1932

Abstract

In order to optimally establish their root systems, plants are endowed with several mechanisms to use at distinct steps during their development. In this review, we zoom in on the major processes involved in root development and detail important new insights that have been generated in recent studies, mainly using the root as a model. First, we discuss new insights in primary root development with the characterization of tissue-specific transcription factor complexes and the identification of non-cell-autonomous control mechanisms in the root apical meristem. Next, root branching is discussed by focusing on the earliest steps in the development of a new lateral root and control of its postemergence growth. Finally, we discuss the impact of phosphate, nitrogen, and water availability on root development and summarize current knowledge about the major molecular mechanisms involved.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050718-100423
2019-04-29
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/arplant/70/1/annurev-arplant-050718-100423.html?itemId=/content/journals/10.1146/annurev-arplant-050718-100423&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Aida M, Beis D, Heidstra R, Willemsen V, Blilou I et al. 2004. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–20
    [Google Scholar]
  2. 2.  Antoni R, Gonzalez-Guzman M, Rodriguez L, Peirats-Llobet M, Pizzio GA et al. 2013. PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:931–41
    [Google Scholar]
  3. 3.  Araya T, Miyamoto M, Wibowo J, Suzuki A, Kojima S et al. 2014. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. PNAS 111:2029–34
    [Google Scholar]
  4. 4.  Azevedo C, Saiardi A 2017. Eukaryotic phosphate homeostasis: the inositol pyrophosphate perspective. Trends Biochem. Sci. 42:219–31
    [Google Scholar]
  5. 5.  Baesso B, Chiatante D, Terzaghi M, Zenga D, Nieminen K et al. 2018. Transcription factors PRE 3 and WOX 11 are involved in the formation of new lateral roots from secondary growth taproot in A. thaliana. Plant Biol 20:426–32
    [Google Scholar]
  6. 6.  Bai HW, Murali B, Barber K, Wolverton C 2013. Low phosphate alters lateral root setpoint angle and gravitropism. Am. J. Bot. 100:175–82
    [Google Scholar]
  7. 7.  Balzergue C, Dartevelle T, Godon C, Laugier E, Meisrimler C et al. 2017. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nat. Commun. 8:15300
    [Google Scholar]
  8. 8.  Band LR, Wells DM, Fozard JA, Ghetiu T, French AP et al. 2014. Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell 26:862–75
    [Google Scholar]
  9. 9.  Bao Y, Aggarwal P, Robbins NE, Sturrock CJ, Thompson MC et al. 2014. Plant roots use a patterning mechanism to position lateral root branches toward available water. PNAS 111:9319–24
    [Google Scholar]
  10. 10.  Barbez E, Dunser K, Gaidora A, Lendl T, Busch W 2017. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. PNAS 114:E4884–93Elucidates the link between auxin and root cell expansion and hence (directional) root growth.
