1932

Abstract

Crops are plant species that were domesticated starting about 11,000 years ago from several centers of origin, most prominently the Fertile Crescent, East Asia, and Mesoamerica. From their domestication centers, these crops spread across the globe and had to adapt to differing environments as a result of this dispersal. We discuss broad patterns of crop spread, including the early diffusion of crops associated with the rise and spread of agriculture, the later movement via ancient trading networks, and the exchange between the Old and New Worlds over the last ∼550 years after the European colonization of the Americas. We also examine the various genetic mechanisms associated with the evolutionary adaptation of crops to their new environments after dispersal, most prominently seasonal adaptation associated with movement across latitudes, as well as altitudinal, temperature, and other environmental factors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-060223-030954
2024-07-22
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-060223-030954.html?itemId=/content/journals/10.1146/annurev-arplant-060223-030954&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ahmadi N, Ramanantsoanirina A, Santos JD, Frouin J, Radanielina T. 2021.. Evolutionary processes involved in the emergence and expansion of an atypical O. sativa group in Madagascar. . Rice 14::44
    [Crossref] [Google Scholar]
  2. 2.
    Ahn S-M. 2010.. The emergence of rice agriculture in Korea: archaeobotanical perspectives. . Archaeol. Anthropol. Sci. 2::8998
    [Crossref] [Google Scholar]
  3. 3.
    Alam O, Gutaker RM, Wu CC, Hicks KA, Bocinsky K, et al. 2021.. Genome analysis traces regional dispersal of rice in Taiwan and Southeast Asia. . Mol. Biol. Evol. 38::483246
    [Crossref] [Google Scholar]
  4. 4.
    Allaby RG, Stevens C, Lucas L, Maeda O, Fuller DQ. 2017.. Geographic mosaics and changing rates of cereal domestication. . Philos. Trans. R. Soc. B 372::20160429
    [Crossref] [Google Scholar]
  5. 5.
    Ames M, Spooner DM. 2008.. DNA from herbarium specimens settles a controversy about origins of the European potato. . Am. J. Bot. 95::25257
    [Crossref] [Google Scholar]
  6. 6.
    Ammerman AJ, Cavalli-Sforza LL. 1973.. A population model for the diffusion of early farming in Europe. . In The Explanation of Culture Change: Models in Prehistory, ed. C Renfrew , pp. 34357. London:: Duckworth
    [Google Scholar]
  7. 7.
    Ball CR. 1930.. The history of American wheat improvement. . Agric. Hist. 4::4871
    [Google Scholar]
  8. 8.
    Bellucci E, Benazzo A, Xu C, Bitocchi E, Rodriguez M, et al. 2023.. Selection and adaptive introgression guided the complex evolutionary history of the European common bean. . Nat. Commun. 14::1908
    [Crossref] [Google Scholar]
  9. 9.
    Bilinski P, Albert PS, Berg JJ, Birchler JA, Grite MN, et al. 2018.. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. . PLOS Genet. 14::e1007162
    [Crossref] [Google Scholar]
  10. 10.
    Boivin N, Fuller DQ. 2009.. Shell middens, ships and seeds: exploring coastal subsistence, maritime trade and the dispersal of domesticates in and around the ancient Arabian Peninsula. . J. World Prehist. 22::11380
    [Crossref] [Google Scholar]
  11. 11.
    Boivin N, Fuller DQ, Crowther A. 2012.. Old World globalization and the Columbian exchange: comparison and contrast. . World Archaeol. 44::45269
    [Crossref] [Google Scholar]
  12. 12.
    Bradburd GS, Ralph PL. 2019.. Spatial population genetics: It's about time. . Annu. Rev. Ecol. Evol. Syst. 50::42749
    [Crossref] [Google Scholar]
  13. 13.
    Brandenburg J-T, Mary-Huard T, Rigaill G, Hearne SJ, Corti H, et al. 2017.. Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts. . PLOS Genet. 13::e1006666
    [Crossref] [Google Scholar]
  14. 14.
    Brigham AP. 1910.. The development of wheat culture in North America. . Geogr. J. 35::4256
    [Crossref] [Google Scholar]
  15. 15.
    Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown P, et al. 2009.. The genetic architecture of maize flowering time. . Science 325::71418
    [Crossref] [Google Scholar]
  16. 16.
    Burgarella C, Barnaud A, Kane NA, Jankowski F, Scarcelli N, et al. 2019.. Adaptive introgression: an untapped evolutionary mechanism for crop adaptation. . Front. Plant Sci. 10::4
    [Crossref] [Google Scholar]
  17. 17.
    Burgarella C, Berger A, Glémin S, David J, Terrier N, et al. 2021.. The road to sorghum domestication: evidence from nucleotide diversity and gene expression patterns. . Front. Plant Sci. 12::666075
    [Crossref] [Google Scholar]
  18. 18.
    Burgarella C, Cubry P, Kane NA, Varshney RK, Mariac C, et al. 2018.. A western Sahara centre of domestication inferred from pearl millet genomes. . Nat. Ecol. Evol. 2::137780
    [Crossref] [Google Scholar]
  19. 19.
    Carney JA. 2001.. African rice in the Columbian exchange. . J. Afr. Hist. 42::37796
    [Crossref] [Google Scholar]
  20. 20.
    Castelletti S, Tuberosa R, Pindo M, Salvi S. 2014.. A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1. . G3 4::80512
    [Crossref] [Google Scholar]
  21. 21.
    Castillo CC, Fuller DQ, Piper PJ, Bellwood P, Oxenham M. 2018.. Hunter-gatherer specialization in the late Neolithic of southern Vietnam—the case of Rach Nui. . Quat. Int. 489::6379
    [Crossref] [Google Scholar]
  22. 22.
    Chang CW, Fridman E, Mascher M. Himmelbach A, Schmid K. 2022.. Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant. . Heredity 128::10719
    [Crossref] [Google Scholar]
  23. 23.
    Choi JY, Abdulkina LR, Yin J, Chastukhina IB, Lovell JT, et al. 2021.. Natural variation in plant telomere length is associated with flowering time. . Plant Cell 33::111834
    [Crossref] [Google Scholar]
  24. 24.
