1932

Abstract

Climate change profoundly affects the timing of seasonal activities of organisms, known as phenology. The impact of climate change is not unidirectional; it is also influenced by plant phenology as plants modify atmospheric composition and climatic processes. One important aspect of this interaction is the emission of biogenic volatile organic compounds (BVOCs), which link the Earth's surface, atmosphere, and climate. BVOC emissions exhibit significant diurnal and seasonal variations and are therefore considered essential phenological traits. To understand the dynamic equilibrium arising from the interplay between plant phenology and climate, this review presents recent advances in comprehending the molecular mechanisms underpinning plant phenology and its interaction with climate. We provide an overview of studies investigating molecular phenology, genome-wide gene expression analyses conducted in natural environments, and how these studies revolutionize the concept of phenology, shifting it from observable traits to dynamic molecular responses driven by gene–environment interactions. We explain how this knowledge can be scaled up to encompass plant populations, regions, and even the globe by establishing connections between molecular phenology, changes in plant distribution, species composition, and climate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-060223-032108
2024-07-22
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-060223-032108.html?itemId=/content/journals/10.1146/annurev-arplant-060223-032108&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aikawa S, Kobayashi MJ, Satake A, Shimizu KK, Kudoh H. 2010.. Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. . PNAS 107::1163237
    [Crossref] [Google Scholar]
  2. 2.
    Andrés F, Coupland G. 2012.. The genetic basis of flowering responses to seasonal cues. . Nat. Rev. Genet. 13::62739
    [Crossref] [Google Scholar]
  3. 3.
    Antonelli M, Donelli D, Barbieri G, Valussi M, Maggini V, Firenzuoli F. 2020.. Forest volatile organic compounds and their effects on human health: a state-of-the-art review. . Int. J. Environ. Res. Public Health 17::6506
    [Crossref] [Google Scholar]
  4. 4.
    Aono Y, Kazui K. 2008.. Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. . Int. J. Climatol. 28::90514
    [Crossref] [Google Scholar]
  5. 5.
    Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J. 2000.. Herbivory-induced volatiles elicit defence genes in lima bean leaves. . Nature 406::51215
    [Crossref] [Google Scholar]
  6. 6.
    Baghi R, Helmig D, Guenther A, Duhl T, Daly R. 2012.. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions. . Biogeosciences 9::377785
    [Crossref] [Google Scholar]
  7. 7.
    Bäurle I, Dean C. 2006.. The timing of developmental transitions in plants. . Cell 125::65564
    [Crossref] [Google Scholar]
  8. 8.
    Bonan GB. 2008.. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. . Science 320::144449
    [Crossref] [Google Scholar]
  9. 9.
    Brilli F, Ruuskanen TM, Schnitzhofer R, Müller M, Breitenlechner M, et al. 2011.. Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction “time-of-flight” mass spectrometry (PTR-TOF). . PLOS ONE 6::e20419
    [Crossref] [Google Scholar]
  10. 10.
    Bruinsma M, Lucas-Barbosa D, ten Broeke CJM, van Dam NM, van Beek TA, et al. 2014.. Folivory affects composition of nectar, floral odor and modifies pollinator behavior. . J. Chem. Ecol. 40::3949
    [Crossref] [Google Scholar]
  11. 11.
    Byron J, Kreuzwieser J, Purser G, van Haren J, Ladd SN, et al. 2022.. Chiral monoterpenes reveal forest emission mechanisms and drought responses. . Nature 609::30712
    [Crossref] [Google Scholar]
  12. 12.
    Caruso CM, Parachnowitsch AL. 2016.. Do plants eavesdrop on floral scent signals?. Trends Plant Sci. 21::915
    [Crossref] [Google Scholar]
  13. 13.
    Chen F, Tholl D, Bohlmann J, Pichersky E. 2011.. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. . Plant J. 66::21229
    [Crossref] [Google Scholar]
  14. 14.