    [Google Scholar]
  11. 11.  Bargmann BO, Vanneste S, Krouk G, Nawy T, Efroni I et al. 2013. A map of cell type‐specific auxin responses. Mol. Syst. Biol. 9:688
    [Google Scholar]
  12. 12.  Behringer C, Schwechheimer C 2015. B-GATA transcription factors—insights into their structure, regulation, and role in plant development. Front. Plant Sci. 6:90
    [Google Scholar]
  13. 13.  Bellini C, Pacurar DI, Perrone I 2014. Adventitious roots and lateral roots: similarities and differences. Annu. Rev. Plant Biol. 65:639–66
    [Google Scholar]
  14. 14.  Bennett MJ, Marchant A, Green HG, May ST, Ward SP et al. 1996. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–50
    [Google Scholar]
  15. 15.  Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I et al. 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44
    [Google Scholar]
  16. 16.  Bouguyon E, Perrine-Walker F, Pervent M, Rochette J, Cuesta C et al. 2016. Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiol 172:1237–48
    [Google Scholar]
  17. 17.  Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V et al. 2012. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–6
    [Google Scholar]
  18. 18.  Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V et al. 2010. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLOS Genet 6:e1001102
    [Google Scholar]
  19. 19.  Carlsbecker A, Lee J-Y, Roberts CJ, Dettmer J, Lehesranta S et al. 2010. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–21
    [Google Scholar]
  20. 20.  Castrillo G, Teixeira PJPL, Paredes SH, Law TF, de Lorenzo L et al. 2017. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543:513–18
    [Google Scholar]
  21. 21.  Chaiwanon J, Wang W, Zhu J-Y, Oh E, Wang Z-Y 2016. Information integration and communication in plant growth regulation. Cell 164:1257–68
    [Google Scholar]
  22. 22.  Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH 1998. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. PNAS 95:15112–17
    [Google Scholar]
  23. 23.  Crombez H, Motte H, Beeckman T 2019. Tackling plant phosphate starvation by the roots. Dev. Cell. In press
    [Google Scholar]
  24. 24.  Cruz-Ramírez A, Díaz-Triviño S, Blilou I, Grieneisen VA, Sozzani R et al. 2012. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 150:1002–15
    [Google Scholar]
  25. 25.  Cruz-Ramírez A, Díaz-Triviño S, Wachsman G, Du Y, Arteága-Vázquez M et al. 2013. A SCARECROW-RETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis root stem cell organizer. PLOS Biol 11:e1001724
    [Google Scholar]
  26. 26.  Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ et al. 2007. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–25
    [Google Scholar]
  27. 27.  De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W et al. 2010. A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr. Biol. 20:1697–706
    [Google Scholar]
  28. 28.  De Smet I, Tetsumura T, De Rybel B, Frey NFD, Laplaze L et al. 2007. Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–90
    [Google Scholar]
  29. 29.  Dietrich D 2018. Hydrotropism: how roots search for water. J. Exp. Bot. 69:2759–71
    [Google Scholar]
  30. 30.  Dietrich D, Pang L, Kobayashi A, Fozard JA, Boudolf V et al. 2017. Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat. Plants 3:17057Shows that the root elongation zone during hydrotropism, unlike other tropisms, both senses and responds in an abscisic acid–dependent manner.
    [Google Scholar]
  31. 31.  Digby J, Firn RD 1995. The gravitropic set‐point angle (GSA): the identification of an important developmentally controlled variable governing plant architecture. Plant Cell Environ 18:1434–40
    [Google Scholar]
  32. 32.  Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S et al. 1993. Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84
    [Google Scholar]
  33. 33.  Dong JS, Piñeros MA, Li X, Yang H, Liu Y et al. 2017. An Arabidopsis ABC transporter mediates phosphate deficiency-induced remodeling of root architecture by modulating iron homeostasis in roots. Mol. Plant 10:244–59
    [Google Scholar]
  34. 34.  Drew MC, Saker LR, Ashley TW 1973. Nutrient supply and the growth of the seminal root system in barley I. The effect of nitrate concentration on the growth of axes and laterals. J. Exp. Bot. 24:1189–202
    [Google Scholar]
  35. 35.  Du YJ, Scheres B 2017. PLETHORA transcription factors orchestrate de novo organ patterning during Arabidopsis lateral root outgrowth. PNAS 114:11709–14Comprehensive study of the role of the PLETHORAs in lateral root formation and their relation towards key root meristem factors.
    [Google Scholar]
  36. 36.  Dubreuil C, Jin X, Grönlund A, Fischer U 2018. A local auxin gradient regulates root cap self-renewal and size homeostasis. Curr. Biol. 28:2581–87
    [Google Scholar]
  37. 37.  Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J et al. 2008. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. PNAS 105:8790–94
    [Google Scholar]
  38. 38.  Fendrych M, Akhmanova M, Merrin J, Glanc M, Hagihara S et al. 2018. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4:453–59Pinpoints novel TIR1-dependent but nontranscriptional regulation of cell expansion and hence root growth by auxin.
