1932

Abstract

There is intense interest in using genome editing technologies to domesticate wild plants, or accelerate the improvement of weakly domesticated crops, in de novo domestication. Here, we discuss promising genetic strategies, with a focus on plant development. Importantly, genome editing releases us from dependence on random mutagenesis or intraspecific diversity, allowing us to draw solutions more broadly from diversity. However, sparse understanding of the complex genetics of diversity limits innovation. Beyond genetics, we urge the ethical use of indigenous knowledge, indigenous plants, and ethnobotany. De novo domestication still requires conventional breeding by phenotypic selection, especially in the development of crops for diverse environments and cultures. Indeed, uniting genome editing with selective breeding could facilitate faster and better outcomes than either technology alone. Domestication is complex and incompletely understood, involving changes to many aspects of plant biology and human culture. Success in de novo domestication requires careful attention to history and collaboration across traditional boundaries.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-053122-030653
2023-05-22
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-053122-030653.html?itemId=/content/journals/10.1146/annurev-arplant-053122-030653&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abraham-Juárez MJ, Barnes AC, Aragón-Raygoza A, Tyson D, Kur A et al. 2021. The arches and spandrels of maize domestication, adaptation, and improvement. Curr. Opin. Plant Biol. 64:102124
    [Google Scholar]
  2. 2.
    Acasuso-Rivero C, Murren CJ, Schlichting CD, Steiner UK. 2019. Adaptive phenotypic plasticity for life-history and less fitness-related traits. Proc. R Soc. B 286:20190653
    [Google Scholar]
  3. 3.
    Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U et al. 2021. Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. Plant Cell 33:103207–34
    [Google Scholar]
  4. 4.
    Aga A. 2021. Genetically Modified Democracy: Transgenic Crops in Contemporary India New Haven, CT: Yale Univ. Press
    [Google Scholar]
  5. 5.
    Al Amin N, Ahmad N, Wu N, Pu X, Ma T et al. 2019. CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max.L). BMC Biotechnol. 19:19
    [Google Scholar]
  6. 6.
    Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:7785149–57
    [Google Scholar]
  7. 7.
    Aston Philander LE, Makunga NP, Esler KJ 2014. The informal trade of medicinal plants by Rastafari bush doctors in the Western Cape of South Africa. Econ. Bot. 68:3303–15Presents quantitative approaches to analyzing ethnobotanical information and highlights the importance of engaging with indigenous knowledge.
    [Google Scholar]
  8. 8.
    Balunas MJ, Kinghorn AD. 2005. Drug discovery from medicinal plants. Life Sci. 78:431–41
    [Google Scholar]
  9. 9.
    Beckloff RD. 2008. The conservative and dynamic nature of indigenous knowledge: a case study from Kenya. 2008 Adult Education Research Conference, St. Louis, MO https://newprairiepress.org/aerc/2008/roundtables/1
    [Google Scholar]
  10. 10.
    Berlin B, Berlin EA. 2004. Community autonomy and the Maya ICBG Project in Chiapas, Mexico: how a bioprospecting project that should have succeeded failed. Hum. Org. 63:4472–86
    [Google Scholar]
  11. 11.
    Boden SA, Østergaard L. 2019. How can developmental biology help feed a growing population?. Development 146:3dev172965
    [Google Scholar]
  12. 12.
    Bommert P, Nagasawa NS, Jackson D 2013. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat. Genet. 45:3334–37
    [Google Scholar]
  13. 13.
    Boscutti F, Lami F, Pellegrini E, Buccheri M, Busato F et al. 2022. Urban sprawl facilitates invasions of exotic plants across multiple spatial scales. Biol. Invasions 24:51497–510
    [Google Scholar]
  14. 14.
    Boyle EA, Li YI, Pritchard JK. 2017. An expanded view of complex traits: from polygenic to omnigenic. Cell 169:71177–86
    [Google Scholar]
  15. 15.
