1932

Abstract

B vitamins are a source of coenzymes for a vast array of enzyme reactions, particularly those of metabolism. As metabolism is the basis of decisions that drive maintenance, growth, and development, B vitamin–derived coenzymes are key components that facilitate these processes. For over a century, we have known about these essential compounds and have elucidated their pathways of biosynthesis, repair, salvage, and degradation in numerous organisms. Only now are we beginning to understand their importance for regulatory processes, which are becoming an important topic in plants. Here, I highlight and discuss emerging evidence on how B vitamins are integrated into vital processes, from energy generation and nutrition to gene expression, and thereby contribute to the coordination of growth and developmental programs, particularly those that concern maintenance of a stable state, which is the foundational tenet of plant homeostasis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-060223-025336
2024-07-22
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-060223-025336.html?itemId=/content/journals/10.1146/annurev-arplant-060223-025336&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ahn IP, Kim S, Lee YH. 2007.. Vitamin B1 functions as an activator of plant disease resistance. . Plant Physiol. 138::150515
    [Crossref] [Google Scholar]
  2. 2.
    Ahn IP, Kim S, Lee YH, Suh SC. 2007.. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. . Plant Physiol. 143::83848
    [Crossref] [Google Scholar]
  3. 3.
    Anderson LN, Koech PK, Plymale AE, Landorf EV, Konopka A, et al. 2016.. Live cell discovery of microbial vitamin transport and enzyme-cofactor interactions. . ACS Chem. Biol. 11::34554
    [Crossref] [Google Scholar]
  4. 4.
    Aroca A, Schneider M, Scheibe R, Gotor C, Romero LC. 2017.. Hydrogen sulfide regulates the cytosolic/nuclear partitioning of glyceraldehyde-3-phosphate dehydrogenase by enhancing its nuclear localization. . Plant Cell Physiol. 58::98392
    [Crossref] [Google Scholar]
  5. 5.
    Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, et al. 2015.. Functional overlap of the Arabidopsis leaf and root microbiota. . Nature 528::36469
    [Crossref] [Google Scholar]
  6. 6.
    Balcke GU, Bennewitz S, Bergau N, Athmer B, Henning A, et al. 2017.. Multi-omics of tomato glandular trichomes reveals distinct features of central carbon metabolism supporting high productivity of specialized metabolites. . Plant Cell 29::96083
    [Crossref] [Google Scholar]
  7. 7.
    Basse AL, Nielsen KN, Karavaeva I, Ingerslev LR, Ma T, et al. 2023.. NAMPT-dependent NAD+ biosynthesis controls circadian metabolism in a tissue-specific manner. . PNAS 120::e2220102120
    [Crossref] [Google Scholar]
  8. 8.
    Bathe U, Leong BJ, McCarty DR, Henry CS, Abraham PE, et al. 2021.. The moderately (d)efficient enzyme: catalysis-related damage in vivo and its repair. . Biochemistry 60::355565
    [Crossref] [Google Scholar]
  9. 9.
    Bathe U, Leong BJ, Van Gelder K, Barbier GG, Henry CS, et al. 2023.. Respiratory energy demands and scope for demand expansion and destruction. . Plant Physiol. 191::2093103 9. Gives perspectives on improving energy through savings in respiration.
    [Crossref] [Google Scholar]
  10. 10.
    Belt K, Van Aken O, Murcha M, Millar AH, Huang S. 2018.. An assembly factor promotes assembly of flavinated SDH1 into the succinate dehydrogenase complex. . Plant Physiol. 177::143952
    [Crossref] [Google Scholar]
  11. 11.
    Bender DA. 2003.. Nutritional Biochemistry of the Vitamins. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  12. 12.
    Blancquaert D, Van Daele J, Strobbe S, Kiekens F, Storozhenko S, et al. 2015.. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. . Nat. Biotechnol. 33::107678
    [Crossref] [Google Scholar]
  13. 13.
    Bocobza S, Adato A, Mandel T, Shapira M, Nudler E, Aharoni A. 2007.. Riboswitch-dependent gene regulation and its evolution in the plant kingdom. . Genes Dev. 21::287479
    [Crossref] [Google Scholar]
  14. 14.
    Bocobza SE, Aharoni A. 2008.. Switching the light on plant riboswitches. . Trends Plant Sci. 13::52633
    [Crossref] [Google Scholar]
  15. 15.
    Bocobza SE, Malitsky S, Araújo WL, Nunes-Nesi A, Meir S, et al. 2013.. Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis. . Plant Cell 25::288307
    [Crossref] [Google Scholar]
  16. 16.
    Boukouris AE, Zervopoulos SD, Michelakis ED. 2016.. Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. . Trends Biochem. Sci. 41::71230 16. Review of possibilities of (animal) metabolic enzymes to influence transcription by circumstantial movement to the nucleus.