    [Google Scholar]
  39. 39.  Fernandez A, Drozdzecki A, Hoogewijs K, Vassileva V, Madder A et al. 2015. The GLV6/RGF8/CLEL2 peptide regulates early pericycle divisions during lateral root initiation. J. Exp. Bot. 66:5245–56
    [Google Scholar]
  40. 40.  Forzani C, Aichinger E, Sornay E, Willemsen V, Laux T et al. 2014. WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Curr. Biol. 24:1939–44
    [Google Scholar]
  41. 41.  Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K 2002. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–9
    [Google Scholar]
  42. 42.  Fujinami R, Yamada T, Nakajima A, Takagi S, Idogawa A et al. 2017. Root apical meristem diversity in extant lycophytes and implications for root origins. New Phytol 215:1210–20
    [Google Scholar]
  43. 43.  Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I et al. 2007. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–57
    [Google Scholar]
  44. 44.  Ge L, Chen R 2016. Negative gravitropism in plant roots. Nat. Plants 2:16155
    [Google Scholar]
  45. 45.  Giehl RFH, Lima JE, von Wirén N 2012. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. Plant Cell 24:33–49
    [Google Scholar]
  46. 46.  Giehl RFH, von Wirén N 2014. Root nutrient foraging. Plant Physiol 166:509–17
    [Google Scholar]
  47. 47.  Goh T, Joi S, Mimura T, Fukaki H 2012. The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development 139:883–93
    [Google Scholar]
  48. 48.  Goh T, Toyokura K, Wells DM, Swarup K, Yamamoto M et al. 2016. Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor. Development 143:3363–71
    [Google Scholar]
  49. 49.  Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B 2007. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–13
    [Google Scholar]
  50. 50.  Gruber BD, Giehl RFH, Friedel S, von Wirén N 2013. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–79
    [Google Scholar]
  51. 51.  Guan P, Wang R, Nacry P, Breton G, Kay SA et al. 2014. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. PNAS 111:15267–72
    [Google Scholar]
  52. 52.  Guseman JM, Webb K, Srinivasan C, Dardick C 2017. DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J 89:1093–105
    [Google Scholar]
  53. 53.  Gutiérrez-Alanís D, Yong-Villalobos L, Jiménez-Sandoval P, Alatorre-Cobos F, Oropeza-Aburto A et al. 2017. Phosphate starvation-dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling. Dev. Cell 41:555–70
    [Google Scholar]
  54. 54.  Guyomarc'h S, Léran S, Auzon-Cape M, Perrine-Walker F, Lucas M, Laplaze L 2012. Early development and gravitropic response of lateral roots in Arabidopsis thaliana. Philos. Trans. R. Soc. B 367:1509–16
    [Google Scholar]
  55. 55.  Ham B-K, Chen J, Yan Y, Lucas WJ 2018. Insights into plant phosphate sensing and signaling. Curr. Opin. Biotechnol. 49:1–9
    [Google Scholar]
  56. 56.  Harmer SL, Brooks CJ 2018. Growth-mediated plant movements: hidden in plain sight. Curr. Opin. Plant Biol. 41:89–94
    [Google Scholar]
  57. 57.  Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J et al. 2000. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–67
    [Google Scholar]
  58. 58.  Hetherington AJ, Dolan L 2018. Stepwise and independent origins of roots among land plants. Nature 561:235–38
    [Google Scholar]
  59. 59.  Hetherington AJ, Dolan L 2019. Rhynie chert fossils demonstrate the independent origin and gradual evolution of lycophyte roots. Curr. Opin. Plant Biol. 47:119–26
    [Google Scholar]
  60. 60.  Hofhuis H, Laskowski M, Du Y, Prasad K, Grigg S et al. 2013. Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors. Curr. Biol. 23:956–62
    [Google Scholar]
  61. 61.  Huang K-L, Ma G-J, Zhang M-L, Xiong H, Wu H et al. 2018. The ARF7 and ARF19 transcription factors positively regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis roots. Plant Physiol 178:413–27
    [Google Scholar]