    Bruchac M 2014. Indigenous knowledge and traditional knowledge. Encyclopedia of Global Archaeology C Smith 3814–24 New York: Springer
    [Google Scholar]
  16. 16.
    Cang FA, Wilson AA, Wiens JJ. 2016. Climate change is projected to outpace rates of niche change in grasses. Biol. Lett. 12:920160368
    [Google Scholar]
  17. 17.
    Chen K-Y, Cong B, Wing R, Vrebalov J, Tanksley SD. 2007. Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318:5850643–45
    [Google Scholar]
  18. 18.
    Chen Q, Li W, Tan L, Tian F. 2021. Harnessing knowledge from maize and rice domestication for new crop breeding. Mol. Plant 14:19–26
    [Google Scholar]
  19. 19.
    Chen W, Chen L, Zhang X, Yang N, Guo J et al. 2022. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science 375:6587eabg7985
    [Google Scholar]
  20. 20.
    Chomicki G, Schaefer H, Renner SS. 2020. Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics and archaeology. New Phytol. 226:51240–55
    [Google Scholar]
  21. 21.
    Chopra R, Johnson EB, Emenecker R, Cahoon EB, Lyons J et al. 2020. Identification and stacking of crucial traits required for the domestication of pennycress. Nat. Food 1:184–91
    [Google Scholar]
  22. 22.
    Clapp J, Ryan Isakson S. 2018. Speculative Harvests: Financialization, Food, and Agriculture Halifax, Can.: Fernwood Publ.
    [Google Scholar]
  23. 23.
    Curtin S, Qi Y, Peres LEP, Fernie AR, Zsögön A. 2022. Pathways to de novo domestication of crop wild relatives. Plant Physiol. 188:41746–56
    [Google Scholar]
  24. 24.
    D'Andrea AC. 2008. T'ef (Eragrostis tef) in ancient agricultural systems of Highland Ethiopia. Econ. Bot. 62:4547–66
    [Google Scholar]
  25. 25.
    Dawson IK, Powell W, Hendre P, Bančič J, Hickey JM et al. 2019. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition. New Phytol. 224:137–54
    [Google Scholar]
  26. 26.
    Dempewolf H, Tesfaye M, Teshome A, Bjorkman AD, Andrew RL et al. 2015. Patterns of domestication in the Ethiopian oil-seed crop noug (Guizotia abyssinica). Evol. Appl. 8:5464–75
    [Google Scholar]
  27. 27.
    Doebley J, Stec A, Hubbard L. 1997. The evolution of apical dominance in maize. Nature 386:6624485–88
    [Google Scholar]
  28. 28.
    Doebley J, Stec A, Wendel J, Edwards M. 1990. Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. PNAS 87:249888–92
    [Google Scholar]
  29. 29.
    Dong Z, Xiao Y, Govindarajulu R, Feil R, Siddoway ML et al. 2019. The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression. Nat. Commun. 10:13810
    [Google Scholar]
  30. 30.
    Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346:62131258096Reflects on the CRISPR system, its discovery, and its development into a genome editing tool.
    [Google Scholar]
  31. 31.
    Doust AN, Devos KM, Gadberry MD. 2004. Genetic control of branching in foxtail millet. PNAS 101:249045–50
    [Google Scholar]
  32. 32.
    Dudley N, Alexander S. 2017. Agriculture and biodiversity: a review. Biodiversity 18:2–345–49
    [Google Scholar]
  33. 33.
    Emeagwali G 2020. African indigenous knowledge systems and the legacy of Africa. Indigenous Knowledge Systems and Development in Africa S Oloruntoba, A Afolayan, O Yacob-Haliso Cham, Switz: Palgrave Macmillan https://doi.org/10.1007/978-3-030-34304-0_3
    [Google Scholar]
  34. 34.
    Ermakova M, Danila FR, Furbank RT, von Caemmerer S. 2020. On the road to C4 rice: advances and perspectives. Plant J. 101:4940–50
    [Google Scholar]
  35. 35.