    [Crossref] [Google Scholar]
  17. 17.
    Cantwell-Jones A, Ball J, Collar D, Diazgranados M, Douglas R, et al. 2022.. Global plant diversity as a reservoir of micronutrients for humanity. . Nat. Plants 8::22532 17. Presentation of potentially vitamin B–rich edible plants that can be exploited for food.
    [Crossref] [Google Scholar]
  18. 18.
    Castello A, Hentze MW, Preiss T. 2015.. Metabolic enzymes enjoying new partnerships as RNA-binding proteins. . Trends Endocrinol. Metab. 26::74657
    [Crossref] [Google Scholar]
  19. 19.
    Castello A, Horos R, Strein C, Fischer B, Eichelbaum K, et al. 2013.. System-wide identification of RNA-binding proteins by interactome capture. . Nat. Protoc. 8::491500
    [Crossref] [Google Scholar]
  20. 20.
    Chatterjee A, Abeydeera ND, Bale S, Pai P-J, Dorrestein PC, et al. 2011.. Saccharomyces cerevisiae THI4p is a suicide thiamine thiazole synthase. . Nature 478::54246
    [Crossref] [Google Scholar]
  21. 21.
    Christensen CD, Hofmeyr J-HS, Rohwer JM. 2015.. Tracing regulatory routes in metabolism using generalised supply-demand analysis. . BMC Syst. Biol. 9::89
    [Crossref] [Google Scholar]
  22. 22.
    Colinas M, Eisenhut M, Tohge T, Pesquera M, Fernie AR, et al. 2016.. Balancing of B6 vitamers is essential for plant development and metabolism in Arabidopsis. . Plant Cell 28::43953
    [Crossref] [Google Scholar]
  23. 23.
    Colinas M, Fitzpatrick TB. 2022.. Coenzymes and the primary and specialized metabolism interface. . Curr. Opin. Plant Biol. 66::102170
    [Crossref] [Google Scholar]
  24. 24.
    Colinas M, Goossens A. 2018.. Combinatorial transcriptional control of plant specialized metabolism. . Trends Plant Sci. 23::32436
    [Crossref] [Google Scholar]
  25. 25.
    Colinas M, Shaw HV, Loubéry S, Kaufmann M, Moulin M, Fitzpatrick TB. 2014.. A pathway for repair of NAD(P)H in plants. . J. Biol. Chem. 289::14692706
    [Crossref] [Google Scholar]
  26. 26.
    Croft MT, Moulin M, Webb ME, Smith AG. 2007.. Thiamine biosynthesis in algae is regulated by riboswitches. . PNAS 104::2077075
    [Crossref] [Google Scholar]
  27. 27.
    De Lepeleire J, Strobbe S, Verstraete J, Blancquaert D, Ambach L, et al. 2018.. Folate biofortification of potato by tuber-specific expression of four folate biosynthesis genes. . Mol. Plant 11::17588
    [Crossref] [Google Scholar]
  28. 28.
    Dell'Aglio E, Boycheva S, Fitzpatrick TB. 2017.. The pseudoenzyme PDX1.2 sustains vitamin B6 biosynthesis as a function of heat stress. . Plant Physiol. 174::2098112
    [Crossref] [Google Scholar]
  29. 29.
    Díaz de la Garza RI, Gregory JF 3rd, Hanson AD. 2007.. Folate biofortification of tomato fruit. . PNAS 104::421822
    [Crossref] [Google Scholar]
  30. 30.
    Dong W, Thomas N, Ronald PC, Goyer A. 2016.. Overexpression of thiamin biosynthesis genes in rice increases leaf and unpolished grain thiamin content but not resistance to Xanthomonas oryzae pv. . Oryzae. Front. Plant Sci. 7::616
    [Google Scholar]
  31. 31.
    Eggers R, Jammer A, Jha S, Kerschbaumer B, Lahham M, et al. 2021.. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. . Phytochemistry 189::112822
    [Crossref] [Google Scholar]
  32. 32.
    Erb M, Kliebenstein DJ. 2020.. Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. . Plant Physiol. 184::3952
    [Crossref] [Google Scholar]
  33. 33.
    Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. 2014.. Quantitative flux analysis reveals folate-dependent NADPH production. . Nature 510::298302
    [Crossref] [Google Scholar]
  34. 34.
    Fitzpatrick TB, Basset GJ, Borel P, Carrari F, DellaPenna D, et al. 2012.. Vitamin deficiencies in humans: Can plant science help?. Plant Cell 24::395414
    [Crossref] [Google Scholar]
  35. 35.
