1932

Abstract

Plant specialized metabolites (PSMs) are variably distributed across taxa, tissues, and ecological contexts; this variability has inspired many theories about PSM function, which, to date, remain poorly tested because predictions have outpaced the available data. Advances in mass spectrometry–based metabolomics have enabled unbiased PSM profiling, and molecular biology techniques have produced PSM-free plants; the combination of these methods has accelerated our understanding of the complex ecological roles that PSMs play in plants. Synthetic biology techniques and workflows are producing high-value, structurally complex PSMs in quantities and purities sufficient for both medicinal and functional studies. These workflows enable the reengineering of PSM transport, externalization, structural diversity, and production in novel taxa, facilitating rigorous tests of long-standing theoretical predictions about why plants produce so many different PSMs in particular tissues and ecological contexts. Plants use their chemical prowess to solve ecological challenges, and synthetic biology workflows are accelerating our understanding of these evolved functions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-060223-013842
2024-07-22
2025-02-17
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-060223-013842.html?itemId=/content/journals/10.1146/annurev-arplant-060223-013842&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Allmann S, Baldwin IT. 2010.. Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. . Science 329::107578
    [Crossref] [Google Scholar]
  2. 2.
    Bai Y, Fernández-Calvo P, Ritter A, Huang AC, Morales-Herrera S, et al. 2021.. Modulation of Arabidopsis root growth by specialized triterpenes. . New Phytol. 230::22843
    [Crossref] [Google Scholar]
  3. 3.
    Bai Y, Yang C, Halitschke R, Paetz C, Kessler D, et al. 2022.. Natural history–guided omics reveals plant defensive chemistry against leafhopper pests. . Science 375::eabm2948 3. Novel nonhost resistance chemistry was reengineered into two host plants, demonstrating biosynthetic mechanisms and ecological function.
    [Crossref] [Google Scholar]
  4. 4.
    Balandrin MF, Klocke JA, Wurtele ES, Bollinger WH. 1985.. Natural plant chemicals: sources of industrial and medicinal materials. . Science 228::115460
    [Crossref] [Google Scholar]
  5. 5.
    Baldwin IT. 1999.. Inducible nicotine production in native Nicotiana as an example of adaptive phenotypic plasticity. . J. Chem. Ecol. 25::330
    [Crossref] [Google Scholar]
  6. 6.
    Baldwin IT. 2001.. An ecologically motivated analysis of plant-herbivore interactions in native tobacco. . Plant Physiol. 127::144958
    [Crossref] [Google Scholar]
  7. 7.
    Baldwin IT. 2012.. Training a new generation of biologists: the genome-enabled field biologists. . Proc. Am. Philos. Soc. 156::20514
    [Google Scholar]
  8. 8.
    Baldwin IT, Callahan P. 1993.. Autotoxicity and chemical defense: nicotine accumulation and carbon gain in solanaceous plants. . Oecologia 94::53441
    [Crossref] [Google Scholar]
  9. 9.
    Baldwin IT, Ohnmeiss TE. 1994.. Swords into plowshares? Nicotiana sylvestris does not use nicotine as a nitrogen source under nitrogen-limited growth. . Oecologia 98::38592
    [Crossref] [Google Scholar]
  10. 10.
    Baldwin IT, Staszak-Kozinski L, Davidson R. 1994.. Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata torr. Ex. Watson. . J. Chem. Ecol. 20::234571
    [Crossref] [Google Scholar]
  11. 11.
    Bally J, Jung H, Mortimer C, Naim F, Philips JG, et al. 2018.. The rise and rise of Nicotiana benthamiana: a plant for all reasons. . Annu. Rev. Phytopathol. 56::40526
    [Crossref] [Google Scholar]
  12. 12.
    Bally J, Nakasugi K, Jia F, Jung H, Ho SYW, et al. 2015.. The extremophile Nicotiana benthamiana has traded viral defence for early vigour. . Nat. Plants 1::15165
    [Crossref] [Google Scholar]
  13. 13.
    Becerra JX, Noge K, Venable DL. 2009.. Macroevolutionary chemical escalation in an ancient plant–herbivore arms race. . PNAS 106::1806266
    [Crossref] [Google Scholar]
  14. 14.
    Bezzi S, Kessler D, Diezel C, Muck A, Anssour S, Baldwin IT. 2010.. Silencing NaTPI expression increases nectar germin, nectarins, and hydrogen peroxide levels and inhibits nectar removal from plants in nature. . Plant Physiol. 152::223242
    [Crossref] [Google Scholar]
  15. 15.