    Eshed Y, Lippman ZB. 2019. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 366:6466eaax0025
    [Google Scholar]
  36. 36.
    Evenson RE, Gollin D. 2003. Assessing the impact of the green revolution, 1960 to 2000. Science 300:5620758–62
    [Google Scholar]
  37. 37.
    Fernie AR, Yan J 2019. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12:5615–31
    [Google Scholar]
  38. 38.
    Gepts P. 2014. The contribution of genetic and genomic approaches to plant domestication studies. Curr. Opin. Plant Biol. 18:51–59
    [Google Scholar]
  39. 39.
    Giannini TC, Costa WF, Cordeiro GD, Imperatriz-Fonseca VL, Saraiva AM et al. 2017. Projected climate change threatens pollinators and crop production in Brazil. PLOS ONE 12:8e0182274
    [Google Scholar]
  40. 40.
    Glaeser B. 2010. The Green Revolution Revisited: Critique and Alternatives New York: Routledge
    [Google Scholar]
  41. 41.
    Goldblatt P, Manning JC. 2002. Plant diversity of the Cape region of Southern Africa. Ann. Mo. Bot. Gard. 89:2281–302
    [Google Scholar]
  42. 42.
    González-Grandío E, Pajoro A, Franco-Zorrilla JM, Tarancón C, Immink RGH, Cubas P. 2017. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. PNAS 114:2E245–54
    [Google Scholar]
  43. 43.
    Gyllenhaal C, Kadushin MR, Southavong B, Sydara K, Bouamanivong S et al. 2012. Ethnobotanical approach versus random approach in the search for new bioactive compounds: support of a hypothesis. Pharm. Biol. 50:130–41
    [Google Scholar]
  44. 44.
    Harlan JR. 1992. Crops and Man Madison, WI: Am. Soc. Agron. Crop Sci. Soc. Am.
    [Google Scholar]
  45. 45.
    Hartmann B. 1995. Reproductive Rights and Wrongs: The Global Politics of Population Control Boston: South End Press
    [Google Scholar]
  46. 46.
    Heinrich M, Scotti F, Andrade-Cetto A, Berger-Gonzalez M, Echeverría J et al. 2020. Access and benefit sharing under the Nagoya Protocol—Quo vadis? Six Latin American case studies assessing opportunities and risk. Front. Pharmacol. 11:765Outlines regulatory treaties that govern access to genetic resources and uses case studies to provide solutions for equitable benefit-sharing between indigenous communities and researchers.
    [Google Scholar]
  47. 47.
    Hendelman A, Zebell S, Rodriguez-Leal D, Dukler N, Robitaille G et al. 2021. Conserved pleiotropy of an ancient plant homeobox gene uncovered by cis-regulatory dissection. Cell 184:1724–39.e16
    [Google Scholar]
  48. 48.
    Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM et al. 2019. Breeding crops to feed 10 billion. Nat. Biotechnol. 37:7744–54
    [Google Scholar]
  49. 49.
    Huang Z, van der Knaap E. 2011. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theor. Appl. Genet. 123:3465–74
    [Google Scholar]
  50. 50.
    Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J. 2013. The genomic signature of crop-wild introgression in maize. PLOS Genet. 9:5e1003477
    [Google Scholar]
  51. 51.
    Hunter J, Koopman B, Sledge J. 2003. Software tools for indigenous knowledge management. Museums and the Web 2003: Selected Papers from an International Conference, Charlotte, NC, March 19–22, 2003. https://eric.ed.gov/?id=ED482117
    [Google Scholar]
  52. 52.
    Jia H, Orbovic V, Jones JB, Wang N. 2016. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnol. J. 14:1291–301
    [Google Scholar]
  53. 53.
    Kamal N, Tsardakas Renhuldt N, Bentzer J, Gundlach H, Haberer G et al. 2022. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature 606:113–19
    [Google Scholar]
  54. 54.