  62. 62.  Inoue S-i, Takahashi K, Okumura-Noda H, Kinoshita T 2016. Auxin influx carrier AUX1 confers acid resistance for Arabidopsis root elongation through the regulation of plasma membrane H+-ATPase. Plant Cell Physiol 57:2194–201
    [Google Scholar]
  63. 63.  Janiak A, Kwaśniewski M, Szarejko I 2016. Gene expression regulation in roots under drought. J. Exp. Bot. 67:1003–14
    [Google Scholar]
  64. 64.  Jung J-Y, Ried MK, Hothorn M, Poirier Y 2018. Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain. Curr. Opin. Biotechnol. 49:156–62
    [Google Scholar]
  65. 65.  Kaneyasu T, Kobayashi A, Nakayama M, Fujii N, Takahashi H, Miyazawa Y 2007. Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J. Exp. Bot. 58:1143–50
    [Google Scholar]
  66. 66.  Kanno S, Arrighi J-F, Chiarenza S, Bayle V, Berthomé R et al. 2016. A novel role for the root cap in phosphate uptake and homeostasis. eLife 5:e14577
    [Google Scholar]
  67. 67.  Kellermeier F, Armengaud P, Seditas TJ, Danku J, Salt DE, Amtmann A 2014. Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 26:1480–96
    [Google Scholar]
  68. 68.  Kellermeier F, Chardon F, Amtmann A 2013. Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol 161:1421–32
    [Google Scholar]
  69. 69.  Kiba T, Krapp A 2016. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol 57:707–14
    [Google Scholar]
  70. 70.  Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J 2010. Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. PNAS 107:22344–49
    [Google Scholar]
  71. 71.  Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K et al. 2010. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell 18:927–37
    [Google Scholar]
  72. 72.  Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM 1995. Formation of lateral root meristems is a two-stage process. Development 121:3303–10
    [Google Scholar]
  73. 73.  Li G, Song H, Li B, Kronzucker HJ, Shi W 2015. Auxin Resistant1 and PIN-FORMED2 protect lateral root formation in Arabidopsis under iron stress. Plant Physiol 169:2608–23
    [Google Scholar]
  74. 74.  Liao C-Y, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D 2015. Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods 12:207–10
    [Google Scholar]
  75. 75.  Liberman LM, Sparks EE, Moreno-Risueno MA, Petricka JJ, Benfey PN 2015. MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root. PNAS 112:12099–104
    [Google Scholar]
  76. 76.  Lima JE, Kojima S, Takahashi H, von Wirén N 2010. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. Plant Cell 22:3621–33
    [Google Scholar]
  77. 77.  Liu J, Sheng L, Xu Y, Li J, Yang Z et al. 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26:1081–93
    [Google Scholar]
  78. 78.  Liu W, Yu J, Ge Y, Qin P, Xu L 2018. Pivotal role of LBD16 in root and root-like organ initiation. Cell. Mol. Life Sci. 75:3329–38
    [Google Scholar]
  79. 79.  Liu Y, Lai N, Gao K, Chen F, Yuan L, Mi G 2013. Ammonium inhibits primary root growth by reducing the length of meristem and elongation zone and decreasing elemental expansion rate in the root apex in Arabidopsis thaliana. PLOS ONE 8:e61031
    [Google Scholar]
  80. 80.  Liu Y, von Wirén N 2017. Ammonium as a signal for physiological and morphological responses in plants. J. Exp. Bot. 68:2581–92
    [Google Scholar]
  81. 81.  Liu Y, Xu M, Liang N, Zheng Y, Yu Q, Wu S 2017. Symplastic communication spatially directs local auxin biosynthesis to maintain root stem cell niche in Arabidopsis. PNAS 114:4005–10
    [Google Scholar]
  82. 82.  Long Y, Smet W, Cruz-Ramírez A, Castelijns B, de Jonge W et al. 2015. Arabidopsis BIRD zinc finger proteins jointly stabilize tissue boundaries by confining the cell fate regulator SHORT-ROOT and contributing to fate specification. Plant Cell 27:1185–99Unravels how both SHORT ROOT (SHR) movement and activity are regulated by BIRD proteins to specify cell fates in the root meristem.