    Chen YY, Satake A, Sun IF, Kosugi Y, Tani M, et al. 2018.. Species-specific flowering cues among general flowering Shorea species at the Pasoh Research Forest, Malaysia. . J. Ecol. 106::58698
    [Crossref] [Google Scholar]
  15. 15.
    Chuine I. 2010.. Why does phenology drive species distribution?. Philos. Trans. R. Soc. B 365::314960
    [Crossref] [Google Scholar]
  16. 16.
    Claeys M, Wang W, Ion AC, Kourtchev I, Gelencser A, Maenhaut W. 2004.. Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. . Atmos. Environ. 38::409398
    [Crossref] [Google Scholar]
  17. 17.
    Cooke JEK, Eriksson ME, Junttila O. 2012.. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. . Plant Cell Environ. 35::170728
    [Crossref] [Google Scholar]
  18. 18.
    Dani KGS, Jamie IM, Prentice IC, Atwell BJ. 2014.. Evolution of isoprene emission capacity in plants. . Trends Plant Sci. 19::43946
    [Crossref] [Google Scholar]
  19. 19.
    DiMaria CA, Jones DBA, Worden H, Bloom AA, Bowman K, et al. 2023.. Optimizing the isoprene emission model MEGAN with satellite and ground-based observational constraints. . J. Geophys. Res. Atm. 128::e2022JD037822
    [Crossref] [Google Scholar]
  20. 20.
    Ehn M, Thornton JA, Kleist E, Sipila M, Junninen H, et al. 2014.. A large source of low-volatility secondary organic aerosol. . Nature 506::47679
    [Crossref] [Google Scholar]
  21. 21.
    Emmerson KM, Possell M, Aspinwall MJ, Pfautsch S, Tjoelker MG. 2020.. Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050. . Atmos. Chem. Phys. 20::6193206
    [Crossref] [Google Scholar]
  22. 22.
    Farré-Armengol G, Filella I, Llusia J, Peñuelas J. 2016.. Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. . Trends Plant Sci. 21::85460
    [Crossref] [Google Scholar]
  23. 23.
    Faubert P, Tiiva P, Michelsen A, Rinnan A, Ro-Poulsen H, Rinnan R. 2012.. The shift in plant species composition in a subarctic mountain birch forest floor due to climate change would modify the biogenic volatile organic compound emission profile. . Plant Soil 352::199215
    [Crossref] [Google Scholar]
  24. 24.
    Frank L, Wenig M, Ghirardo A, van der Krol A, Vlot AC, et al. 2021.. Isoprene and β-caryophyllene confer plant resistance via different plant internal signalling pathways. . Plant Cell Environ. 44::115164
    [Crossref] [Google Scholar]
  25. 25.
    Friedman B, Farmer DK. 2018.. SOA and gas phase organic acid yields from the sequential photooxidation of seven monoterpenes. . Atmos. Environ. 187::33545
    [Crossref] [Google Scholar]
  26. 26.
    Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM. 2008.. Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. . New Phytol. 180::72233
    [Crossref] [Google Scholar]
  27. 27.
    Fu Z, Stoy PC, Luo YQ, Chen JQ, Sun J, et al. 2017.. Climate controls over the net carbon uptake period and amplitude of net ecosystem production in temperate and boreal ecosystems. . Agric. Forest Meteorol. 243::918
    [Crossref] [Google Scholar]
  28. 28.
    Fuentes JD, Chamecki M, Roulston T, Chen BC, Pratt KR. 2016.. Air pollutants degrade floral scents and increase insect foraging times. . Atmos. Environ. 141::36174
    [Crossref] [Google Scholar]
  29. 29.
    Ganzeveld L, Lelieveld J. 2004.. Impact of Amazonian deforestation on atmospheric chemistry. . Geophys. Res. Lett. 31::L06105
    [Crossref] [Google Scholar]
  30. 30.