    Fitzpatrick TB, Chapman LM. 2020.. The importance of thiamine (vitamin B1) in plant health: from crop yield to biofortification. . J. Biol. Chem. 295::1200213
    [Crossref] [Google Scholar]
  36. 36.
    Fitzpatrick TB, Noordally Z. 2021.. Of clocks and coenzymes in plants: intimately connected cycles guiding central metabolism?. New Phytol. 230::41632
    [Crossref] [Google Scholar]
  37. 37.
    Funk C. 1912.. The etiology of the deficiency diseases. . J. State Med. 20::34168
    [Google Scholar]
  38. 38.
    Fux A, Pfanzelt M, Kirsch VC, Hoegl A, Sieber SA. 2019.. Customizing functionalized cofactor mimics to study the human pyridoxal 5′-phosphate-binding proteome. . Cell Chem. Biol. 26::146168 38. Presents technology to probe the coenzyme status of enzymes that can potentially be translated to other species.
    [Crossref] [Google Scholar]
  39. 39.
    García-García JD, Joshi J, Patterson JA, Trujillo-Rodriguez L, Reisch CR, et al. 2020.. Potential for applying continuous directed evolution to plant enzymes: an exploratory study. . Life 10::179
    [Crossref] [Google Scholar]
  40. 40.
    Gelder KV, Oliveira-Filho ER, García-García JD, Hu Y, Bruner SD, Hanson AD. 2023.. Directed evolution of aerotolerance in sulfide-dependent thiazole synthases. . ACS Synth. Biol. 12::96370 40. Study showcasing the potential of synthetic biology to evolve enzymes for improved performance.
    [Crossref] [Google Scholar]
  41. 41.
    Gerdes S, Lerma-Ortiz C, Frelin O, Seaver SM, Henry CS, et al. 2012.. Plant B vitamin pathways and their compartmentation: a guide for the perplexed. . J. Exp. Bot. 63::537995
    [Crossref] [Google Scholar]
  42. 42.
    Giardina G, Brunotti P, Fiascarelli A, Cicalini A, Costa MGS, et al. 2015.. How pyridoxal 5′-phosphate differentially regulates human cytosolic and mitochondrial serine hydroxymethyltransferase oligomeric state. . FEBS J. 282::122541
    [Crossref] [Google Scholar]
  43. 43.
    Gionfriddo M, Rhodes T, Whitney SM. 2024.. Perspectives on improving crop Rubisco by directed evolution. . Semin. Cell Dev. Biol. 155::3747
    [Crossref] [Google Scholar]
  44. 44.
    Gojon A, Cassan O, Bach L, Lejay L, Martin A. 2023.. The decline of plant mineral nutrition under rising CO2: physiological and molecular aspects of a bad deal. . Trends Plant Sci. 28::18598
    [Crossref] [Google Scholar]
  45. 45.
    González B, Vera P. 2019.. Folate metabolism interferes with plant immunity through 1C methionine synthase-directed genome-wide DNA methylation enhancement. . Mol. Plant 12::122742
    [Crossref] [Google Scholar]
  46. 46.
    Gorelova V, De Lepeleire J, Van Daele J, Pluim D, Meï C, et al. 2017.. Dihydrofolate reductase/thymidylate synthase fine-tunes the folate status and controls redox homeostasis in plants. . Plant Cell 29::283153
    [Crossref] [Google Scholar]
  47. 47.
    Goyer A, Hasnain G, Frelin O, Ralat MA, Gregory JF 3rd, Hanson AD. 2013.. A cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism. . Biochem. J. 454::53342
    [Crossref] [Google Scholar]
  48. 48.
    Goyer A, Sweek K. 2011.. Genetic diversity of thiamin and folate in primitive cultivated and wild potato (Solanum) species. . J. Agric. Food Chem. 59::1307280
    [Crossref] [Google Scholar]
  49. 49.
    Guiducci G, Paone A, Tramonti A, Giardina G, Rinaldo S, et al. 2019.. The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. . Nucleic Acids Res. 47::424054
    [Crossref] [Google Scholar]
  50. 50.
    Hanson AD, Amthor JS, Sun J, Niehaus TD, Gregory JF 3rd, et al. 2018.. Redesigning thiamin synthesis: prospects and potential payoffs. . Plant Sci. 273::9299
    [Crossref] [Google Scholar]
  51. 51.
    Hanson AD, Beaudoin GA, McCarty DR, Gregory JF 3rd. 2016.. Does abiotic stress cause functional B vitamin deficiency in plants?. Plant Physiol. 172::208297
    [Crossref] [Google Scholar]
  52. 52.
    Hanson AD, McCarty DR, Henry CS, Xian X, Joshi J, et al. 2021.. The number of catalytic cycles in an enzyme's lifetime and why it matters to metabolic engineering. . PNAS 118::e2023348118
    [Crossref] [Google Scholar]
  53. 53.