    Cai J, Li D, Aharoni A. 2023.. The role of long-distance mobile metabolites in the plant stress response and signaling. . Plant J. 114::111531
    [Crossref] [Google Scholar]
  16. 16.
    Chang C, Nasir F, Ma L, Tian C. 2017.. Molecular communication and nutrient transfer of arbuscular mycorrhizal fungi, symbiotic nitrogen-fixing bacteria, and host plant in tripartite symbiosis. . In Legume Nitrogen Fixation in Soils with Low Phosphorus Availability, ed. S Sulieman, LS Tran , pp. 16983. Cham, Switz:: Springer
    [Google Scholar]
  17. 17.
    Chavez BG, Srinivasan P, Glockzin K, Kim N, Montero Estrada O, et al. 2022.. Elucidation of tropane alkaloid biosynthesis in Erythroxylum coca using a microbial pathway discovery platform. . PNAS 119::e2215372119 17. Reconstructing cocaine biosynthesis in yeast revealed the uniqueness and polyphyletic origins of most pathway steps.
    [Crossref] [Google Scholar]
  18. 18.
    Chen K, Wang Y, Zhang R, Zhang H, Gao C. 2019.. CRISPR/Cas genome editing and precision plant breeding in agriculture. . Annu. Rev. Plant Biol. 70::66797
    [Crossref] [Google Scholar]
  19. 19.
    Chen R, Gao J, Yu W, Chen X, Zhai X, et al. 2022.. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. . Nat. Chem. Biol. 18::52029
    [Crossref] [Google Scholar]
  20. 20.
    Coley PD. 1987.. Interspecific variation in plant anti-herbivore properties: the role of habitat quality and rate of disturbance. . New Phytol. 106::25163
    [Crossref] [Google Scholar]
  21. 21.
    Coley PD. 1988.. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. . Oecologia 74::53136
    [Crossref] [Google Scholar]
  22. 22.
    Coley PD, Bryant JP, Chapin FS III. 1985.. Resource availability and plant antiherbivore defense. . Science 230::89599
    [Crossref] [Google Scholar]
  23. 23.
    Cravens A, Payne J, Smolke CD. 2019.. Synthetic biology strategies for microbial biosynthesis of plant natural products. . Nat. Commun. 10::2142
    [Crossref] [Google Scholar]
  24. 24.
    De La Peña R, Sattely ES. 2021.. Rerouting plant terpene biosynthesis enables momilactone pathway elucidation. . Nat. Chem. Biol. 17::20512
    [Crossref] [Google Scholar]
  25. 25.
    De Luca V, Salim V, Atsumi SM, Yu F. 2012.. Mining the biodiversity of plants: a revolution in the making. . Science 336::165861
    [Crossref] [Google Scholar]
  26. 26.
    Demain AL, Fang A. 2000.. The natural functions of secondary metabolites. . Adv. Biochem. Eng. Biotechnol. 69::139
    [Google Scholar]
  27. 27.
    Diezel C, Kessler D, Baldwin IT. 2011.. Pithy protection: Nicotiana attenuata’s jasmonic acid-mediated defenses are required to resist stem-boring weevil larvae. . Plant Physiol. 155::193646
    [Crossref] [Google Scholar]
  28. 28.
    Dudley QM, Jo S, Guerrero DAS, Chhetry M, Smedley MA, et al. 2022.. Reconstitution of monoterpene indole alkaloid biosynthesis in genome engineered Nicotiana benthamiana. . Commun. Biol. 5::949
    [Crossref] [Google Scholar]
  29. 29.
    Dyer LA, Philbin CS, Ochsenrider KM, Richards LA, Massad TJ, et al. 2018.. Modern approaches to study plant–insect interactions in chemical ecology. . Nat. Rev. Chem. 2::5064
    [Crossref] [Google Scholar]
  30. 30.
    Ehrlich PR, Raven PH. 1964.. Butterflies and plants: a study in coevolution. . Evolution 18::586608
    [Crossref] [Google Scholar]
  31. 31.
    Emwas A-HM. 2015.. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. . Methods Mol. Biol. 1277::16193
    [Crossref] [Google Scholar]
  32. 32.
    Erb M, Kliebenstein DJ. 2020.. Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. . Plant Physiol. 184::3952 32. The many roles for PSMs, as defenses, regulators, and primary metabolites, are highlighted in this review.
    [Crossref] [Google Scholar]
  33. 33.
    Euler M, Baldwin IT. 1996.. The chemistry of defense and apparency in the corollas of Nicotiana attenuata. . Oecologia 107::10212
    [Crossref] [Google Scholar]
  34. 34.