    [Google Scholar]
  83. 83.  Luschnig C, Gaxiola RA, Grisafi P, Fink GR 1998. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsisthaliana. Genes Dev 12:2175–87
    [Google Scholar]
  84. 84.  Lynch JP 2011. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–49
    [Google Scholar]
  85. 85.  Lynch JP 2013. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 112:347–57
    [Google Scholar]
  86. 86.  Maher EP, Martindale SJB 1980. Mutants of Arabidopsis thaliana with altered responses to auxins and gravity. Biochem. Genet. 18:1041–53
    [Google Scholar]
  87. 87.  Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K et al. 2006. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98
    [Google Scholar]
  88. 88.  Mähönen AP, ten Tusscher K, Siligato R, Smetana O, Díaz-Triviño S et al. 2014. PLETHORA gradient formation mechanism separates auxin responses. Nature 515:125–29
    [Google Scholar]
  89. 89.  Manzano C, Ramirez-Parra E, Casimiro I, Otero S, Desvoyes B et al. 2012. Auxin and epigenetic regulation of SKP2B, an F-box that represses lateral root formation. Plant Physiol 160:749–62
    [Google Scholar]
  90. 90.  Matsunaga KK, Tomescu AM 2016. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte. Ann. Bot. 117:585–98
    [Google Scholar]
  91. 91.  Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y 2010. Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science 329:1065–67
    [Google Scholar]
  92. 92.  Mora-Macías J, Ojeda-Rivera JO, Gutiérrez-Alanís D, Yong-Villalobos L, Oropeza-Aburto A et al. 2017. Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. PNAS 114:E3563–72
    [Google Scholar]
  93. 93.  Moreno-Risueno MA, Sozzani R, Yardımcı GG, Petricka JJ, Vernoux T et al. 2015. Transcriptional control of tissue formation throughout root development. Science 350:426–30
    [Google Scholar]
  94. 94.  Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN 2010. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:1306–11
    [Google Scholar]
  95. 95.  Motte H, Beeckman T 2019. The evolution of root branching: increasing the level of plasticity. J. Exp. Bot. 70:785–93
    [Google Scholar]
  96. 96.  Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P et al. 1998. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–11
    [Google Scholar]
  97. 97.  Müller J, Toev T, Heisters M, Teller J, Moore KL et al. 2015. Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability. Dev. Cell 33:216–30
    [Google Scholar]
  98. 98.  Murphy E, Vu LD, Van den Broeck L, Lin ZF, Ramakrishna P et al. 2016. RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation. J. Exp. Bot. 67:4863–75
    [Google Scholar]
  99. 99.  Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H et al. 2005. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol 138:2061–74
    [Google Scholar]
  100. 100.  Ohkubo Y, Tanaka M, Tabata R, Ogawa-Ohnishi M, Matsubayashi Y 2017. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat. Plants 3:17029
    [Google Scholar]
  101. 101.  Orman-Ligeza B, Morris EC, Parizot B, Lavigne T, Babé A et al. 2018. The xerobranching response represses lateral root formation when roots are not in contact with water. Curr. Biol. 28:3165–73
    [Google Scholar]
  102. 102.  Oropeza-Aburto A, Cruz-Ramírez A, Acevedo-Hernández GJ, Pérez-Torres C-A, Caballero-Pérez J, Herrera-Estrella L 2012. Functional analysis of the Arabidopsis PLDZ2 promoter reveals an evolutionarily conserved low-Pi-responsive transcriptional enhancer element. J. Exp. Bot. 63:2189–202
    [Google Scholar]
  103. 103.  Orosa-Puente B, Leftley N, von Wangenheim D, Banda J, Srivastava AK et al. 2018. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science 362:1407–10Elucidation of the molecular mechanism of hydropatterning that involves posttranslational modification of a specific auxin response factor.