    Choi JY, Platts AE, Fuller DQ, Hsing YI, Wing RA, et al. 2017.. The rice paradox: multiple origins but single domestication in Asian rice. . Mol. Biol. Evol. 34::96979
    [Google Scholar]
  25. 25.
    Choi JY, Purugganan MD. 2018.. Multiple origin but single domestication led to Oryza sativa. . G3 8::797803
    [Crossref] [Google Scholar]
  26. 26.
    Choi JY, Zaidem M, Gutaker R, Dorph K, Singh RK, Purugganan MD. 2019.. The complex geography of domestication of the African rice Oryza glaberrima. . PLOS Genet. 15::e1007414
    [Crossref] [Google Scholar]
  27. 27.
    Colledge S, Conolly J, Shennan S. 2005.. The evolution of Neolithic farming from SW Asian origins to NW European limits. . Eur. J. Archaeol. 8::13756
    [Crossref] [Google Scholar]
  28. 28.
    Comadran J, Kilian B, Russell J, Ramsay L, Stein N, et al. 2012.. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. . Nat. Genet. 44::138892 28. HvCEN is partly responsible for spring versus winter barley and shows geographic structuring of variants consistent with latitudinal selection.
    [Crossref] [Google Scholar]
  29. 29.
    Contreras-Moreira B, Serrano-Notivoli R, Mohammed NE, Cantalapiedra CP, Beguería S, et al. 2019.. Genetic association with high-resolution climate data reveals selection footprints in the genomes of barley landraces across the Iberian Peninsula. . Mol. Ecol. 28::19942012
    [Crossref] [Google Scholar]
  30. 30.
    Cordell LS. 1997.. Archaeology of the Southwest. San Diego, CA:: Academic
    [Google Scholar]
  31. 31.
    Cornille A, Gladieux P, Smulders MJ, Roldán-Ruiz I, Laurens F, et al. 2012.. New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. . PLOS Genet. 8::e1002703
    [Crossref] [Google Scholar]
  32. 32.
    Coward F, Shennan S, Colledge S, Conolly J, Collard M. 2008.. The spread of Neolithic plant economies from the Near East to northwest Europe: a phylogenetic analysis. . J. Archaeol. Sci. 35::4256
    [Crossref] [Google Scholar]
  33. 33.
    Crawford GW. 2011.. Advances in understanding early agriculture in Japan. . Curr. Anthropol. 52::S33145
    [Crossref] [Google Scholar]
  34. 34.
    Crawford GW, Lee G-A. 2003.. Agricultural origins in the Korean Peninsula. . Antiquity 77::8795
    [Crossref] [Google Scholar]
  35. 35.
    Crawford GW, Underhill A, Zhao Z, Lee G, Feinman G, et al. 2005.. Late Neolithic plant remains from Northern China: preliminary results from Liangchengzhen, Shandong. . Curr. Anthropol. 46::30917
    [Crossref] [Google Scholar]
  36. 36.
    Crosby AW. 2003.. The Columbian Exchange: Biological and Cultural Consequences of 1492. Westport, CT:: Greenwood Publishing
    [Google Scholar]
  37. 37.
    Crowther A, Lucas L, Helm R, Horton M, Shipton C, et al. 2016.. Ancient crops provide first archaeological signature of the westward Austronesian expansion. . PNAS 113::663540
    [Crossref] [Google Scholar]
  38. 38.
    Cuevas HE, Zhou C, Tang H, Khadke PP, Das S, et al. 2016.. The evolution of photoperiod-insensitive flowering in sorghum, a genomic model for panicoid grasses. . Mol. Biol. Evol. 33::241728
    [Crossref] [Google Scholar]
  39. 39.
    da Fonseca RR, Smith BD, Wales N, Cappellini E, Skoglund P, et al. 2015.. The origin and evolution of maize in the Southwestern United States. . Nat. Plants 1::14003
    [Crossref] [Google Scholar]
  40. 40.
    d'Alpoim Guedes J, Bocinsky RK. 2018.. Climate change stimulated agricultural innovation and exchange across Asia. . Sci. Adv. 4::eaar4491
    [Crossref] [Google Scholar]
  41. 41.
    d'Alpoim Guedes J, Lu H, Hein AM, Schmidt AH. 2015.. Early evidence for the use of wheat and barley as staple crops on the margins of the Tibetan Plateau. . PNAS 112::562530
    [Crossref] [Google Scholar]
  42. 42.
    d'Alpoim Guedes J, Manning SW, Bocinsky RK. 2016.. A 5,500-year model of changing crop niches on the Tibetan Plateau. . Curr. Anthropol. 57::51722
    [Crossref] [Google Scholar]
  43. 43.
    Díaz A, Zikhali M, Turner AS, Isaac P, Laurie DA. 2012.. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). . PLOS ONE 7::e33234
    [Crossref] [Google Scholar]
  44. 44.
    Dickau R, Ranere AJ, Cooke RG. 2007.. Starch grain evidence for the preceramic dispersals of maize and root crops into tropical dry and humid forests of Panama. . PNAS 104::365156
    [Crossref] [Google Scholar]
  45. 45.
    Dodson JR, Li X, Zhou X, Zhao K, Sun N, Atahan P. 2013.. Origin and spread of wheat in China. . Quat. Sci. Rev. 72::10811
    [Crossref] [Google Scholar]
  46. 46.
    Dong G, Yang Y, Liu X, Li H, Cui Y, et al. 2018.. Prehistoric trans-continental cultural exchange in the Hexi Corridor, northwest China. . Holocene 28::62128
    [Crossref] [Google Scholar]
  47. 47.
    Dong L, Fang C, Cheng Q, Su T, Kou K, et al. 2021.. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. . Nat. Commun. 12::5445
    [Crossref] [Google Scholar]
  48. 48.
    Du A, Tian W, Wei M, Yan W, He H, et al. 2017.. The DTH8-Hd1 module mediates day-length-dependent regulation of rice flowering. . Mol. Plant 10::94861
    [Crossref] [Google Scholar]
  49. 49.
    Ducrocq DS, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, et al. 2008.. Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. . Genetics 178::243337
    [Crossref] [Google Scholar]
  50. 50.
    Ehret C. 1979.. On the antiquity of agriculture in Ethiopia. . J. Afr. Hist. 20::16177
    [Crossref] [Google Scholar]
  51. 51.