    Kang B-C, Yun J-Y, Kim S-T, Shin Y, Ryu J et al. 2018. Precision genome engineering through adenine base editing in plants. Nat. Plants 4:427–31
    [Google Scholar]
  55. 55.
    Kantar MB, Nashoba AR, Anderson JE, Blackman BK, Rieseberg LH. 2017. The genetics and genomics of plant domestication. Bioscience 67:11971–82
    [Google Scholar]
  56. 56.
    Khush GS. 2001. Green revolution: the way forward. Nat. Rev. Genet. 2:10815–22
    [Google Scholar]
  57. 57.
    Kimmerer R. 2013. Braiding Sweetgrass: Indigenous Wisdom, Scientific Knowledge and the Teachings of Plants Minneapolis, MN: Milkweed Ed .
    [Google Scholar]
  58. 58.
    Kovach MJ, Sweeney MT, McCouch SR. 2007. New insights into the history of rice domestication. Trends Genet. 23:11578–87
    [Google Scholar]
  59. 59.
    Kramer EM. 2019. Plus ça change, plus c'est la même chose: the developmental evolution of flowers. Curr. Top. Dev. Biol. 131:211–38
    [Google Scholar]
  60. 60.
    Kress WJ, Soltis DE, Kersey PJ, Wegrzyn JL, Leebens-Mack JH et al. 2022. Green plant genomes: what we know in an era of rapidly expanding opportunities. PNAS 119:4e2115640118
    [Google Scholar]
  61. 61.
    Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34:71812–19
    [Google Scholar]
  62. 62.
    Kwon C-T, Heo J, Lemmon ZH, Capua Y, Hutton SF et al. 2020. Rapid customization of Solanaceae fruit crops for urban agriculture. Nat. Biotechnol. 38:2182–88
    [Google Scholar]
  63. 63.
    Kwon C-T, Tang L, Wang X, Gentile I, Hendelman A et al. 2022. Dynamic evolution of small signalling peptide compensation in plant stem cell control. Nat. Plants 8:4346–55
    [Google Scholar]
  64. 64.
    Lacchini E, Kiegle E, Castellani M, Adam H, Jouannic S et al. 2020. CRISPR-mediated accelerated domestication of African rice landraces. PLOS ONE 15:3e0229782
    [Google Scholar]
  65. 65.
    Lee JE, Neumann M, Duro DI, Schmid M. 2019. CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants. PLOS ONE 14:9e0222778
    [Google Scholar]
  66. 66.
    Leiboff S, Li X, Hu H-C, Todt N, Yang J et al. 2015. Genetic control of morphometric diversity in the maize shoot apical meristem. Nat. Commun. 6:8974
    [Google Scholar]
  67. 67.
    Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE et al. 2018. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4:10766–70
    [Google Scholar]
  68. 68.
    Liao F. 2009. Discovery of Artemisinin (Qinghaosu). Molecules 14:125362–66
    [Google Scholar]
  69. 69.
    Li F-W. 2021. Decolonizing botanical genomics. Nat. Plants 7:1542–43
    [Google Scholar]
  70. 70.
    Li Z, Zhang D, Xiong X, Yan B, Xie W et al. 2017. A potent Cas9-derived gene activator for plant and mammalian cells. Nat. Plants 3:12930–36
    [Google Scholar]
  71. 71.
    Liu L, Gallagher J, Arevalo ED, Chen R, Skopelitis T et al. 2021. Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nat. Plants 7:287–94
    [Google Scholar]
  72. 72.
    Liu Q, Yang F, Zhang J, Liu H, Rahman S et al. 2021. Application of CRISPR/Cas9 in crop quality improvement. Int. J. Mol. Sci. 22:84206
    [Google Scholar]
  73. 73.
    Liu Q, Zhou Y, Morrell PL, Gaut BS. 2017. Deleterious variants in Asian rice and the potential cost of domestication. Mol. Biol. Evol. 34:4908–24
    [Google Scholar]
  74. 74.