    [Google Scholar]
  104. 104.  Ou Y, Lu X, Zi Q, Xun Q, Zhang J et al. 2016. RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res 26:686–98
    [Google Scholar]
  105. 105.  Paolillo DJ Jr., Zobel RW 2002. The formation of adventitious roots on root axes is a widespread occurrence in field‐grown dicotyledonous plants. Am. J. Bot. 89:1361–72
    [Google Scholar]
  106. 106.  Parizot B, Laplaze L, Ricaud L, Boucheron-Dubuisson E, Bayle V et al. 2008. Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol 146:140–48
    [Google Scholar]
  107. 107.  Péret B, Desnos T, Jost R, Kanno S, Berkowitz O, Nussaume L 2014. Root architecture responses: in search of phosphate. Plant Physiol 166:1713–23
    [Google Scholar]
  108. 108.  Pérez-Torres C-A, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S et al. 2008. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–72
    [Google Scholar]
  109. 109.  Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D et al. 2015. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev. Cell 33:576–88
    [Google Scholar]
  110. 110.  Puga MI, Rojas-Triana M, de Lorenzo L, Leyva A, Rubio V, Paz-Ares J 2017. Novel signals in the regulation of Pi starvation responses in plants: facts and promises. Curr. Opin. Plant Biol. 39:40–49
    [Google Scholar]
  111. 111.  Robinson D 1994. The responses of plants to non-uniform supplies of nutrients. New Phytol 127:635–74
    [Google Scholar]
  112. 112.  Rodriguez RE, Ercoli MF, Debernardi JM, Breakfield NW, Mecchia MA et al. 2015. MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell 27:3354–66
    [Google Scholar]
  113. 113.  Rogato A, D'Apuzzo E, Barbulova A, Omrane S, Parlati A et al. 2010. Characterization of a developmental root response caused by external ammonium supply in Lotus japonicus. Plant Physiol 154:784–95
    [Google Scholar]
  114. 114.  Rosquete MR, von Wangenheim D, Marhavý P, Barbez E, Stelzer EH et al. 2013. An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr. Biol. 23:817–22
    [Google Scholar]
  115. 115.  Ruiz Rosquete M, Waidmann S, Kleine-Vehn J 2018. PIN7 auxin carrier has a preferential role in terminating radial root expansion in Arabidopsis thaliana. Int. J. Mol. Sci 19:1238
    [Google Scholar]
  116. 116.  Roychoudhry S, Del Bianco M, Kieffer M, Kepinski S 2013. Auxin controls gravitropic setpoint angle in higher plant lateral branches. Curr. Biol. 23:1497–504
    [Google Scholar]
  117. 117.  Roychoudhry S, Kieffer M, Del Bianco M, Liao CY, Weijers D, Kepinski S 2017. The developmental and environmental regulation of gravitropic setpoint angle in Arabidopsis and bean. Sci. Rep. 7:42664
    [Google Scholar]
  118. 118.  Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM 2011. Nitrogen economics of root foraging: transitive closure of the nitrate–cytokinin relay and distinct systemic signaling for N supply versus demand. PNAS 108:18524–29
    [Google Scholar]
  119. 119.  Sabatini S, Heidstra R, Wildwater M, Scheres B 2003. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–58
    [Google Scholar]
  120. 120.  Santuari L, Sanchez-Perez GF, Luijten M, Rutjens B, Terpstra I et al. 2016. The PLETHORA gene regulatory network guides growth and cell differentiation in Arabidopsis roots. Plant Cell 28:2937–51
    [Google Scholar]
  121. 121.  Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T et al. 2007. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–14
    [Google Scholar]
  122. 122.  Sebastian J, Ryu KH, Zhou J, Tarkowská D, Tarkowski P et al. 2015. PHABULOSA controls the quiescent center-independent root meristem activities in Arabidopsis thaliana. PLOS Genet 11:e1004973
    [Google Scholar]
  123. 123.  Sheng LH, Hu XM, Du YJ, Zhang GF, Huang H et al. 2017. Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture. Development 144:3126–33Describes an alternative, ARF7/ARF19-independent lateral root formation mechanism that is partially overlapping with the adventitious root formation pathway.