    Hartl J, Kiefer P, Meyer F, Vorholt JA. 2017.. Longevity of major coenzymes allows minimal de novo synthesis in microorganisms. . Nat. Microbiol. 2::17073
    [Crossref] [Google Scholar]
  54. 54.
    Hentze MW, Preiss T. 2010.. The REM phase of gene regulation. . Trends Biochem. Sci. 35::42326
    [Crossref] [Google Scholar]
  55. 55.
    Hesami M, Alizadeh M, Jones AMP, Torkamaneh D. 2022.. Machine learning: its challenges and opportunities in plant system biology. . Appl. Microbiol. Biotechnol. 106::350730
    [Crossref] [Google Scholar]
  56. 56.
    Hoegl A, Nodwell MB, Kirsch VC, Bach NC, Pfanzelt M, et al. 2018.. Mining the cellular inventory of pyridoxal phosphate-dependent enzymes with functionalized cofactor mimics. . Nat. Chem. 10::123445
    [Crossref] [Google Scholar]
  57. 57.
    Holtgrefe S, Gohlke J, Starmann J, Druce S, Klocke S, et al. 2008.. Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications. . Physiol. Plant. 133::21128
    [Crossref] [Google Scholar]
  58. 58.
    Huang WK, Ji HL, Gheysen G, Kyndt T. 2016.. Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. . Mol. Plant Pathol. 17::61424
    [Crossref] [Google Scholar]
  59. 59.
    Hunter D, Borelli T, Beltrame DMO, Oliveira CNS, Coradin L, et al. 2019.. The potential of neglected and underutilized species for improving diets and nutrition. . Planta 250::70929
    [Crossref] [Google Scholar]
  60. 60.
    Jia A, Huang S, Ma S, Chang X, Han Z, Chai J. 2023.. TIR-catalyzed nucleotide signaling molecules in plant defense. . Curr. Opin. Plant Biol. 73::102334
    [Crossref] [Google Scholar]
  61. 61.
    Joshi J, Beaudoin GAW, Patterson JA, García-García JD, Belisle CE, et al. 2020.. Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s. . Biochem. J. 477::205569
    [Crossref] [Google Scholar]
  62. 62.
    Joshi J, Folz JS, Gregory JF 3rd, McCarty DR, Fiehn O, Hanson AD. 2019.. Rethinking the PDH bypass and GABA shunt as thiamin-deficiency workarounds. . Plant Physiol. 181::38993
    [Crossref] [Google Scholar]
  63. 63.
    Joshi J, Li Q, García-García JD, Leong BJ, Hu Y, et al. 2021.. Structure and function of aerotolerant, multiple-turnover THI4 thiazole synthases. . Biochem. J. 478::326579
    [Crossref] [Google Scholar]
  64. 64.
    Joshi J, Mimura M, Suzuki M, Wu S, Gregory JF 3rd, et al. 2021.. The thiamin-requiring 3 mutation of Arabidopsis 5-deoxyxylulose-phosphate synthase 1 highlights how the thiamin economy impacts the methylerythritol 4-phosphate pathway. . Front. Plant Sci. 12::721391
    [Crossref] [Google Scholar]
  65. 65.
    Khozaei M, Fisk S, Lawson T, Gibon Y, Sulpice R, et al. 2015.. Overexpression of plastid transketolase in tobacco results in a thiamine auxotrophic phenotype. . Plant Cell 27::43247
    [Crossref] [Google Scholar]
  66. 66.
    Kim JH, Bell LJ, Wang X, Wimalasekera R, Bastos HP, et al. 2021.. Arabidopsis sirtuins and poly(ADP-ribose) polymerases regulate gene expression in the day but do not affect circadian rhythms. . Plant Cell Environ. 44::145167
    [Crossref] [Google Scholar]
  67. 67.
    Kim SC, Guo L, Wang X. 2020.. Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress. . Nat. Commun. 11::3439 67. Study linking a metabolic enzyme with reprogramming of transcription as a function of the environment.
    [Crossref] [Google Scholar]
  68. 68.
    Kim S-C, Yao S, Zhang Q, Wang X. 2022.. Phospholipase Dδ and phosphatidic acid mediate heat-induced nuclear localization of glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. . Plant J. 112::78699
    [Crossref] [Google Scholar]
  69. 69.
    Kisiel A, Krzeminska A, Cembrowska-Lech D, Miller T. 2023.. Data science and plant metabolomics. . Metabolites 13::454
    [Crossref] [Google Scholar]
  70. 70.