    Fan P, Miller AM, Liu X, Jones AD, Last RL. 2017.. Evolution of a flipped pathway creates metabolic innovation in tomato trichomes through BAHD enzyme promiscuity. . Nat. Commun. 8::2080
    [Crossref] [Google Scholar]
  35. 35.
    Fan P, Wang P, Lou Y-R, Leong BJ, Moore BM, et al. 2020.. Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. . eLife 9::e56717
    [Crossref] [Google Scholar]
  36. 36.
    Feeny P. 1976.. Plant apparency and chemical defense. . Biochem. Interact. Between Plants Insects 10::140
    [Google Scholar]
  37. 37.
    Field B, Osbourn AE. 2008.. Metabolic diversification—independent assembly of operon-like gene clusters in different plants. . Science 320::54347
    [Crossref] [Google Scholar]
  38. 38.
    Fiesel PD, Parks HM, Last RL, Barry CS. 2022.. Fruity, sticky, stinky, spicy, bitter, addictive, and deadly: evolutionary signatures of metabolic complexity in the Solanaceae. . Nat. Prod. Rep. 39::143864
    [Crossref] [Google Scholar]
  39. 39.
    Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret J-P, et al. 2014.. Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. . Nat. Commun. 5::3283
    [Crossref] [Google Scholar]
  40. 40.
    Friedrichs S, Takasu Y, Kearns P, Dagallier B, Oshima R, et al. 2019.. An overview of regulatory approaches to genome editing in agriculture. . Biotechnol. Res. Innov. 3::20820
    [Crossref] [Google Scholar]
  41. 41.
    Gachon CM, Langlois-Meurinne M, Saindrenan P. 2005.. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. . Trends Plant Sci. 10::54249
    [Crossref] [Google Scholar]
  42. 42.
    Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD. 2015.. Complete biosynthesis of opioids in yeast. . Science 349::1095100
    [Crossref] [Google Scholar]
  43. 43.
    Giri AP, Wunsche H, Mitra S, Zavala JA, Muck A, et al. 2006.. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VII. Changes in the plant's proteome. . Plant Physiol. 142::162141
    [Crossref] [Google Scholar]
  44. 44.
    Gleadow RM, Møller BL. 2014.. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. . Annu. Rev. Plant Biol. 65::15585
    [Crossref] [Google Scholar]
  45. 45.
    Halkier BA, Gershenzon J. 2006.. Biology and biochemistry of glucosinolates. . Annu. Rev. Plant Biol. 57::30333
    [Crossref] [Google Scholar]
  46. 46.
    Hartmann T. 2008.. The lost origin of chemical ecology in the late 19th century. . PNAS 105::454146
    [Crossref] [Google Scholar]
  47. 47.
    Haslam E. 1986.. Secondary metabolism–fact and fiction. . Nat. Prod. Rep. 3::21749
    [Crossref] [Google Scholar]
  48. 48.
    He J, Fandino RA, Halitschke R, Luck K, Köllner TG, et al. 2019.. An unbiased approach elucidates variation in (S)-(+)-linalool, a context-specific mediator of a tri-trophic interaction in wild tobacco. . PNAS 116::1465160
    [Crossref] [Google Scholar]
  49. 49.
    Heiling S, Llorca LC, Li J, Gase K, Schmidt A, et al. 2021.. Specific decorations of 17-hydroxygeranyllinalool diterpene glycosides solve the autotoxicity problem of chemical defense in Nicotiana attenuata. . Plant Cell 33::174870
    [Crossref] [Google Scholar]
  50. 50.
    Heiling S, Schuman MC, Schoettner M, Mukerjee P, Berger B, et al. 2010.. Jasmonate and ppHsystemin regulate key malonylation steps in the biosynthesis of 17-hydroxygeranyllinalool diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. . Plant Cell 22::27392
    [Crossref] [Google Scholar]
  51. 51.
    Herms DA, Mattson WJ. 1992.. The dilemma of plants: to grow or defend. . Q. Rev. Biol. 67::283335
    [Crossref] [Google Scholar]
  52. 52.
    Hirai T, Kim Y-W, Kato K, Hiwasa-Tanase K, Ezura H. 2011.. Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter. . Transgenic Res. 20::128592
    [Crossref] [Google Scholar]
  53. 53.
    Hong B, Grzech D, Caputi L, Sonawane P, Rodríguez López CE, et al. 2022.. Biosynthesis of strychnine. . Nature 607::61722
    [Crossref] [Google Scholar]
  54. 54.
    Huang AC, Jiang T, Liu Y-X, Bai Y-C, Reed J, et al. 2019.. A specialized metabolic network selectively modulates Arabidopsis root microbiota. . Science 364::eaau6389
    [Crossref] [Google Scholar]
  55. 55.