    Liu W, Rudis MR, Cheplick MH, Millwood RJ, Yang J-P et al. 2020. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Rep. 39:2245–57
    [Google Scholar]
  75. 75.
    Lowder LG, Zhou J, Zhang Y, Malzahn A, Zhong Z et al. 2018. Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems. Mol. Plant 11:2245–56
    [Google Scholar]
  76. 76.
    Mabhaudhi T, Chimonyo VGP, Chibarabada TP, Modi AT. 2017. Developing a roadmap for improving neglected and underutilized crops: a case study of South Africa. Front. Plant Sci. 8:2143
    [Google Scholar]
  77. 77.
    Mabuza MJ 2021. The economic value of medicinal plant species: How rural people can benefit. Culture and Rural–Urban Revitalisation in South Africa: Indigenous Knowledge, Policies, and Planning M Sirayi, M Kanyane, G Verdini London: Routledge https://doi.org/10.4324/9781003145912
    [Google Scholar]
  78. 78.
    Maurya JP, Singh RK, Miskolczi PC, Prasad AN, Jonsson K et al. 2020. Branching regulator BRC1 mediates photoperiodic control of seasonal growth in hybrid aspen. Curr. Biol. 30:1122–26.e2
    [Google Scholar]
  79. 79.
    Mawalagedera SMUP, Callahan DL, Gaskett AC, Rønsted N, Symonds MRE. 2019. Combining evolutionary inference and metabolomics to identify plants with medicinal potential. Front. Ecol. Evol. 7:267
    [Google Scholar]
  80. 80.
    Meyer RS, DuVal AE, Jensen HR. 2012. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 196:129–48Comprehensively reviews crop domestication processes and finds substantial variation within spatial and temporal patterns.
    [Google Scholar]
  81. 81.
    Meyer RS, Purugganan MD. 2013. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14:12840–52
    [Google Scholar]
  82. 82.
    Milla R. 2020. Crop Origins and Phylo Food: a database and a phylogenetic tree to stimulate comparative analyses on the origins of food crops. Glob. Ecol. Biogeogr. 29:4606–14
    [Google Scholar]
  83. 83.
    Milla R, Osborne CP. 2021. Crop origins explain variation in global agricultural relevance. Nat. Plants 7:5598–607
    [Google Scholar]
  84. 84.
    Molla KA, Sretenovic S, Bansal KC, Qi Y. 2021. Precise plant genome editing using base editors and prime editors. Nat. Plants 7:91166–87
    [Google Scholar]
  85. 85.
    Moose SP, Dudley JW, Rocheford TR. 2004. Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci. 9:7358–64
    [Google Scholar]
  86. 86.
    Moyers BT, Morrell PL, McKay JK. 2018. Genetic costs of domestication and improvement. J. Hered. 109:2103–16
    [Google Scholar]
  87. 87.
    Moyo M, Aremu AO, Van Staden J. 2015. Medicinal plants: an invaluable, dwindling resource in sub-Saharan Africa. J. Ethnopharmacol. 174:595–606
    [Google Scholar]
  88. 88.
    Natl. Res. Counc 1996. Lost Crops of Africa, Vol. 1: Grains Washington, DC: Natl. Acad. Press
    [Google Scholar]
  89. 89.
    Nicolas M, Torres-Pérez R, Wahl V, Cruz-Oró E, Rodríguez-Buey ML et al. 2022. Spatial control of potato tuberization by the TCP transcription factor BRANCHED1b. Nat. Plants 8:3281–94
    [Google Scholar]
  90. 90.
    Papikian A, Liu W, Gallego-Bartolomé J, Jacobsen SE. 2019. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat. Commun. 10:1729
    [Google Scholar]
  91. 91.
    Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM et al. 1999. “Green revolution” genes encode mutant gibberellin response modulators. Nature 400:6741256–61
    [Google Scholar]
  92. 92.