    [Google Scholar]
  124. 124.  Shimotohno A, Heidstra R, Blilou I, Scheres B 2018. Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules. Genes Dev 32:1085–100
    [Google Scholar]
  125. 125.  Shkolnik D, Krieger G, Nuriel R, Fromm H 2016. Hydrotropism: Root bending does not require auxin redistribution. Mol. Plant 9:757–59
    [Google Scholar]
  126. 126.  Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM et al. 2010. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466:128–32
    [Google Scholar]
  127. 127.  Spartz AK, Ren H, Park MY, Grandt KN, Lee SH et al. 2014. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26:2129–42
    [Google Scholar]
  128. 128.  Stoeckle D, Thellmann M, Vermeer JE 2018. Breakout—lateral root emergence in Arabidopsis thaliana. Curr. Opin. Plant Biol. 41:67–72
    [Google Scholar]
  129. 129.  Swarup R, Kramer EM, Perry P, Knox K, Leyser HMO et al. 2005. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat. Cell Biol. 7:1057–65
    [Google Scholar]
  130. 130.  Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y 2014. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346:343–46
    [Google Scholar]
  131. 131.  Takahashi K, Hayashi K-i, Kinoshita T 2012. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol 159:632–41
    [Google Scholar]
  132. 132.  Takahashi N, Goto N, Okada K, Takahashi H 2002. Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216:203–11
    [Google Scholar]
  133. 133.  Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T et al. 2017. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell 29:1984–99
    [Google Scholar]
  134. 134.  Tian H, Wabnik K, Niu T, Li H, Yu Q et al. 2014. WOX5–IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis. Mol. Plant 7:277–89
    [Google Scholar]
  135. 135.  Toyokura K, Goh T, Shinohara H, Shinoda A, Kondo Y et al. 2019. Lateral inhibition by a peptide hormone-receptor cascade during Arabidopsis lateral root founder cell formation. Dev. Cell 48:64–75.e5
    [Google Scholar]
  136. 136.  Tsukagoshi H, Busch W, Benfey PN 2010. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–16
    [Google Scholar]
  137. 137.  Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M et al. 2013. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 45:1097–102
    [Google Scholar]
  138. 138.  Utsuno K, Shikanai T, Yamada Y, Hashimoto T 1998. AGR, an Agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol 39:1111–18
    [Google Scholar]
  139. 139.  van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B 1997. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390:287–89
    [Google Scholar]
  140. 140.  Van Norman JM, Xuan W, Beeckman T, Benfey PN 2013. To branch or not to branch: the role of pre-patterning in lateral root formation. Development 140:4301–10
    [Google Scholar]
  141. 141.  Vatén A, Dettmer J, Wu S, Stierhof Y-D, Miyashima S et al. 2011. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell 21:1144–55
    [Google Scholar]
  142. 142.  Vermeer JEM, von Wangenheim D, Barberon M, Lee Y, Stelzer EHK et al. 2014. A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343:178–83
    [Google Scholar]
  143. 143.  Vidal EA, Álvarez JM, Moyano TC, Gutiérrez RA 2015. Transcriptional networks in the nitrate response of Arabidopsis thaliana. Curr. Opin. Plant Biol. 27:125–32
    [Google Scholar]
  144. 144.  Vidal EA, Araus V, Lu C, Parry G, Green PJ et al. 2010. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. PNAS 107:4477–82
    [Google Scholar]
  145. 145.  Vidal EA, Moyano TC, Riveras E, Contreras-López O, Gutiérrez RA 2013. Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots. PNAS 110:12840–45
    [Google Scholar]
  146. 146.  Vieten A, Sauer M, Brewer PB, Friml J 2007. Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–68