    Hunziker P, Lambertz SK, Weber K, Crocoll C, Halkier BA, Schulz A. 2021.. Herbivore feeding preference corroborates optimal defense theory for specialized metabolites within plants. . PNAS 118::e2111977118 55. Within-plant glucosinolate distributions were reengineered by abrogating PSM transporters to test optimal defense theory predictions.
    [Crossref] [Google Scholar]
  56. 56.
    Itkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S, et al. 2011.. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. . Plant Cell 23::450725
    [Crossref] [Google Scholar]
  57. 57.
    Jeon JE, Kim J-G, Fischer CR, Mehta N, Dufour-Schroif C, et al. 2020.. A pathogen-responsive gene cluster for highly modified fatty acids in tomato. . Cell 180::17687.e19
    [Crossref] [Google Scholar]
  58. 58.
    Jones CG, Firn RD. 1991.. On the evolution of plant secondary chemical diversity. . Philos. Trans. R. Soc. B 333::27380
    [Crossref] [Google Scholar]
  59. 59.
    Joo Y, Kim H, Kang M, Lee G, Choung S, et al. 2021.. Pith-specific lignification in Nicotiana attenuata as a defense against a stem-boring herbivore. . New Phytol. 232::33244
    [Crossref] [Google Scholar]
  60. 60.
    Kallenbach M, Bonaventure G, Gilardoni PA, Wissgott A, Baldwin IT. 2012.. Empoasca leafhoppers attack wild tobacco plants in a jasmonate-dependent manner and identify jasmonate mutants in natural populations. . PNAS 109::E154857
    [Crossref] [Google Scholar]
  61. 61.
    Kappers IF, Aharoni A, Van Herpen TW, Luckerhoff LL, Dicke M, Bouwmeester HJ. 2005.. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. . Science 309::207072
    [Crossref] [Google Scholar]
  62. 62.
    Karageorgi M, Groen SC, Sumbul F, Pelaez JN, Verster KI, et al. 2019.. Genome editing retraces the evolution of toxin resistance in the monarch butterfly. . Nature 574::40912 62. Reconstructs the evolution of resistance mechanisms to cardiac glycoside toxins from adapted insects in Drosophila.
    [Crossref] [Google Scholar]
  63. 63.
    Kessler A. 2015.. The information landscape of plant constitutive and induced secondary metabolite production. . Curr. Opin. Insect. Sci. 8::4753
    [Crossref] [Google Scholar]
  64. 64.
    Kessler A, Baldwin IT. 2001.. Defensive function of herbivore-induced plant volatile emissions in nature. . Science 291::214144
    [Crossref] [Google Scholar]
  65. 65.
    Kessler A, Baldwin IT. 2002.. Plant responses to insect herbivory: the emerging molecular analysis. . Annu. Rev. Plant Biol. 53::299328
    [Crossref] [Google Scholar]
  66. 66.
    Kessler A, Halitschke R, Baldwin IT. 2004.. Silencing the jasmonate cascade: induced plant defenses and insect populations. . Science 305::66568
    [Crossref] [Google Scholar]
  67. 67.
    Kessler A, Kalske A. 2018.. Plant secondary metabolite diversity and species interactions. . Annu. Rev. Ecol. Evol. Syst. 49::11538
    [Crossref] [Google Scholar]
  68. 68.
    Kessler D, Bhattacharya S, Diezel C, Rothe E, Gase K, et al. 2012.. Unpredictability of nectar nicotine promotes outcrossing by hummingbirds in Nicotiana attenuata. . Plant J. 71::52938
    [Crossref] [Google Scholar]
  69. 69.
    Kessler D, Bing J, Haverkamp A, Baldwin IT. 2019.. The defensive function of a pollinator-attracting floral volatile. . Funct. Ecol. 33::122332
    [Crossref] [Google Scholar]
  70. 70.
    Kessler D, Diezel C, Clark DG, Colquhoun TA, Baldwin IT. 2013.. Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. . Ecol. Lett. 16::299306
    [Crossref] [Google Scholar]
  71. 71.
    Kessler D, Gase K, Baldwin IT. 2008.. Field experiments with transformed plants reveal the sense of floral scents. . Science 321::12002
    [Crossref] [Google Scholar]
  72. 72.
    Kessler D, Kallenbach M, Diezel C, Rothe E, Murdock M, Baldwin IT. 2015.. How scent and nectar influence floral antagonists and mutualists. . eLife 4::e07641
    [Crossref] [Google Scholar]
  73. 73.