    Peschard K, Randeria S. 2020. “Keeping seeds in our hands”: the rise of seed activism. J. Peasant Stud. 47:4613–47
    [Google Scholar]
  93. 93.
    Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D et al. 1995. Environmental and economic costs of soil erosion and conservation benefits. Science 267:52011117–23
    [Google Scholar]
  94. 94.
    Rai A, Saito K, Yamazaki M. 2017. Integrated omics analysis of specialized metabolism in medicinal plants. Plant J. 90:4764–87
    [Google Scholar]
  95. 95.
    Ramirez-Villegas J, Khoury CK, Achicanoy HA, Diaz MV, Mendez AC et al. 2022. State of ex situ conservation of landrace groups of 25 major crops. Nat. Plants 8:491–99
    [Google Scholar]
  96. 96.
    Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S. 2021. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. J. Exp. Bot. 72:186123–39
    [Google Scholar]
  97. 97.
    Rodney W. 2018. How Europe Underdeveloped Africa London: Verso Books
    [Google Scholar]
  98. 98.
    Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. 2017. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:2470–80.e8Demonstrates promoter editing of an important regulator of meristem and tomato fruit size to generate quantitative phenotypic variation.
    [Google Scholar]
  99. 99.
    Rodríguez-Leal D, Xu C, Kwon C-T, Soyars C, Demesa-Arevalo E et al. 2019. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat. Genet. 51:5786–92
    [Google Scholar]
  100. 100.
    Sainath P. 1996. Everybody Loves a Good Drought: Stories from India's Poorest Districts Gurgaon, India: Penguin Books IndiaA classic collection that chronicles the failure of development projects, revealing that greater agricultural innovation and output does not alleviate poverty.
    [Google Scholar]
  101. 101.
    Saslis-Lagoudakis CH, Savolainen V, Williamson EM, Forest F, Wagstaff SJ et al. 2012. Phylogenies reveal predictive power of traditional medicine in bioprospecting. PNAS 109:3915835–40
    [Google Scholar]
  102. 102.
    Sasser JS. 2018. On Infertile Ground New York: NYU Press
    [Google Scholar]
  103. 103.
    Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM et al. 2012. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. PNAS 109:249320–25
    [Google Scholar]
  104. 104.
    Schiebinger L. 2021. Plants and Empire Cambridge, MA: Harvard Univ. PressExplores the “extractive logics” underlying the epic imperial voyages to explore the natural riches of the New World and uncover the botanical secrets of its people.
    [Google Scholar]
  105. 105.
    Schnablová R, Herben T, Klimešová J. 2017. Shoot apical meristem and plant body organization: a cross-species comparative study. Ann. Bot. 120:5833–43
    [Google Scholar]
  106. 106.
    Scott D. 2011. The technological fix criticisms and the agricultural biotechnology debate. J. Agric. Environ. Ethics 24:3207–26
    [Google Scholar]
  107. 107.
    Shang L, Song J, Yu H, Wang X, Yu C et al. 2021. A mutation in a C2H2-type zinc finger transcription factor contributed to the transition toward self-pollination in cultivated tomato. Plant Cell 33:103293–308
    [Google Scholar]
  108. 108.
    Shapter FM, Cross M, Ablett G, Malory S, Chivers IH et al. 2013. High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop. PLOS ONE 8:12e82641
    [Google Scholar]
  109. 109.
    Shiva V. 2016. Defending farmers’ seed freedom. ANTYAJAA Indian J. Women Soc. Change 1:2205–20
    [Google Scholar]
  110. 110.
    Siegel BR. 2018. Hungry Nation: Food, Famine, and the Making of Modern India Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  111. 111.
    Singh RB. 2000. Environmental consequences of agricultural development: a case study from the Green Revolution state of Haryana, India. Agric. Ecosyst. Environ. 82:97–103
    [Google Scholar]
  112. 112.