    [Google Scholar]
  147. 147.  von Wangenheim D, Fangerau J, Schmitz A, Smith RS, Leitte H et al. 2016. Rules and self-organizing properties of post-embryonic plant organ cell division patterns. Curr. Biol. 26:439–49
    [Google Scholar]
  148. 148.  Whitford R, Fernandez A, Tejos R, Cuéllar Pérez A, Kleine-Vehn J et al. 2012. GOLVEN secretory peptides regulate auxin carrier turnover during plant gravitropic responses. Dev. Cell 22:678–85
    [Google Scholar]
  149. 149.  Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G et al. 2005. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–30
    [Google Scholar]
  150. 150.  Xie Y, Mao Y, Xu S, Zhou H, Duan X et al. 2015. Heme-heme oxygenase 1 system is involved in ammonium tolerance by regulating antioxidant defence in Oryza sativa. Plant Cell Environ 38:129–43
    [Google Scholar]
  151. 151.  Xu J, Hofhuis H, Heidstra R, Sauer M, Friml J, Scheres B 2006. A molecular framework for plant regeneration. Science 311:385–88
    [Google Scholar]
  152. 152.  Xu W, Jia L, Shi W, Liang J, Zhou F et al. 2013. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol 197:139–50
    [Google Scholar]
  153. 153.  Xuan W, Audenaert D, Parizot B, Möller B, Njo M et al. 2015. Root cap-derived auxin pre-patterns the longitudinal axis of the Arabidopsis root. Curr. Biol. 25:1381–88
    [Google Scholar]
  154. 154.  Xuan W, Band LR, Kumpf RP, Van Damme D, Parizot B et al. 2016. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis. Science 351:384–87Associates lateral root cap cell death with lateral roots and pinpoints an early lateral root formation mechanism.
    [Google Scholar]
  155. 155.  Yang L, Zhang J, He J, Qin Y, Hua D et al. 2014. ABA-mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis. PLOS Genet 10:e1004791
    [Google Scholar]
  156. 156.  York LM, Lobet G 2017. Phenomics of root system architecture: measuring and analyzing root phenes. Plant Cell 29:tpc.117.tt0917
    [Google Scholar]
  157. 157.  York LM, Nord EA, Lynch JP 2013. Integration of root phenes for soil resource acquisition. Front. Plant Sci. 4:355
    [Google Scholar]
  158. 158.  Yoshihara T, Spalding EP 2017. LAZY genes mediate the effects of gravity on auxin gradients and plant architecture. Plant Physiol 175:959–69
    [Google Scholar]
  159. 159.  Yu L-H, Miao Z-Q, Qi G-F, Wu J, Cai X-T et al. 2014. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol. Plant 7:1653–69
    [Google Scholar]
  160. 160.  Yu Q, Tian H, Yue K, Liu J, Zhang B et al. 2016. A P-loop NTPase regulates quiescent center cell division and distal stem cell identity through the regulation of ROS homeostasis in Arabidopsis root. PLOS Genet 12:e1006175
    [Google Scholar]
  161. 161.  Zhan A, Lynch JP 2015. Reduced frequency of lateral root branching improves N capture from low-N soils in maize. J. Exp. Bot. 66:2055–65
    [Google Scholar]
  162. 162.  Zhan A, Schneider H, Lynch JP 2015. Reduced lateral root branching density improves drought tolerance in maize. Plant Physiol 168:1603–15
    [Google Scholar]
  163. 163.  Zhang Y, Jiao Y, Jiao H, Zhao H, Zhu Y-X 2017. Two-step functional innovation of the stem-cell factors WUS/WOX5 during plant evolution. Mol. Biol. Evol. 34:640–53
    [Google Scholar]
  164. 164.  Zhao J, Wang W, Zhou H, Wang R, Zhang P et al. 2017. Manganese toxicity inhibited root growth by disrupting auxin biosynthesis and transport in Arabidopsis. Front. Plant Sci 8:272
    [Google Scholar]
  165. 165.  Zhou W, Wei L, Xu J, Zhai Q, Jiang H et al. 2010. Arabidopsis tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche. Plant Cell 22:3692–709
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-050718-100423
Loading
/content/journals/10.1146/annurev-arplant-050718-100423
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error