    Estrada O, Breen J, Richards SM, Cooper A. 2018.. Ancient plant DNA in the genomic era. . Nat. Plants 4::39496
    [Crossref] [Google Scholar]
  52. 52.
    Faye JM, Maina F, Hu Z, Fonceka D, Cisse N, et al. 2019.. Genomic signatures of adaptation to Sahelian and Soudanian climates in sorghum landraces of Senegal. . Ecol. Evol. 9::603851
    [Crossref] [Google Scholar]
  53. 53.
    Fernández-Calleja M, Casas AM, Igartua E. 2021.. Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. . Theor. Appl. Genet. 134::186797
    [Crossref] [Google Scholar]
  54. 54.
    Flowers JM, Hazzouri KM, Gros-Balthazard M, Mo Z, Koutroumpa K, et al. 2019.. Cross-species hybridization and the origin of North African date palms. . PNAS 116::165158
    [Crossref] [Google Scholar]
  55. 55.
    Fort J. 2012.. Synthesis between demic and cultural diffusion in the Neolithic transition in Europe. . PNAS 109::1866973
    [Crossref] [Google Scholar]
  56. 56.
    Freitas S, Gazda MA, Rebelo , Muñoz-Pajares AJ, Vila-Viçosa C, et al. 2021.. Pervasive hybridization with local wild relatives in Western European grapevine varieties. . Sci. Adv. 7::eabi8584
    [Crossref] [Google Scholar]
  57. 57.
    Fujino K, Kawahara Y, Shirasawa K. 2022.. Artificial selection in the expansion of rice cultivation. . Theor. Appl. Genet. 135::29199
    [Crossref] [Google Scholar]
  58. 58.
    Fujino K, Obara M, Ikegaya T. 2019.. Establishment of adaptability to the northern-limit of rice production. . Mol. Genet. Genom. 294::72937
    [Crossref] [Google Scholar]
  59. 59.
    Fuller DQ. 2003.. African crops in prehistoric South Asia: a critical review. . In Food, Fuel and Fields: Progress in African Archaeobotany, ed. S Kahlheber, K Neumann, A Butler , pp. 23971. Cologne, Ger.:: Heinrich Barth Institut
    [Google Scholar]
  60. 60.
    Fuller DQ, Lucas L. 2017.. Adapting crops, landscapes, and food choices: patterns in the dispersal of domesticated plants across Eurasia. . In Human Dispersal and Species Movement: From Prehistory to Present, ed. N Boivin, R Crassard, M Petraglia , pp. 30431. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  61. 61.
    Fuller DQ, Qin L. 2009.. Water management and labour in the origins and dispersal of Asian rice. . World Archaeol. 41::88111
    [Crossref] [Google Scholar]
  62. 62.
    Fuller DQ, Qin L, Zheng Y, Zhao Z, Chen X, et al. 2009.. The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze. . Science 323::160710
    [Crossref] [Google Scholar]
  63. 63.
    Fuller DQ, Sato YI, Castillo C, Qin L, Weisskopf A, et al. 2010.. Consilience of genetics and archaeobotany in the entangled history of rice. . Archaeol. Anthropol. Sci. 2::11531
    [Crossref] [Google Scholar]
  64. 64.
    Fuller DQ, van Etten J, Manning K, Castillo C, Kingwell-Banham E, et al. 2011.. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. . Holocene 21::74359
    [Crossref] [Google Scholar]
  65. 65.
    Glaser B. 2007.. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. . Philos. Trans. R. Soc. B 362::18796
    [Crossref] [Google Scholar]
  66. 66.
    Gong Z. 2020.. Flowering phenology as a core domestication trait in soybean. . J. Integr. Plant Biol. 62::54649
    [Crossref] [Google Scholar]
  67. 67.
    Gorbunova NG. 1993.. Traditional movements of nomadic pastoralists and the role of seasonal migrations in the formation of ancient trade routes in central Asia. . Silk Road Art Archaeol. 3::110
    [Google Scholar]
  68. 68.
    Grimaldi IM, Van Andel TR, Denham TP. 2022.. Looking beyond history: tracing the dispersal of the Malaysian complex of crops to Africa. . Amer. J. Bot. 109::193208
    [Crossref] [Google Scholar]
  69. 69.
    Grobman A, Bonavia D, Dillehay TD, Piperno DR, Iriarte J, et al. 2012.. Preceramic maize from Paredones and Huaca Prieta, Peru. . PNAS 109::175559
    [Crossref] [Google Scholar]
  70. 70.
    Groppi A, Liu S, Cornille A, Decroocq S, Bui QT, et al. 2021.. Population genomics of apricots unravels domestication history and adaptive events. . Nat. Commun. 12::3956
    [Crossref] [Google Scholar]
  71. 71.
    Guo H, Zeng Y, Li J, Ma X, Zhang Z, et al. 2020.. Differentiation, evolution and utilization of natural alleles for cold adaptability at the reproductive stage in rice. . Plant Biotechnol. J. 18::2491503
    [Crossref] [Google Scholar]
  72. 72.
    Guo L, Wang X, Zhao M, Huang C, Li C, et al. 2018.. Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation. . Curr. Biol. 28::300515
    [Crossref] [Google Scholar]
  73. 73.
    Guo T, Mu Q, Wang H, Vanous A, Onogi A, et al. 2020.. Dynamic effects of interacting genes underlying rice flowering-time phenotypic plasticity and global adaptation. . Genome Res. 30::67383
    [Crossref] [Google Scholar]
  74. 74.
    Guo W, Xin M, Wang Z, Yao Y, Hu Z, et al. 2020.. Origin and adaptation to high altitude of Tibetan semi-wild wheat. . Nat. Commun. 11::5085
    [Crossref] [Google Scholar]
  75. 75.
    Guo Z, Song Y, Zhou R, Ren Z, Jia J. 2010.. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. . New Phytol. 185::84151
    [Crossref] [Google Scholar]
  76. 76.
    Gutaker RM, Burbano HA. 2017.. Reinforcing plant evolutionary genomics using ancient DNA. . Curr. Opin. Plant Biol. 36::3845
    [Crossref] [Google Scholar]
  77. 77.