    Korenblum E, Massalha H, Aharoni A. 2022.. Plant–microbe interactions in the rhizosphere via a circular metabolic economy. . Plant Cell 34::316882
    [Crossref] [Google Scholar]
  74. 74.
    Lange M, Yellina AL, Orashakova S, Becker A. 2013.. Virus-induced gene silencing (VIGS) in plants: an overview of target species and the virus-derived vector systems. . Methods Mol. Biol. 975::114
    [Crossref] [Google Scholar]
  75. 75.
    Lau W, Sattely ES. 2015.. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. . Science 349::122428
    [Crossref] [Google Scholar]
  76. 76.
    Leong BJ, Last RL. 2017.. Promiscuity, impersonation and accommodation: evolution of plant specialized metabolism. . Curr. Opin. Struct. Biol. 47::10512
    [Crossref] [Google Scholar]
  77. 77.
    Li D, Baldwin IT, Gaquerel E. 2015.. Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/MS structural analysis. . PNAS 112::E414755
    [Google Scholar]
  78. 78.
    Li D, Gaquerel E. 2021.. Next-generation mass spectrometry metabolomics revives the functional analysis of plant metabolic diversity. . Annu. Rev. Plant Biol. 72::86791
    [Crossref] [Google Scholar]
  79. 79.
    Li D, Halitschke R, Baldwin IT, Gaquerel E. 2020.. Information theory tests critical predictions of plant defense theory for specialized metabolism. . Sci. Adv. 6::eaaz0381 79. Information theory descriptors of unbiased MS-based PSM metabolomes test critical predictions of the optimal defense theory.
    [Crossref] [Google Scholar]
  80. 80.
    Li D, Heiling S, Baldwin IT, Gaquerel E. 2016.. Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory. . PNAS 113::E761018
    [Google Scholar]
  81. 81.
    Li J, Halitschke R, Li D, Paetz C, Su H, et al. 2021.. Controlled hydroxylations of diterpenoids allow for plant chemical defense without autotoxicity. . Science 371::25560
    [Crossref] [Google Scholar]
  82. 82.
    Li J, Schuman MC, Halitschke R, Li X, Guo H, et al. 2018.. The decoration of specialized metabolites influences stylar development. . eLife 7::e38611
    [Crossref] [Google Scholar]
  83. 83.
    Li S, Li Y, Smolke CD. 2018.. Strategies for microbial synthesis of high-value phytochemicals. . Nat. Chem. 10::395404
    [Crossref] [Google Scholar]
  84. 84.
    Li Y, Qin W, Liu H, Chen T, Yan X, et al. 2023.. Increased artemisinin production by promoting glandular secretory trichome formation and reconstructing the artemisinin biosynthetic pathway in Artemisia annua. . Hortic Res. 10::uhad055
    [Crossref] [Google Scholar]
  85. 85.
    Li Y, Smolke CD. 2016.. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. . Nat. Commun. 7::12137
    [Crossref] [Google Scholar]
  86. 86.
    Liou CS, Sirk SJ, Diaz CA, Klein AP, Fischer CR, et al. 2020.. A metabolic pathway for activation of dietary glucosinolates by a human gut symbiont. . Cell 180::71728.e19
    [Crossref] [Google Scholar]
  87. 87.
    Lohr JN, Meinzer F, Dalla S, Romey-Glüsing R, Dobler S. 2017.. The function and evolutionary significance of a triplicated Na, K-ATPase gene in a toxin-specialized insect. . BMC Evol. Biol. 17::256
    [Crossref] [Google Scholar]
  88. 88.
    Loomis W. 1932.. Growth-differentiation balance versus carbohydrate-nitrogen ratio. . Proc. Am. Soc. Hortic. Sci. 29::24045
    [Google Scholar]
  89. 89.
    Loomis WE. 1953.. Growth and differentiation—an introduction and summary. . In Growth and Differentiation in Plants, ed. WE Loomis , pp. 117. Ames, IA:: Iowa State Coll. Press
    [Google Scholar]
  90. 90.
    Machado RA, McClure M, Herve MR, Baldwin IT, Erb M. 2016.. Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature. . eLife 5::e13720
    [Crossref] [Google Scholar]
  91. 91.
    Maharjan B, Vitha S, Okumoto S. 2023.. Developmental regulation and physical interaction among enzymes involved in sorgoleone biosynthesis. . Plant J. 115::82032
    [Crossref] [Google Scholar]
  92. 92.
    Malinovsky FG, Thomsen M-LF, Nintemann SJ, Jagd LM, Bourgine B, et al. 2017.. An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway. . eLife 6::e29353
    [Crossref] [Google Scholar]
  93. 93.