    Kramer DM, Evans JR. 2011.. The importance of energy balance in improving photosynthetic productivity. . Plant Physiol. 155::7078
    [Crossref] [Google Scholar]
  71. 71.
    Kruger NJ, von Schaewen A. 2003.. The oxidative pentose phosphate pathway: structure and organisation. . Curr. Opin. Plant Biol. 6::23646
    [Crossref] [Google Scholar]
  72. 72.
    Lerma-Ortiz C, Jeffryes JG, Cooper AJ, Niehaus TD, Thamm AM, et al. 2016.. ‘Nothing of chemistry disappears in biology’: the Top 30 damage-prone endogenous metabolites. . Biochem. Soc. Trans. 44::96171
    [Crossref] [Google Scholar]
  73. 73.
    Levine DC, Hong H, Weidemann BJ, Ramsey KM, Affinati AH, et al. 2020.. NAD+ controls circadian reprogramming through PER2 nuclear translocation to counter aging. . Mol. Cell 78::83549.e7
    [Crossref] [Google Scholar]
  74. 74.
    Li C-L, Wang M, Wu X-M, Chen D-H, Lv H-J, et al. 2016.. THI1, a thiamine thiazole synthase, interacts with Ca2+-dependent protein kinase CPK33 and modulates the S-type anion channels and stomatal closure in Arabidopsis. . Plant Physiol. 17::1090104
    [Crossref] [Google Scholar]
  75. 75.
    Li J, Liu J, Wen WE, Zhang P, Wan Y, et al. 2018.. Genome-wide association mapping of vitamins B1 and B2 in common wheat. . Crop J. 6::26370
    [Crossref] [Google Scholar]
  76. 76.
    Li KT, Moulin M, Mangel N, Albersen M, Verhoeven-Duif NM, et al. 2015.. Increased bioavailable vitamin B6 in field-grown transgenic cassava for dietary sufficiency. . Nat. Biotechnol. 33::102932
    [Google Scholar]
  77. 77.
    Li L, Nelson CJ, Trösch J, Castleden I, Huang S, Millar AH. 2017.. Protein degradation rate in Arabidopsis thaliana leaf growth and development. . Plant Cell 29::20728
    [Crossref] [Google Scholar]
  78. 78.
    Li SL, Rédei GP. 1969.. Thiamine mutants of the crucifer, Arabidopsis. . Biochem. Genet. 3::16370
    [Crossref] [Google Scholar]
  79. 79.
    Li W, Mi X, Jin X, Zhang D, Zhu G, et al. 2022.. Thiamine functions as a key activator for modulating plant health and broad-spectrum tolerance in cotton. . Plant J. 111::37490
    [Crossref] [Google Scholar]
  80. 80.
    Li Y, Luo J, Chen R, Zhou Y, Yu H, et al. 2023.. Folate shapes plant root architecture by affecting auxin distribution. . Plant J. 113::96985
    [Crossref] [Google Scholar]
  81. 81.
    Liang J, Han Q, Tan Y, Ding H, Li J. 2019.. Current advances on structure-function relationships of pyridoxal 5′-phosphate-dependent enzymes. . Front. Mol. Biosci. 6::4
    [Crossref] [Google Scholar]
  82. 82.
    Liang Q, Wang K, Liu X, Riaz B, Jiang L, et al. 2019.. Improved folate accumulation in genetically modified maize and wheat. . J. Exp. Bot. 70::153951
    [Crossref] [Google Scholar]
  83. 83.
    Lichtenthaler HK. 1998.. The stress concept in plants: an introduction. . Ann. N.Y. Acad. Sci. 851::18798
    [Crossref] [Google Scholar]
  84. 84.
    Lindermayr C, Rudolf EE, Durner J, Groth M. 2020.. Interactions between metabolism and chromatin in plant models. . Mol. Metab. 38::100951
    [Crossref] [Google Scholar]
  85. 85.
    Liu J, Zhang X, Deng S, Wang H, Zhao Y. 2022.. Thiamine is required for virulence and survival of Pseudomonas syringae pv. tomato DC3000 on tomatoes. . Front. Microbiol. 13::903258
    [Crossref] [Google Scholar]
  86. 86.
    Liu Z, Farkas P, Wang K, Kohli MO, Fitzpatrick TB. 2022.. B vitamin supply in plants and humans: the importance of vitamer homeostasis. . Plant J. 111::66282
    [Crossref] [Google Scholar]
  87. 87.
    Machado CR, Costa de Oliveira RL, Boiteux S, Praekelt UM, Meacock PA, Menck CFM. 1996.. Thi1, a thiamine biosynthetic gene in Arabidopsis thaliana, complements bacterial defects in DNA repair. . Plant Mol. Biol. 31::58593
    [Crossref] [Google Scholar]
  88. 88.