    Gutaker RM, Groen SC, Bellis ES, Choi JY, Pires IS, et al. 2020.. Genomic history and ecology of the geographic spread of rice. . Nat. Plants 6::492502 77. A comprehensive genomic study that traces dispersal patterns of rice and the environmental and cultural forces that shaped its genetic diversity.
    [Crossref] [Google Scholar]
  78. 78.
    Gutaker RM, Weiß CL, Ellis D, Anglin NL, Knapp S, et al. 2019.. The origins and adaptation of European potatoes reconstructed from historical genomes. . Nat. Ecol. Evol. 3::1093101
    [Crossref] [Google Scholar]
  79. 79.
    Gutaker RM, Zaidem M, Fu Y-B, Diederichsen A, Smith O, et al. 2019.. Flax latitudinal adaptation at LuTFL1 altered architecture and promoted fiber production. . Sci. Rep. 9::976
    [Crossref] [Google Scholar]
  80. 80.
    Hardigan MA, Laimbeer FPE, Newton L, Crisovan E, Hamilton JP, et al. 2017.. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. . PNAS 114::E999910008
    [Crossref] [Google Scholar]
  81. 81.
    Harris DR. 2011.. Origins of Agriculture in Western Central Asia: An Environmental-Archaeological Study. Philadelphia:: Univ. Pa. Press
    [Google Scholar]
  82. 82.
    Hawkes JG, Francisco-Ortega J. 1993.. The early history of the potato in Europe. . Euphytica 70::17 82. Historical, archival, and botanical analyses led to an almost complete understanding of potato introduction to Europe.
    [Crossref] [Google Scholar]
  83. 83.
    He K, Lu H, Jin G, Wang C, Zhang H, et al. 2022.. Antipodal pattern of millet and rice demography in response to 4.2 ka climate event in China. . Quat. Sci. Rev. 295::107786
    [Crossref] [Google Scholar]
  84. 84.
    Herrscher E, André G, Bodet C, Chataigner C, Decaix A, et al. 2018.. The origins of millet cultivation in the Caucasus: archaeological and archaeometric approaches. . Préhistoires Méditerr. 6::10.4000/pm.1367
    [Google Scholar]
  85. 85.
    Hillman GC. 1975.. The plant remains from Tell Abu Hureyra: a preliminary report. . Proc. Prehist. Soc. 41::7073
    [Google Scholar]
  86. 86.
    Hirano HY, Eiguchi M, Sano Y. 1998.. A single base change altered the regulation of the Waxy gene at the posttranscriptional level during the domestication of rice. . Mol. Biol. Evol. 15::97887
    [Crossref] [Google Scholar]
  87. 87.
    Ho P-T. 1955.. The introduction of American food plants into China. . Amer. Anthro. 57::191201
    [Crossref] [Google Scholar]
  88. 88.
    Hou J, Long Y, Raman H, Zou X, Wang J, et al. 2012.. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). . BMC Plant Biol. 12::238
    [Crossref] [Google Scholar]
  89. 89.
    Hu H, Crow T, Nojoomi S, Schulz AJ, Estévez-Palmas JM, et al. 2022.. Allele-specific expression reveals multiple paths to highland adaptation in maize. . Mol. Biol. Evol. 39::msac239
    [Crossref] [Google Scholar]
  90. 90.
    Huang C, Sun H, Xu D, Chen Q, Liang T, et al. 2018.. ZmCCT9 enhances maize adaptation to higher latitudes. . PNAS 115::E33441 90. Transposon insertions arise sequentially in ZmCCT9 and ZmCCT10 and are selected for maize expansion to temperate latitudes.
    [Google Scholar]
  91. 91.
    Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, et al. 2013.. The genomic signature of crop-wild introgression in maize. . PLOS Genet. 9::e1003477
    [Crossref] [Google Scholar]
  92. 92.
    Hunt HV, Campana MG, Lawes MC, Park Y-J, Bower MA, et al. 2011.. Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. . Mol. Ecol. 20::475671
    [Crossref] [Google Scholar]
  93. 93.
    Hunt HV, Przelomska NAS, Campana MG, Cockram J, Bligh HFJ, et al. 2021.. Population genomic structure of Eurasian and African foxtail millet landrace accessions inferred from genotyping-by-sequencing. . Plant Genome 14::e20081
    [Crossref] [Google Scholar]
  94. 94.
    Hunt HV, Vander Linden M, Liu X, Motuzaite-Matuzeviciute G, Colledge S, Jones MK. 2008.. Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. . Veg. Hist. Archaeobot. 17:(Suppl. 1):518
    [Crossref] [Google Scholar]
  95. 95.
    Igolkina AA, Noujdina NV, Vishnyakova M, Longcore T, von Wettberg E, et al. 2021.. Historical routes for diversification of domesticated chickpea inferred from landrace genomics. . Mol. Biol. Evol. 40:(6):msad110
    [Crossref] [Google Scholar]
  96. 96.
    Itoh H, Wada KC, Sakai H, Shibasaki K, Fukuoka S, et al. 2018.. Genomic adaptation of flowering-time genes during the expansion of rice cultivation area. . Plant J. 94::895909
    [Crossref] [Google Scholar]
  97. 97.
    Jackson SD. 1999.. Multiple signaling pathways control tuber induction in potato. . Plant Physiol. 119::18
    [Crossref] [Google Scholar]
  98. 98.
    Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, et al. 2008.. Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. . Mol. Biol. Evol. 25::221119
    [Crossref] [Google Scholar]
  99. 99.
    Jones M, Hunt H, Lightfoot E, Lister D, Liu X, Motuzaite-Matuzeviciute G. 2011.. Food globalization in prehistory. . World Archaeol. 43::66575
    [Crossref] [Google Scholar]
  100. 100.
    Kahn JG, Rieth TM, Kirch PV, Athens JS, Murakami GM. 2014.. Re-dating of the Kuli‘ou‘ou Rockshelter, O‘ahu, Hawai‘i: Location of the first radiocarbon date from the Pacific Islands. . J. Polyn. Soc. 123::6790
    [Crossref] [Google Scholar]
  101. 101.
    Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H. 2009.. Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. . Plant Physiol. 149::134153
    [Crossref] [Google Scholar]
  102. 102.
    Kistler L, Maezumi SY, de Souza JG, Przelomska NAS, Costa FM, et al. 2018.. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. . Science 362::130913 102. Precise reconstruction of ancient maize dispersal by combining genomic, archaeological, and ethnological knowledge.
