  Wu M, Gu J, Guo R, Huang Y, Yang M 2016. Structure of mammalian respiratory supercomplex I1III2IV1. Cell 167:1598–609
    [Google Scholar]
  151. 151.  Wydro MM, Sharma P, Foster JM, Bych K, Meyer EH, Balk J 2013. The evolutionarily conserved iron-sulfur protein INDH is required for complex I assembly and mitochondrial translation in Arabidopsis. Plant Cell 25:4014–27
    [Google Scholar]
  152. 152.  Zara V, Conte L, Trumpower BL 2009. Evidence that the assembly of the yeast cytochrome bc1 complex involves the formation of a large core structure in the inner mitochondrial membrane. FEBS J 276:1900–14
    [Google Scholar]
  153. 153.  Zhu J, Vinothkumar KR, Hirst J 2016. Structure of mammalian respiratory complex I. Nature 536:354–58
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-050718-100412
Loading
/content/journals/10.1146/annurev-arplant-050718-100412
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error