    Mangel N, Fudge JB, Fitzpatrick TB, Gruissem W, Vanderschuren H. 2017.. Vitamin B1 diversity and characterization of biosynthesis genes in cassava. . J. Exp. Bot. 68::335163
    [Crossref] [Google Scholar]
  89. 89.
    Mangel N, Fudge JB, Gruissem W, Fitzpatrick TB, Vanderschuren H. 2022.. Natural variation in vitamin B1 and vitamin B6 contents in rice germplasm. . Front. Plant Sci. 13::856880
    [Crossref] [Google Scholar]
  90. 90.
    Mangel N, Fudge JB, Li K-T, Wu T-Y, Tohge T, et al. 2019.. Enhancement of vitamin B6 levels in rice expressing Arabidopsis vitamin B6 biosynthesis de novo genes. . Plant J. 99::104765
    [Crossref] [Google Scholar]
  91. 91.
    Martínez-Limón A, Alriquet M, Lang WH, Calloni G, Wittig I, Vabulas RM. 2016.. Recognition of enzymes lacking bound cofactor by protein quality control. . PNAS 113::1215661
    [Crossref] [Google Scholar]
  92. 92.
    Moccand C, Kaufmann M, Fitzpatrick TB. 2011.. It takes two to tango: defining an essential second active site in pyridoxal 5′-phosphate synthase. . PLOS ONE 6::e16042
    [Crossref] [Google Scholar]
  93. 93.
    Molina RS, Rix G, Mengiste AA, Álvarez B, Seo D, et al. 2022.. In vivo hypermutation and continuous evolution. . Nat. Rev. Methods Primers 2::36
    [Crossref] [Google Scholar]
  94. 94.
    Molina-Venegas R, Morales-Castilla I, Rodríguez MÁ. 2023.. Unreliable prediction of B-vitamin source species. . Nat. Plants 9::3133
    [Crossref] [Google Scholar]
  95. 95.
    Murashige T, Skoog F. 1962.. A revised medium for rapid growth and bioassay with tobacco tissue cultures. . Physiol. Plant. 15::47397
    [Crossref] [Google Scholar]
  96. 96.
    Nagaraj R, Sharpley MS, Chi F, Braas D, Zhou Y, et al. 2017.. Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. . Cell 168::21023
    [Crossref] [Google Scholar]
  97. 97.
    Nelson CJ, Alexova R, Jacoby RP, Millar AH. 2014.. Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labeling. . Plant Physiol. 166::91108
    [Crossref] [Google Scholar]
  98. 98.
    Niehaus TD, Richardson LG, Gidda SK, ElBadawi-Sidhu M, Meissen JK, et al. 2014.. Plants utilize a highly conserved system for repair of NADH and NADPH hydrates. . Plant Physiol. 165::5261
    [Crossref] [Google Scholar]
  99. 99.
    Nogués I, Sekula B, Angelaccio S, Grzechowiak M, Tramonti A, et al. 2022.. Arabidopsis thaliana serine hydroxymethyltransferases: functions, structures, and perspectives. . Plant Physiol. Biochem. 187::3749
    [Crossref] [Google Scholar]
  100. 100.
    Noordally Z, Land L, Trichtinger C, Dalvit I, de Meyer M, et al. 2023.. Clock and riboswitch control of THIC in tandem are essential for appropriate gauging of TDP levels under light/dark cycles in Arabidopsis. . iScience 26::106134
    [Crossref] [Google Scholar]
  101. 101.
    Noordally ZB, Trichtinger C, Dalvit I, Hofmann M, Roux C, et al. 2020.. The coenzyme thiamine diphosphate displays a daily rhythm in the Arabidopsis nucleus. . Commun. Biol. 3::209
    [Crossref] [Google Scholar]
  102. 102.
    Piazza I, Kochanowski K, Cappelletti V, Fuhrer T, Noor E, et al. 2018.. A map of protein-metabolite interactions reveals principles of chemical communication. . Cell 172::35872
    [Crossref] [Google Scholar]
  103. 103.
    Pironon S, Cantwell-Jones A, Forest F, Ball J, Diazgranados M, et al. 2023.. Towards an action plan for characterizing food plant diversity. . Nat. Plants 9::3435
    [Crossref] [Google Scholar]
  104. 104.
    Poupin MJ, Ledger T, Roselló-Móra R, González B. 2023.. The Arabidopsis holobiont: a (re)source of insights to understand the amazing world of plant-microbe interactions. . Environ. Microbiome 18::9
    [Crossref] [Google Scholar]
  105. 105.