    [Crossref] [Google Scholar]
  103. 103.
    Kistler L, Montenegro A, Smith BD, Gifford JA, Green RE, et al. 2014.. Transoceanic drift and the domestication of African bottle gourds in the Americas. . PNAS 111::293741
    [Crossref] [Google Scholar]
  104. 104.
    Kistler L, Thakar HB, VanDerwarker AM, Domic A, Bergström A, et al. 2020.. Archaeological Central American maize genomes suggest ancient gene flow from South America. . PNAS 117::3312429
    [Crossref] [Google Scholar]
  105. 105.
    Klein RR, Miller FR, Dugas DV, Brown PJ, Burrell M, et al. 2015.. Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum. . Theor. Appl. Genet. 128::166983
    [Crossref] [Google Scholar]
  106. 106.
    Kloosterman B, Abelenda JA, Gomez M, Oortwijn M, de Boer JM, et al. 2013. Naturally occurring allele diversity allows potato cultivation in northern latitudes. . Nature 495::24650 106. StCDF1 regulates potato tuberization in response to daylength, and natural hypomorphic/loss-of-function alleles allow for dispersal to northern latitudes.
    [Crossref] [Google Scholar]
  107. 107.
    Kolata AL. 1993.. The Tiwanaku: Portrait of an Andean Civilization. Cambridge, UK:: Wiley-Blackwell
    [Google Scholar]
  108. 108.
    Koo BH, Yoo SC, Park JW, Kwon CT, Lee BD, et al. 2013.. Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. . Mol. Plant 6::187788
    [Crossref] [Google Scholar]
  109. 109.
    Kost MA, Perales H, Wijeratne S, Wijeratne AJ, Stockinger EJ, et al. 2020.. Transcriptional differentiation of UV-B protectant genes in maize landraces spanning an elevational gradient in Chiapas, Mexico. . Evol. Appl. 13::194967
    [Crossref] [Google Scholar]
  110. 110.
    Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, et al. 2015.. Genome-environment associations in sorghum landraces predict adaptive traits. . Sci. Adv. 1::e1400218
    [Crossref] [Google Scholar]
  111. 111.
    Li J, Zeng Y, Pan Y, Zhou L, Zhang Z, et al. 2021.. Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice. . New Phytol. 231::105672
    [Crossref] [Google Scholar]
  112. 112.
    Li X, Fang C, Yang Y, Lv T, Su T, et al. 2021.. Overcoming the genetic compensation response of soybean florigens to improve adaptation and yield at low latitudes. . Curr. Biol. 31::375567
    [Crossref] [Google Scholar]
  113. 113.
    Li XM, Chao DY, Wu Y, Huang X, Chen K, et al. 2015.. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. . Nat. Genet. 47::82733
    [Crossref] [Google Scholar]
  114. 114.
    Lister DL, Jones MK. 2013.. Is naked barley an eastern or a western crop? The combined evidence of archaeobotany and genetics. . Veg. Hist. Archaeobot. 22::43946
    [Crossref] [Google Scholar]
  115. 115.
    Liu H, Li Q, Xing Y. 2018.. Genes contributing to domestication of rice seed traits and its global expansion. . Genes 9::489
    [Crossref] [Google Scholar]
  116. 116.
    Liu H, Zhou X, Li Q, Wang L, Xing Y. 2020.. CCT domain-containing genes in cereal crops: flowering time and beyond. . Theor. Appl. Genetics 133::138596
    [Crossref] [Google Scholar]
  117. 117.
    Liu L, Song W, Wang L, Sun X, Qi Y, et al. 2020.. Allele combinations of maturity genes E1-E4 affect adaptation of soybean to diverse geographic regions and farming systems in China. . PLOS ONE 15::e0235397
    [Crossref] [Google Scholar]
  118. 118.
    Liu X, Jones PJ, Matuzeviciute GM, Hunt HV, Lister DL, et al. 2019.. From ecological opportunism to multi-cropping: mapping food globalisation in prehistory. . Quater. Sci. Rev. 206::2128
    [Crossref] [Google Scholar]
  119. 119.
    Liu X, Lister DL, Zhao Z, Petrie CA, Zeng X, et al. 2017.. Journey to the east: diverse routes and variable flowering times for wheat and barley en route to prehistoric China. . PLOS ONE 12::e0187405
    [Crossref] [Google Scholar]
  120. 120.
    Lombardo U, Iriarte J, Hilbert L, Ruiz-Pérez J, Capriles JM, Veit H. 2020.. Early Holocene crop cultivation and landscape modification in Amazonia. . Nature 581::19093
    [Crossref] [Google Scholar]
  121. 121.
    Lu S, Dong L, Fang C, Liu S, Kong L, et al. 2020.. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. . Nat. Genet. 52::42836
    [Crossref] [Google Scholar]
  122. 122.
    Ma Y, Dai X, Xu Y, Luo W, Zheng X, et al. 2015.. COLD1 confers chilling tolerance in rice. . Cell 160::120921
    [Crossref] [Google Scholar]
  123. 123.
    Maezumi SY, Alves D, Robinson M, de Souza JG, Levis C, et al. 2018.. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. . Nat. Plants 4::54047
    [Crossref] [Google Scholar]
  124. 124.
    Mao D, Xin Y, Tan Y, Hu X, Bai J, et al. 2019.. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. . PNAS 116::3494501
    [Crossref] [Google Scholar]
  125. 125.
    Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J. 2002.. A single domestication for maize shown by multilocus microsatellite genotyping. . PNAS 99::608084
    [Crossref] [Google Scholar]
  126. 126.
    McClatchie M, Bogaard A, Colledge S, Whitehouse NJ, Schulting RJ, et al. 2014.. Neolithic farming in north-western Europe: archaeobotanical evidence from Ireland. . J. Archaeol. Sci. 51::20615
    [Crossref] [Google Scholar]
  127. 127.
    Merrill WL, Hard RJ, Mabry JB, Fritz GJ, Adams KR, et al. 2009.. The diffusion of maize to the southwestern United States and its impact. . PNAS 106::2101926
    [Crossref] [Google Scholar]
  128. 128.