    Smith MR, Marx L. 1994. Does Technology Drive History?: The Dilemma of Technological Determinism Cambridge, MA: MIT Press
    [Google Scholar]
  113. 113.
    Smith SD, Pennell MW, Dunn CW, Edwards SV. 2020. Phylogenetics is the new genetics (for most of biodiversity). Trends Ecol. Evol. 35:5415–25
    [Google Scholar]
  114. 114.
    Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH et al. 2009. Polyploidy and angiosperm diversification. Am. J. Bot. 96:1336–48
    [Google Scholar]
  115. 115.
    Somssich M, Je BI, Simon R, Jackson D 2016. CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143:183238–48
    [Google Scholar]
  116. 116.
    Steinbrecher T, Beuchle G, Melzer B, Speck T, Kraft O, Schwaiger R. 2011. Structural development and morphology of the attachment system of Parthenocissus tricuspidata. Int. J. Plant Sci. 172:91120–29
    [Google Scholar]
  117. 117.
    Stitzer MC, Ross-Ibarra J. 2018. Maize domestication and gene interaction. New Phytol. 220:2395–408
    [Google Scholar]
  118. 118.
    Strable J, Wallace JG, Unger-Wallace E, Briggs S, Bradbury PJ et al. 2017. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell 29:71622–41
    [Google Scholar]
  119. 119.
    Swarts K, Gutaker RM, Benz B, Blake M, Bukowski R et al. 2017. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357:6350512–15Uses ancient DNA sequencing to illuminate the slow complexity of the domestication process.
    [Google Scholar]
  120. 120.
    TallBear K. 2014. Standing with and speaking as faith: a feminist-indigenous approach to inquiry. J. Res. Pract. 10:2N17
    [Google Scholar]
  121. 121.
    Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X et al. 2017. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants 3:317018
    [Google Scholar]
  122. 122.
    Thomas PN. 2010. Traditional knowledge and the Traditional Knowledge Digital Library: digital quandaries and other concerns. Int. Commun. Gaz. 72:8659–73
    [Google Scholar]
  123. 123.
    Thrupp LA. 1989. Legitimizing local knowledge: from displacement to empowerment for third world people. Agric. Hum. Values 6:313–24
    [Google Scholar]
  124. 124.
    Tian S, Jiang L, Cui X, Zhang J, Guo S et al. 2018. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep. 37:91353–56
    [Google Scholar]
  125. 125.
    Trung KH, Tran QH, Bui NH, Tran TT, Luu KQ et al. 2020. A weak allele of FASCIATED EAR 2 (FEA2) increases maize kernel row number (KRN) and yield in elite maize hybrids. Agronomy 10:111774
    [Google Scholar]
  126. 126.
    van Delden SH, SharathKumar M, Butturini M, Graamans LJA, Heuvelink E et al. 2021. Current status and future challenges in implementing and upscaling vertical farming systems. Nat. Food 2:12944–56
    [Google Scholar]
  127. 127.
    Van Tassel DL, Tesdell O, Schlautman B, Rubin MJ, DeHaan LR et al. 2020. New food crop domestication in the age of gene editing: Genetic, agronomic and cultural change remain co-evolutionarily entangled. Front. Plant Sci. 11:789
    [Google Scholar]
  128. 128.
    Van Wyk B-E. 2011. The potential of South African plants in the development of new food and beverage products. S. Afr. J. Bot. 77:4857–68
    [Google Scholar]
  129. 129.
    Wada N, Osakabe K, Osakabe Y. 2022. Expanding the plant genome editing toolbox with recently developed CRISPR-Cas systems. Plant Physiol. 188:41825–37
    [Google Scholar]
  130. 130.
    Wang B, Lin Z, Li X, Zhao Y, Zhao B et al. 2020. Genome-wide selection and genetic improvement during modern maize breeding. Nat. Genet. 52:6565–71
    [Google Scholar]
  131. 131.