    Pribat A, Blaby IK, Lara-Núñez A, Jeanguenin L, Fouquet R, et al. 2011.. A 5-formyltetrahydrofolate cycloligase paralog from all domains of life: comparative genomic and experimental evidence for a cryptic role in thiamin metabolism. . Funct. Integr. Genom. 11::46778
    [Crossref] [Google Scholar]
  106. 106.
    Raschke M, Bürkle L, Müller N, Nunes-Nesi A, Fernie AR, et al. 2007.. Vitamin B1 biosynthesis in plants requires the essential iron-sulfur cluster protein, THIC. . PNAS 104::1963742
    [Crossref] [Google Scholar]
  107. 107.
    Ravikumar A, Arzumanyan GA, Obadi MKA, Javanpour AA, Liu CC. 2018.. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. . Cell 175::194657
    [Crossref] [Google Scholar]
  108. 108.
    Robinson B, Sathuvalli V, Bamberg J, Goyer A. 2015.. Exploring folate diversity in wild and primitive potatoes for modern crop improvement. . Genes 6::130014
    [Crossref] [Google Scholar]
  109. 109.
    Rosado-Souza L, Proost S, Moulin M, Bergmann S, Bocobza SE, et al. 2019.. Appropriate thiamin pyrophosphate levels are required for acclimation to changes in photoperiod. . Plant Physiol. 180::18597
    [Crossref] [Google Scholar]
  110. 110.
    Ruszkowski M, Sekula B, Ruszkowska A, Dauter Z. 2018.. Chloroplastic serine hydroxymethyltransferase from Medicago truncatula: a structural characterization. . Front. Plant Sci. 9::584
    [Crossref] [Google Scholar]
  111. 111.
    Ryback B, Bortfeld-Miller M, Vorholt JA. 2022.. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria. . ISME 16::271224 111. Study showcasing that some bacteria forego prototrophy for B vitamin coenzymes when alternative access is available.
    [Crossref] [Google Scholar]
  112. 112.
    Sathiyabama M, Gandhi M, Indhumathi M. 2022.. Suppression of dry root rot disease caused by Rhizoctonia bataticola (Taub.) Butler in chickpea plants by application of thiamine loaded chitosan nanoparticles. . Microb. Pathog. 173::105893
    [Crossref] [Google Scholar]
  113. 113.
    Sauro HM. 2017.. Control and regulation of pathways via negative feedback. . J. R. Soc. Interface 14::20160848
    [Crossref] [Google Scholar]
  114. 114.
    Scherrer T, Mittal N, Janga SC, Gerber AP. 2010.. A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. . PLOS ONE 5::e15499
    [Crossref] [Google Scholar]
  115. 115.
    Schneider T, Dinkins R, Robinson K, Shellhammer J, Meinke DW. 1989.. An embryo-lethal mutant of Arabidopsis thaliana is a biotin auxotroph. . Dev. Biol. 131::16167
    [Crossref] [Google Scholar]
  116. 116.
    Senda T, Senda M, Kimura S, Ishida T. 2009.. Redox control of protein conformation in flavoproteins. . Antioxid. Redox Signal. 11::174166
    [Crossref] [Google Scholar]
  117. 117.
    Shewry PR, Van Schaik F, Ravel C, Charmet G, Rakszegi M, et al. 2011.. Genotype and environment effects on the contents of vitamins B1, B2, B3, and B6 in wheat grain. . J. Agric. Food Chem. 59::1056471
    [Crossref] [Google Scholar]
  118. 118.
    Steensma P, Eisenhut M, Colinas M, Rosado-Souza L, Fernie AR, et al. 2023.. PYRIDOX(AM)INE 5′-PHOSPHATE OXIDASE3 of Arabidopsis thaliana maintains carbon/nitrogen balance in distinct environmental conditions. . Plant Physiol. 193::143355
    [Crossref] [Google Scholar]
  119. 119.
    Strasser RJ. 1988.. A concept for stress and its application in remote sensing. . In Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing, ed. HK Lichtenthaler , pp. 33337. Dordrecht, Neth.:: Kluwer Academic
    [Google Scholar]
  120. 120.
    Strobbe S, Verstraete J, Stove C, Van Der Straeten D. 2021.. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation. . Plant Biotechnol. J. 19::125367
    [Crossref] [Google Scholar]
  121. 121.
    Sun J, Sigler CL, Beaudoin GAW, Joshi J, Patterson JA, et al. 2019.. Parts-prospecting for a high-efficiency thiamin thiazole biosynthesis pathway. . Plant Physiol. 179::95868
    [Crossref] [Google Scholar]
  122. 122.
    Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, et al. 2013.. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. . PNAS 110::2011722
    [Crossref] [Google Scholar]
  123. 123.