    Meyer RS, Choi JY, Sanches M, Plessis A, Flowers JM, et al. 2016.. Domestication history and geographical adaptation inferred from a SNP map of African rice. . Nat. Genet. 48::108388
    [Crossref] [Google Scholar]
  129. 129.
    Miller NF. 1981.. Plant remains from Ville Royale II, Susa. . Cah. Délég. Archéol. Fr. Iran 12::13742
    [Google Scholar]
  130. 130.
    Miller NF, Spengler RN, Frachetti M. 2016.. Millet cultivation across Eurasia: origins, spread, and the influence of seasonal climate. . Holocene 26::156675
    [Crossref] [Google Scholar]
  131. 131.
    Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T. 2013.. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. . PNAS 110::45358
    [Crossref] [Google Scholar]
  132. 132.
    Motuzaite-Matuzeviciute G, Staff RA, Hunt HV, Liu X. 2013.. The early chronology of broomcorn millet (Panicum miliaceum) in Europe. . Antiquity 87::107385
    [Crossref] [Google Scholar]
  133. 133.
    Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, et al. 2011.. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. . PNAS 108::1646974
    [Crossref] [Google Scholar]
  134. 134.
    Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, et al. 2011.. Genetic structure and domestication history of the grape. . PNAS 108::353035
    [Crossref] [Google Scholar]
  135. 135.
    Nakamichi N. 2015.. Adaptation to the local environment by modifications of the photoperiod response in crops. . Plant Cell Physiol. 56::594604
    [Crossref] [Google Scholar]
  136. 136.
    Newsom L, Wing E. 2004.. On Land and Sea: Native American Uses of Biological Resources in the West Indies. Tuscaloosa:: Univ. Ala. Press
    [Google Scholar]
  137. 137.
    Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B. 2009.. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. . PNAS 106::838691
    [Crossref] [Google Scholar]
  138. 138.
    Olsen KM, Purugganan MD. 2002.. Molecular evidence on the origin and evolution of glutinous rice. . Genetics 162::94150
    [Crossref] [Google Scholar]
  139. 139.
    Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. 2022.. Photoperiod control of plant growth: flowering time genes beyond flowering. . Front. Plant Sci. 12::805635
    [Crossref] [Google Scholar]
  140. 140.
    Pagán-Jiménez JR, Rodríguez-Ramos R, Reid BA, van den Bel M, Hofman CL. 2015.. Early dispersals of maize and other food plants into the Southern Caribbean and Northeastern South America. . Quat. Sci. Rev. 123::23146
    [Crossref] [Google Scholar]
  141. 141.
    Parker TA, Berny Mier y Teran JC, Palkovic A, Jernstedt J, Gepts P. 2020.. Pod indehiscence is a domestication and aridity resilience trait in common bean. . New Phytol. 225::55870
    [Crossref] [Google Scholar]
  142. 142.
    Perry L, Sandweiss DH, Piperno DR, Rademaker K, Malpass MA, et al. 2006.. Early maize agriculture and interzonal interaction in southern Peru. . Nature 440::7679
    [Crossref] [Google Scholar]
  143. 143.
    Piperno DR, Flannery KV. 2001.. The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. . PNAS 98::21013
    [Crossref] [Google Scholar]
  144. 144.
    Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R. 2009.. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. . PNAS 106::501924
    [Crossref] [Google Scholar]
  145. 145.
    Powis TG, Cyphers A, Gaikwad NW, Grivetti L, Cheong K. 2011.. Cacao use and the San Lorenzo Olmec. . PNAS 108::8595600
    [Crossref] [Google Scholar]
  146. 146.
    Purugganan MD. 2019.. Evolutionary insights into the nature of plant domestication. . Curr. Biol. 29::R70514
    [Crossref] [Google Scholar]
  147. 147.
    Purugganan MD, Fuller DQ. 2009.. The nature of selection during plant domestication. . Nature 457::84348
    [Crossref] [Google Scholar]
  148. 148.
    Purugganan MD, Fuller DQ. 2011.. Archaeological data reveal slow rates of evolution during plant domestication. . Evolution 65::17183
    [Crossref] [Google Scholar]
  149. 149.
    Purugganan MD, Jackson SA. 2021.. Advancing crop genomics from lab to field. . Nat. Genet. 53::595601
    [Crossref] [Google Scholar]
  150. 150.
    Reader J. 2009.. The Untold History of the Potato. London:: Vintage
    [Google Scholar]
  151. 151.
    Roullier C, Benoit L, McKey DB, Lebot V. 2013.. Historical collections reveal patterns of diffusion of sweet potato in Oceania obscured by modern plant movements and recombination. . PNAS 110::220510
    [Crossref] [Google Scholar]
  152. 152.
    Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, et al. 2016.. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. . Nat. Genet. 48::102430
    [Crossref] [Google Scholar]
  153. 153.
    Saisho D, Ishii M, Hori K, Sato K. 2011.. Natural variation of barley vernalization requirements: implication of quantitative variation of winter growth habit as an adaptive trait in East Asia. . Plant Cell Physiol. 52::77584
    [Crossref] [Google Scholar]
  154. 154.
    Salley AS. 1919.. The Introduction of rice culture into South Carolina. Bull. Hist. Comm. SC 6 , State Co., Columbia, SC:
    [Google Scholar]
  155. 155.
    Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, et al. 2014.. A reference genome for common bean and genome-wide analysis of dual domestications. . Nat. Genet. 46::70713
    [Crossref] [Google Scholar]
  156. 156.
    Sertse D, You FM, Ravichandran S, Cloutier S. 2019.. The genetic structure of flax illustrates environmental and anthropogenic selections that gave rise to its eco-geographical adaptation. . Mol. Phylogenet. Evol. 137::2232
    [Crossref] [Google Scholar]
  157. 157.
    Shaw LM, Turner AS, Laurie DA. 2012.. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum). . Plant J. 71::7184
    [Crossref] [Google Scholar]
  158. 158.
    Silva F, Stevens CJ, Weisskopf A, Castillo C, Qin L, et al. 2015.. Modelling the geographical origin of rice cultivation in Asia using the Rice Archaeological Database. . PLOS ONE 10::e0137024
    [Crossref] [Google Scholar]
  159. 159.
    Silva F, Weisskopf A, Castillo C, Murphy C, Kingwell-Banham E, et al. 2018.. A tale of two rice varieties: modelling the prehistoric dispersals of japonica and proto-indica rices. . Holocene 28::174558
    [Crossref] [Google Scholar]
  160. 160.