    Markley JL, Brüschweiler R, Edison AS, Eghbalnia HR, Powers R, et al. 2017.. The future of NMR-based metabolomics. . Curr. Opin. Biotechnol. 43::3440
    [Crossref] [Google Scholar]
  94. 94.
    McKey D. 1974.. Adaptive patterns in alkaloid physiology. . Am. Nat. 108::30520
    [Crossref] [Google Scholar]
  95. 95.
    Miettinen K, Pollier J, Buyst D, Arendt P, Csuk R, et al. 2017.. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. . Nat. Commun. 8::14153
    [Crossref] [Google Scholar]
  96. 96.
    Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, et al. 2017.. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. . Nat. Plants 3::16207
    [Crossref] [Google Scholar]
  97. 97.
    Moghe GD, Leong BJ, Hurney SM, Jones AD, Last RL. 2017.. Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. . eLife 6::e28468
    [Crossref] [Google Scholar]
  98. 98.
    Moore BD, Andrew RL, Külheim C, Foley WJ. 2014.. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. . New Phytol. 201::73350
    [Crossref] [Google Scholar]
  99. 99.
    Mylona P, Owatworakit A, Papadopoulou K, Jenner H, Qin B, et al. 2008.. Sad3 and Sad4 are required for saponin biosynthesis and root development in oat. . Plant Cell 20::20112
    [Crossref] [Google Scholar]
  100. 100.
    Naoumkina MA, Modolo LV, Huhman DV, Urbanczyk-Wochniak E, Tang Y, et al. 2010.. Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula. . Plant Cell 22::85066
    [Crossref] [Google Scholar]
  101. 101.
    Nett RS, Lau W, Sattely ES. 2020.. Discovery and engineering of colchicine alkaloid biosynthesis. . Nature 584::14853
    [Crossref] [Google Scholar]
  102. 102.
    Nguyen TH, Thiers L, Van Moerkercke A, Bai Y, Fernández-Calvo P, et al. 2023.. A redundant transcription factor network steers spatiotemporal Arabidopsis triterpene synthesis. . Nat. Plants 9::92637
    [Crossref] [Google Scholar]
  103. 103.
    Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jørgensen ME, et al. 2012.. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. . Nature 488::53134
    [Crossref] [Google Scholar]
  104. 104.
    Ohnmeiss TE, Baldwin IT. 2000.. Optimal defense theory predicts the ontogeny of an induced nicotine defense. . Ecology 81::176583
    [Crossref] [Google Scholar]
  105. 105.
    Owen C, Patron NJ, Huang A, Osbourn A. 2017.. Harnessing plant metabolic diversity. . Curr. Opin. Chem. Biol. 40::2430
    [Crossref] [Google Scholar]
  106. 106.
    Patron NJ. 2020.. Beyond natural: synthetic expansions of botanical form and function. . New Phytol. 227::295310
    [Crossref] [Google Scholar]
  107. 107.
    Pelser PB, de Vos H, Theuring C, Beuerle T, Vrieling K, Hartmann T. 2005.. Frequent gain and loss of pyrrolizidine alkaloids in the evolution of Senecio section Jacobaea (Asteraceae). . Phytochemistry 66::128595
    [Crossref] [Google Scholar]
  108. 108.
    Platt JR. 1964.. Strong inference: Certain systematic methods of scientific thinking may produce much more rapid progress than others. . Science 146::34753
    [Crossref] [Google Scholar]
  109. 109.
    Rajniak J, Barco B, Clay NK, Sattely ES. 2015.. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence. . Nature 525::37679 109. Reengineering an unexpected cyanogenic Arabidopsis pathway into yeast and tobacco reveals biochemical and antipathogen functions.
    [Crossref] [Google Scholar]
  110. 110.
    Ranawaka B, An J, Lorenc MT, Jung H, Sulli M, et al. 2023.. A multi-omic Nicotiana benthamiana resource for fundamental research and biotechnology. . Nat. Plants 9::155871
    [Crossref] [Google Scholar]
  111. 111.
    Ray R, Halitschke R, Gase K, Leddy SM, Schuman MC, et al. 2023.. A persistent major mutation in canonical jasmonate signaling is embedded in an herbivory-elicited gene network. . PNAS 2023::e2308500120
    [Crossref] [Google Scholar]
  112. 112.
    Reed J, Orme A, El-Demerdash A, Owen C, Martin LB, et al. 2023.. Elucidation of the pathway for biosynthesis of saponin adjuvants from the soapbark tree. . Science 379::125264
    [Crossref] [Google Scholar]
  113. 113.