    Titiz O, Tambasco-Studart M, Warzych E, Apel K, Amrhein N, et al. 2006.. PDX1 is essential for vitamin B6 biosynthesis, development and stress tolerance in Arabidopsis. . Plant J. 48::93346
    [Crossref] [Google Scholar]
  124. 124.
    Tramonti A, Ghatge MS, Babor JT, Musayev FN, di Salvo ML, et al. 2022.. Characterization of the Escherichia coli pyridoxal 5′-phosphate homeostasis protein (YggS): role of lysine residues in PLP binding and protein stability. . Protein Sci. 31::e4471
    [Crossref] [Google Scholar]
  125. 125.
    Wachter A, Tunc-Ozdemir M, Grove BC, Green PJ, Shintani DK, Breaker RR. 2007.. Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. . Plant Cell 19::343750
    [Crossref] [Google Scholar]
  126. 126.
    Walden M, Tian L, Ross RL, Sykora UM, Byrne DP, et al. 2019.. Metabolic control of BRISC-SHMT2 assembly regulates immune signalling. . Nature 570::19499 126. Study associating protein oligomeric state with alternative protein interaction partners and diverse metabolic outcomes.
    [Crossref] [Google Scholar]
  127. 127.
    Walker BJ, Kramer DM, Fisher N, Fu X. 2020.. Flexibility in the energy balancing network of photosynthesis enables safe operation under changing environmental conditions. . Plants 9::301
    [Crossref] [Google Scholar]
  128. 128.
    Wang Q, Lin C. 2020.. Mechanisms of cryptochrome-mediated photoresponses in plants. . Annu. Rev. Plant Biol. 71::10329
    [Crossref] [Google Scholar]
  129. 129.
    Wang Q, Qin G, Cao M, Chen R, He Y, et al. 2019.. A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. . Nat. Commun. 11::679 129. Study illustrating dynamic control of enzyme activity through alternate occupation by PLP or Pi.
    [Crossref] [Google Scholar]
  130. 130.
    Wang Y, Guo YR, Liu K, Yin Z, Liu R, et al. 2017.. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase. . Nature 552::27377
    [Crossref] [Google Scholar]
  131. 131.
    Webb AAR, Seki M, Satake A, Caldana C. 2019.. Continuous dynamic adjustment of the plant circadian oscillator. . Nat. Commun. 10::550
    [Crossref] [Google Scholar]
  132. 132.
    Wei Z, Sun K, Sandoval FJ, Cross JM, Gordon C, et al. 2013.. Folate polyglutamylation eliminates dependence of activity on enzyme concentration in mitochondrial serine hydroxymethyltransferases from Arabidopsis thaliana. . Arch. Biochem. Biophys. 536::8796
    [Crossref] [Google Scholar]
  133. 133.
    Wilkinson IVL, Pfanzelt M, Sieber SA. 2022.. Functionalised cofactor mimics for interactome discovery and beyond. . Angew. Chem. Int. Ed. Engl. 61::e202201136
    [Crossref] [Google Scholar]
  134. 134.
    Yazdani M, Zallot R, Tunc-Ozdemir M, de Crécy-Lagard V, Shintani DK, Hanson AD. 2013.. Identification of the thiamin salvage enzyme thiazole kinase in Arabidopsis and maize. . Phytochemistry 94::6873
    [Crossref] [Google Scholar]
  135. 135.
    Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. 2013.. Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties. . Front. Plant Sci. 4::450
    [Crossref] [Google Scholar]
  136. 136.
    Zhai K, Liang D, Li H, Jiao F, Yan B, et al. 2022.. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. . Nature 601::24551
    [Crossref] [Google Scholar]
  137. 137.
    Zhang H, Zhao Y, Zhou D-X. 2017.. Rice NAD+-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes. . Nucleic Acids Res. 45::1224155
    [Crossref] [Google Scholar]
  138. 138.
    Zhang Y, Xu Y, Skaggs TH, Ferreira JFS, Chen X, Sandhu D. 2023.. Plant phase extraction: a method for enhanced discovery of the RNA-binding proteome and its dynamics in plants. . Plant Cell 35::275072
    [Crossref] [Google Scholar]
  139. 139.
    Zhao W, Cheng X, Huang Z, Fan H, Wu H, Ling H-Q. 2011.. Tomato LeTHIC is an Fe-requiring HMP-P synthase involved in thiamine synthesis and regulated by multiple factors. . Plant Cell Physiol. 52::96782
    [Crossref] [Google Scholar]
  140. 140.
    Zhu C, Kobayashi K, Loladze I, Zhu J, Jiang Q, et al. 2018.. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. . Sci. Adv. 4::eaaq1012 140. Study showing the negative impact of increasing CO2 levels on the content of vitamin B and other nutrients.
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-060223-025336
Loading
/content/journals/10.1146/annurev-arplant-060223-025336
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error