    Smith BD. 1989.. Origins of agriculture in eastern North America. . Science 246::156671
    [Crossref] [Google Scholar]
  161. 161.
    Smith BD. 1997.. the initial domestication of Cucurbita pepo in the Americas 10,000 years ago. . Science 276::93234
    [Crossref] [Google Scholar]
  162. 162.
    Smith BD, Yarnell RA. 2009.. Initial formation of an indigenous crop complex in eastern North America at 3800 B.P.. PNAS 106::656166
    [Crossref] [Google Scholar]
  163. 163.
    Smith O, Nicholson WV, Kistler L, Mace E, Clapham A, et al. 2019.. A domestication history of dynamic adaptation and genomic deterioration in sorghum. . Nat. Plants 5::36979
    [Crossref] [Google Scholar]
  164. 164.
    Spengler RN 3rd. 2019.. Fruit From the Sands: The Silk Road Origins of the Foods We Eat. Berkeley:: Univ. Calif. Press
    [Google Scholar]
  165. 165.
    Spengler RN 3rd, Stark S, Zhou X, Fuks D, Tang L, et al. 2021.. A journey to the west: the ancient dispersal of rice out of East Asia. . Rice 14::83
    [Crossref] [Google Scholar]
  166. 166.
    Stevens CJ, Murphy C, Roberts R, Lucas L, Silva F, Fuller DQ. 2016.. Between China and South Asia: A Middle Asian corridor of crop dispersal and agricultural innovation in the Bronze Age. . Holocene 26::154155 166. Archaeobotany reveals patterns of crop evolution and movement.
    [Crossref] [Google Scholar]
  167. 167.
    Sun C, Chen D, Fang J, Wang P, Deng X, et al. 2014.. Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways. . Protein Cell 5::88998
    [Crossref] [Google Scholar]
  168. 168.
    Swarts K, Gutaker RM, Benz B, Blake M, Bukowski R, et al. 2017.. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. . Science 357::51215
    [Crossref] [Google Scholar]
  169. 169.
    Szucs P, Skinner JS, Karsai I, Cuesta-Marcos A, Haggard KG, et al. 2007.. Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. . Mol. Genet. Genom. 277::24961
    [Crossref] [Google Scholar]
  170. 170.
    Takahashi R, Yasuda S. 1971.. Genetics of earliness and growth habit in barley. . In Barley Genetics II (Proceedings of the Second International Barley Genetics Symposium), ed. RA Nilan , pp. 388408. Pullman, WA:: Wash. State Univ. Press
    [Google Scholar]
  171. 171.
    Taylor W, Shnaider S, Abdykanova A, Fages A, Welker F, et al. 2018.. Early pastoral economies along the ancient Silk Road: biomolecular evidence from the Alay Valley, Kyrgyzstan. . PLOS ONE 13::e0205646
    [Crossref] [Google Scholar]
  172. 172.
    Tenaillon MI, Charcosset A. 2011.. A European perspective on maize history. . Comptes Rendus Biol. 334::22128
    [Crossref] [Google Scholar]
  173. 173.
    Turner A, Beales J, Faure S, Dunford RP, Laurie DA. 2005.. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. . Science 310::103134
    [Crossref] [Google Scholar]
  174. 174.
    Vaillant M. 1948.. Milieu cultural et classification des variétés de riz des Guyanes française et hollandaise. . Rev. Int. Bot. Appl. Agric. Trop. 28::52029
    [Google Scholar]
  175. 175.
    Vallebueno-Estrada M, Hernández-Robles GG, González-Orozco E, López-Valdivia I, Rosales Tham T, et al. 2023.. Domestication and lowland adaptation of coastal preceramic maize from Paredones, Peru. . eLife 12::e83149
    [Crossref] [Google Scholar]
  176. 176.
    Van Andel T. 2010.. African rice (Oryza glaberrima Steud.): lost crop of the enslaved Africans discovered in Suriname. . Econ. Bot. 64::110
    [Crossref] [Google Scholar]
  177. 177.
    van Andel TR, Meyer RS, Aflitos SA, Carney JA, Veltman MA, et al. 2016.. Tracing ancestor rice of Suriname Maroons back to its African origin. . Nat. Plants 2::16149
    [Crossref] [Google Scholar]
  178. 177a.
    van der Maesen LJG. 1972.. Cicer L., a monograph of the genus, with special reference to the chickpea (Cicer arietinum L.), its ecology and cultivation. PhD Diss., Landbouwhogeschool Wageningen, Wageningen, Neth.
  179. 178.
    Vavilov NI. 1922.. The law of homologous series in variation. . J. Genet. 12::4789
    [Crossref] [Google Scholar]
  180. 179.
    Vergara BS, Chang TT. 1985.. The Flowering Response of the Rice Plant to Photoperiod. A Review of the Literature. Los Baños, Philippines:: Int. Rice Res. Inst.
    [Google Scholar]
  181. 180.
    Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sánchez GJ, et al. 2008.. Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. . Am. J. Bot. 95::124053
    [Crossref] [Google Scholar]
  182. 181.
    Wang L, Josephs EB, Lee KM, Roberts LM, Rellán-Álvarez R, et al. 2021.. Molecular parallelism underlies convergent highland adaptation of maize landraces. . Mol. Biol. Evol. 38::356780
    [Crossref] [Google Scholar]
  183. 182.
    Watson AM. 1983.. Agricultural Innovation in the Early Islamic World: The Diffusion of Crops and Farming Techniques, 700–1100. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  184. 183.
    Whitaker AP. 1929.. The Spanish contribution to American agriculture. . Agric. Hist. 3::114
    [Google Scholar]
  185. 184.
    Whitaker TW. 1983.. Cucurbits in Andean prehistory. . Am. Antiq. 48::57685
    [Crossref] [Google Scholar]
  186. 185.
    Wu C-C, Wei F-J, Chiou W-Y, Tsai Y-C, Wu H-P, et al. 2020.. Studies of rice Hd1 haplotypes worldwide reveal adaptation of flowering time to different environments. . PLOS ONE 15::e0239028
    [Crossref] [Google Scholar]
  187. 186.