    Reed J, Stephenson MJ, Miettinen K, Brouwer B, Leveau A, et al. 2017.. A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. . Metab. Eng. 42::18593 113. Transient transfection of N. benthamiana was used to produce gram quantities of structurally diverse triterpenes.
    [Crossref] [Google Scholar]
  114. 114.
    Rhoades DF. 1979.. Evolution of plant chemical defenses against herbivores. . In Herbivores: Their Interactions with Secondary Plant Metabolites, ed. GA Rosenthal, DH Janzen , pp. 354. New York:: Academic
    [Google Scholar]
  115. 115.
    Rhoades DF, Cates RG. 1976.. Toward a general theory of plant antiherbivore chemistry. . Recent Adv. Phytochem. 10::168213
    [Google Scholar]
  116. 116.
    Richards LA, Dyer LA, Forister ML, Smilanich AM, Dodson CD, et al. 2015.. Phytochemical diversity drives plant–insect community diversity. . PNAS 112::1097378
    [Crossref] [Google Scholar]
  117. 117.
    Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. 2019.. Identification of bioactive metabolites using activity metabolomics. . Nat. Rev. Mol. Cell Biol. 20::35367
    [Crossref] [Google Scholar]
  118. 118.
    Rosenthal G. 2012.. Plant Nonprotein Amino and Imino Acids: Biological, Biochemical, and Toxicological Properties. Amsterdam:: Elsevier
    [Google Scholar]
  119. 119.
    Schenck CA, Anthony TM, Jacobs M, Jones AD, Last RL. 2022.. Natural variation meets synthetic biology: promiscuous trichome-expressed acyltransferases from Nicotiana. . Plant Physiol. 190::14664
    [Crossref] [Google Scholar]
  120. 120.
    Schuman MC. 2023.. Where, when, and why do plant volatiles mediate ecological signaling? The answer is blowing in the wind. . Annu. Rev. Plant Biol. 74::60933
    [Crossref] [Google Scholar]
  121. 121.
    Schuman MC, Allmann S, Baldwin IT. 2015.. Plant defense phenotypes determine the consequences of volatile emission for individuals and neighbors. . eLife 4::e04490
    [Crossref] [Google Scholar]
  122. 122.
    Schuman MC, Baldwin IT. 2016.. The layers of plant responses to insect herbivores. . Annu. Rev. Entomol. 61::37394
    [Crossref] [Google Scholar]
  123. 123.
    Schuman MC, Baldwin IT. 2018.. Field studies reveal functions of chemical mediators in plant interactions. . Chem. Soc. Rev. 47::533853
    [Crossref] [Google Scholar]
  124. 124.
    Schuman MC, Barthel K, Baldwin IT. 2012.. Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. . eLife 1::e00007
    [Crossref] [Google Scholar]
  125. 125.
    Sears MK, Hellmich RL, Stanley-Horn DE, Oberhauser KS, Pleasants JM, et al. 2001.. Impact of Bt corn pollen on monarch butterfly populations: a risk assessment. . PNAS 98::1193742
    [Crossref] [Google Scholar]
  126. 126.
    Sherman PW. 1988.. The levels of analysis. . Anim. Behav. 36::61619
    [Crossref] [Google Scholar]
  127. 127.
    Simpson JP, Wunderlich C, Li X, Svedin E, Dilkes B, Chapple C. 2021.. Metabolic source isotopic pair labeling and genome-wide association are complementary tools for the identification of metabolite–gene associations in plants. . Plant Cell 33::492510
    [Crossref] [Google Scholar]
  128. 128.
    Sirirungruang S, Markel K, Shih PM. 2022.. Plant-based engineering for production of high-valued natural products. . Nat. Prod. Rep. 39::1492509
    [Crossref] [Google Scholar]
  129. 129.
    Srinivasan P, Smolke CD. 2020.. Biosynthesis of medicinal tropane alkaloids in yeast. . Nature 585::61419 129. Expresses 20 proteins in yeast across 6 subcellular locations to produce tropane alkaloids, scopolamine, and hyoscyamine.
    [Crossref] [Google Scholar]
  130. 130.
    Stamp N. 2003.. Out of the quagmire of plant defense hypotheses. . Q. Rev. Biol. 78::2355
    [Crossref] [Google Scholar]
  131. 131.
    Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT. 2004.. Nicotine's defensive function in nature. . PLOS Biol. 2::e217
    [Crossref] [Google Scholar]
  132. 132.
    Stork WF, Weinhold A, Baldwin IT. 2011.. Trichomes as dangerous lollipops: Do lizards also use caterpillar body and frass odor to optimize their foraging?. Plant Signal. Behav. 6::189396
    [Crossref] [Google Scholar]
  133. 133.