    Wang L, Josephs EB, Lee KM, Roberts LM, Rellán-Álvarez R et al. Molecular parallelism underlies convergent highland adaptation of maize landraces. Mol. Biol. Evol. 38:3567–80
    [Google Scholar]
  132. 132.
    Wang M, Le Moigne M-A, Bertheloot J, Crespel L, Perez-Garcia M-D et al. 2019. BRANCHED1: a key hub of shoot branching. Front. Plant Sci. 10:76
    [Google Scholar]
  133. 133.
    Wang M, Li W, Fang C, Xu F, Liu Y et al. 2018. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat. Genet. 50:101435–41
    [Google Scholar]
  134. 134.
    Wang X, Dong K, Kong D, Zhou Y, Yin J et al. 2021. A far-red light-inducible CRISPR-Cas12a platform for remote-controlled genome editing and gene activation. Sci. Adv. 7:50eabh2358
    [Google Scholar]
  135. 135.
    Williams TM, Schlichting CD, Holsinger KE. 2021. Herbarium records demonstrate changes in flowering phenology associated with climate change over the past century within the Cape Floristic Region, South Africa. Clim. Change Ecol. 1:100006
    [Google Scholar]
  136. 136.
    Wilson ML, VanBuren R. 2022. Leveraging millets for developing climate resilient agriculture. Curr. Opin. Biotechnol. 75:102683
    [Google Scholar]
  137. 137.
    Wink M. 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:13–19
    [Google Scholar]
  138. 138.
    Wray GA. 2007. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8:3206–16
    [Google Scholar]
  139. 139.
    Wu Y, Colautti RI. 2022. Evidence for continent-wide convergent evolution and stasis throughout 150 y of a biological invasion. PNAS 119:18e2107584119
    [Google Scholar]
  140. 140.
    Wu Y, Yang L, Chang T, Kandeel F, Yee J-K. 2020. A small molecule-controlled Cas9 repressible system. Mol. Ther. Nucleic Acids 19:922–32
    [Google Scholar]
  141. 141.
    Xu C, Liberatore KL, MacAlister CA, Huang Z, Chu Y-H et al. 2015. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet. 47:7784–92
    [Google Scholar]
  142. 142.
    Ye C-Y, Fan L 2021. Orphan crops and their wild relatives in the genomic era. Mol. Plant 14:127–39
    [Google Scholar]
  143. 143.
    Ye M, Peng Z, Tang D, Yang Z, Li D et al. 2018. Generation of self-compatible diploid potato by knockout of S-RNase. Nat. Plants 4:9651–54
    [Google Scholar]
  144. 144.
    Yu H, Li J. 2022. Breeding future crops to feed the world through de novo domestication. Nat. Commun. 13:11171
    [Google Scholar]
  145. 145.
    Yu H, Lin T, Meng X, Du H, Zhang J et al. 2021. A route to de novo domestication of wild allotetraploid rice. Cell 184:51156–70.e14
    [Google Scholar]
  146. 146.
    Zerner C 2000. People, Plants, and Justice: The Politics of Nature Conservation New York: Columbia Univ. Press
    [Google Scholar]
  147. 147.
    Zhang F, Rossignol P, Huang T, Wang Y, May A et al. 2020. Reprogramming of stem cell activity to convert thorns into branches. Curr. Biol. 30:152951–61.e5
    [Google Scholar]
  148. 148.
    Zou C, Massonnet M, Minio A, Patel S, Llaca V et al. 2021. Multiple independent recombinations led to hermaphroditism in grapevine. PNAS 118:15e2023548118
    [Google Scholar]
  149. 149.
    Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH et al. 2018. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36:1211–16
    [Google Scholar]
  150. 150.
    Zsögön A, Čermák T, Voytas D, Peres LEP. 2017. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: case study in tomato. Plant Sci. 256:120–30Demonstrates the potential of genome editing for de novo domestication in one of the first experimental explorations.
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-053122-030653
Loading
/content/journals/10.1146/annurev-arplant-053122-030653
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error