    Wu J, Wang Y, Xu J, Korban SS, Fei Z, et al. 2018.. Diversification and independent domestication of Asian and European pears. . Genome Biol. 19::77
    [Crossref] [Google Scholar]
  188. 187.
    Wu W, Zheng XM, Lua G, Zhong Z, Gao H, et al. 2013.. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. . PNAS 110::277580
    [Crossref] [Google Scholar]
  189. 188.
    Wu X, Ding B, Zhang B, Feng J, Wang Y, et al. 2019.. Phylogenetic and population structural inference from genomic ancestry maintained in present-day common wheat Chinese landraces. . Plant J. 99::20115
    [Crossref] [Google Scholar]
  190. 189.
    Würschum T, Boeven PH, Langer SM, Longin CF, Leiser WL. 2015.. Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. . BMC Genet. 16::96
    [Crossref] [Google Scholar]
  191. 190.
    Xia H, Luo Z, Xiong J, Ma X, Lou Q, et al. 2019.. Bi-directional selection in upland rice leads to its adaptive differentiation from lowland rice in drought resistance and productivity. . Mol. Plant 12::17084
    [Crossref] [Google Scholar]
  192. 191.
    Xinying Z, Xiaoqiang L, Dodson J, Keliang Z. 2016.. Rapid agricultural transformation in the prehistoric Hexi corridor, China. . Quat. Int. 426::3341
    [Crossref] [Google Scholar]
  193. 192.
    Xu Y, Zhang L, Ou S, Wang R, Wang Y, et al. 2020.. Natural variations of SLG1 confer high-temperature tolerance in indica rice. . Nat. Commun. 11::5441
    [Crossref] [Google Scholar]
  194. 193.
    Xue W, Xing Y, Weng X, Zhao Y, Tang W, et al. 2008.. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. . Nat. Genet. 40::76167
    [Crossref] [Google Scholar]
  195. 194.
    Yan L, Fu D, Li C, Blechl A, Tranquilli G, et al. 2006.. The wheat and barley vernalization gene VRN3 is an orthologue of FT. . PNAS 103::1958186
    [Crossref] [Google Scholar]
  196. 195.
    Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, et al. 2004.. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. . Science 303::164044 195. VRN2 is a wheat vernalization gene, and loss-of-function alleles in spring wheat allow it to move to northern latitudes.
    [Crossref] [Google Scholar]
  197. 196.
    Yang Q, Li Z, Li W, Ku L, Wang C, et al. 2013.. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the post-domestication spread of maize. . PNAS 110::1696974
    [Crossref] [Google Scholar]
  198. 197.
    Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, et al. 2000.. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. . Plant Cell 12::247384
    [Crossref] [Google Scholar]
  199. 198.
    Zarrillo S, Gaikwad N, Lanaud C, Powis T, Viot C, et al. 2018.. The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. . Nat. Ecol. Evol. 2::187988
    [Crossref] [Google Scholar]
  200. 199.
    Zhang B, Liu H, Qi F, Zhang Z, Li Q, et al. 2019.. Genetic interactions among Ghd7, Ghd8, OsPRR37 and Hd1 contribute to large variation in heading date in rice. . Rice 12::48
    [Crossref] [Google Scholar]
  201. 200.
    Zhang J, Hu Y, Xu L, He Q, Fan X, et al. 2017.. The CCT domain-containing gene family has large impacts on heading date, regional adaptation, and grain yield in rice. . J. Integrative Agri. 16::268697
    [Crossref] [Google Scholar]
  202. 201.
    Zhang J, Singh AK. 2020.. Genetic control and geo-climate adaptation of pod dehiscence provide novel insights into soybean domestication. . G3 10::54554
    [Crossref] [Google Scholar]
  203. 202.
    Zhang J, Zhou X, Yan W, Zhang Z, Lu L, et al. 2015.. Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. . New Phytol. 208::105666 202. Allelic combinations of Ghd7, Ghd8, and Hd1 contribute to the expansion of rice across latitudes.
    [Crossref] [Google Scholar]
  204. 203.
    Zhang SR, Wang H, Wang Z, Ren Y, Niu L, et al. 2017.. Photoperiodism dynamics during the domestication and improvement of soybean. . Sci. China Life Sci. 60::141627
    [Crossref] [Google Scholar]
  205. 204.
    Zhao X, Guo Y, Kang L, Yin C, Bi A, et al. 2023.. Population genomics unravels the Holocene history of bread wheat and its relatives. . Nat. Plants 9::40319
    [Crossref] [Google Scholar]
  206. 205.
    Zhao Z. 2011.. New archaeobotanic data for the study of the origins of agriculture in China. . Curr. Anthropol. 52::S295306
    [Crossref] [Google Scholar]
  207. 206.
    Zheng XM, Feng L, Wang J, Qiao W, Zhang L, et al. 2016.. Nonfunctional alleles of long-day suppressor genes independently regulate flowering time. . J. Integr. Plant Biol. 58::54048
    [Crossref] [Google Scholar]
  208. 207.
    Zheng XM, Pang H, Wang J, Yao X, Song Y, et al. 2022.. Genomic signatures of domestication and adaptation during geographical expansions of rice cultivation. . Plant Biotech. J. 20::1618
    [Crossref] [Google Scholar]
  209. 208.
    Zhong S, Liu H, Li Y, Lin Z. 2021.. Opposite response of maize ZmCCT to photoperiod due to transposon jumping. . Theor. Appl. Genet. 134::284155
    [Crossref] [Google Scholar]
  210. 209.
    Zhou X, Yu J, Spengler RN, Shen H, Zhao K, et al. 2020.. 5,200-year-old cereal grains from the eastern Altai Mountains redate the trans-Eurasian crop exchange. . Nat. Plants 6::7887
    [Crossref] [Google Scholar]
  211. 210.
    Zhou Y, Chen Z, Cheng M, Chen J, Zhu T, et al. 2018.. Uncovering the dispersion history, adaptive evolution and selection of wheat in China. . Plant Biotechnol. J. 16::28091
    [Crossref] [Google Scholar]
  212. 211.
    Zohary D, Hopf M, Weiss E. 2012.. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford, UK:: Oxford Univ. Press. , 4th ed..
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-060223-030954
Loading
/content/journals/10.1146/annurev-arplant-060223-030954
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error