    Strauss SY, Rudgers JA, Lau JA, Irwin RE. 2002.. Direct and ecological costs of resistance to herbivory. . Trends Ecol. Evol. 17::27885
    [Crossref] [Google Scholar]
  134. 134.
    Teale WD, Pasternak T, Dal Bosco C, Dovzhenko A, Kratzat K, et al. 2021.. Flavonol-mediated stabilization of PIN efflux complexes regulates polar auxin transport. . EMBO J. 40::e104416
    [Crossref] [Google Scholar]
  135. 135.
    Thimmappa R, Geisler K, Louveau T, O'Maille P, Osbourn A. 2014.. Triterpene biosynthesis in plants. . Annu. Rev. Plant Biol. 65::22557
    [Crossref] [Google Scholar]
  136. 136.
    Trigiano RN, Gray DJ. 2016.. Plant Tissue Culture, Development, and Biotechnology. Boca Raton, FL:: CRC Press
    [Google Scholar]
  137. 137.
    von Poser GL, Toffoli ME, Sobral M, Henriques AT. 1997.. Iridoid glucosides substitution patterns in Verbenaceae and their taxonomic implication. . Plant Syst. Evol. 205::26587
    [Crossref] [Google Scholar]
  138. 138.
    Waldbauer G. 1988.. Aposematism and Batesian mimicry: measuring mimetic advantage in natural habitats. . Evol. Biol. 22::22759
    [Crossref] [Google Scholar]
  139. 139.
    Wei Z, Gu Y, Friman V-P, Kowalchuk GA, Xu Y, et al. 2019.. Initial soil microbiome composition and functioning predetermine future plant health. . Sci. Adv. 5::eaaw0759
    [Crossref] [Google Scholar]
  140. 140.
    Weinhold A, Baldwin IT. 2011.. Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. . PNAS 108::785559
    [Crossref] [Google Scholar]
  141. 141.
    Weng J-K, Philippe RN, Noel JP. 2012.. The rise of chemodiversity in plants. . Science 336::166770
    [Crossref] [Google Scholar]
  142. 142.
    Whitehead SR, Bass E, Corrigan A, Kessler A, Poveda K. 2021.. Interaction diversity explains the maintenance of phytochemical diversity. . Ecol. Lett. 24::120514
    [Crossref] [Google Scholar]
  143. 143.
    Wink M, Carey DB. 1994.. Variability of quinolizidine alkaloid profiles of Lupinus argentous (Fabaceae) from North America. . Biochem. Syst. Ecol. 22::66369
    [Crossref] [Google Scholar]
  144. 144.
    Wu S, Ma X, Zhou A, Valenzuela A, Zhou K, Li Y. 2021.. Establishment of strigolactone-producing bacterium-yeast consortium. . Sci. Adv. 7::eabh4048 144. Uses an innovative E. coliS. cerevisiae consortium to synthesize various strigolactone phytohormones and precursors.
    [Crossref] [Google Scholar]
  145. 145.
    Xu S, Brockmöller T, Navarro-Quezada A, Kuhl H, Gase K, et al. 2017.. Wild tobacco genomes reveal the evolution of nicotine biosynthesis. . PNAS 114::613338
    [Crossref] [Google Scholar]
  146. 146.
    Yang C, Bai Y, Halitschke R, Gase K, Baldwin G, Baldwin IT. 2023.. Exploring the metabolic basis of growth/defense trade-offs in complex environments with Nicotiana attenuata plants cosilenced in NaMYC2a/b expression. . New Phytol. 238::34966
    [Crossref] [Google Scholar]
  147. 147.
    Yong J, Zhang R, Bi S, Li P, Sun L, et al. 2021.. Sheet-like clay nanoparticles deliver RNA into developing pollen to efficiently silence a target gene. . Plant Physiol. 187::88699
    [Crossref] [Google Scholar]
  148. 148.
    Zavala JA, Patankar AG, Gase K, Hui D, Baldwin IT. 2004.. Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuata demonstrates their function as antiherbivore defenses. . Plant Physiol. 134::118190
    [Crossref] [Google Scholar]
  149. 149.
    Zhao F, Bai P, Liu T, Li D, Zhang X, et al. 2016.. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae. . Biotechnol. Bioeng. 113::178795
    [Crossref] [Google Scholar]
  150. 150.
    Zhong Y, Xun W, Wang X, Tian S, Zhang Y, et al. 2022.. Root-secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness. . Nat. Plants 8::88796
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-060223-013842
Loading
/content/journals/10.1146/annurev-arplant-060223-013842
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error