    Ghirardo A, Gutknecht J, Zimmer I, Bruggemann N, Schnitzler JP. 2011.. Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants. . PLOS ONE 6::e17393
    [Crossref] [Google Scholar]
  31. 31.
    Godard K-A, White R, Bohlmann J. 2008.. Monoterpene-induced molecular responses in Arabidopsis thaliana. . Phytochemistry 69::183849
    [Crossref] [Google Scholar]
  32. 32.
    Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, et al. 1995.. A global-model of natural volatile organic-compound emissions. . J. Geophys. Res. Atm. 100::887392
    [Crossref] [Google Scholar]
  33. 33.
    Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C. 2006.. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). . Atmos. Chem. Phys. 6::3181210
    [Crossref] [Google Scholar]
  34. 34.
    Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, et al. 2012.. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. . Geosci. Model Dev. 5::147192
    [Crossref] [Google Scholar]
  35. 35.
    Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R. 1993.. Isoprene and monoterpene emission rate variability—model evaluations and sensitivity analyses. . J. Geophys. Res. Atm. 98::1260917
    [Crossref] [Google Scholar]
  36. 36.
    Hagiwara T, Ishihara MI, Takabayashi J, Hiura T, Shiojiri K. 2021.. Effective distance of volatile cues for plant–plant communication in beech. . Ecol. Evol. 11::1244552
    [Crossref] [Google Scholar]
  37. 37.
    Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, et al. 2009.. The formation, properties and impact of secondary organic aerosol: current and emerging issues. . Atmos. Chem. Phys. 9::5155236
    [Crossref] [Google Scholar]
  38. 38.
    Heil M, Karban R. 2010.. Explaining evolution of plant communication by airborne signals. . Trends Ecol. Evol. 25::13744
    [Crossref] [Google Scholar]
  39. 39.
    Hellén H, Praplan AP, Tykkä T, Ylivinkka I, Vakkari V, et al. 2018.. Long-term measurements of volatile organic compounds highlight the importance of sesquiterpenes for the atmospheric chemistry of a boreal forest. . Atmos. Chem. Phys. 18::1383963
    [Crossref] [Google Scholar]
  40. 40.
    Holopainen E, Kokkola H, Faiola C, Laakso A, Kühn T. 2022.. Insect herbivory caused plant stress emissions increases the negative radiative forcing of aerosols. . J. Geophys. Res. Atm. 127::e2022JD036733
    [Crossref] [Google Scholar]
  41. 41.
    Holopainen JK, Gershenzon J. 2010.. Multiple stress factors and the emission of plant VOCs. . Trends Plant Sci. 15::17684
    [Crossref] [Google Scholar]
  42. 42.
    Holt RD. 2009.. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. . PNAS 106::1965965
    [Crossref] [Google Scholar]
  43. 43.
    Hutchinson GE. 1957.. Concluding remarks. . Cold Spring Harb. Symp. Quant. Biol. 22::41527
    [Crossref] [Google Scholar]
  44. 44.
    Jiang SY, Jin JJ, Sarojam R, Ramachandran S. 2019.. A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns. . Genome Biol. Evol. 11::207898
    [Crossref] [Google Scholar]
  45. 45.
    Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, et al. 2009.. Evolution of organic aerosols in the atmosphere. . Science 326::152529
    [Crossref] [Google Scholar]
  46. 46.
    Karban R. 2021.. Plant communication. . Annu. Rev. Ecol. Evol. Syst. 52::124
    [Crossref] [Google Scholar]
  47. 47.
    Karl M, Guenther A, Köble R, Leip A, Seufert G. 2009.. A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models. . Biogeosciences 6::105987
    [Crossref] [Google Scholar]
  48. 48.
    Karl T, Guenther A, Turnipseed A, Patton EG, Jardine K. 2008.. Chemical sensing of plant stress at the ecosystem scale. . Biogeosciences 5::128794
    [Crossref] [Google Scholar]
  49. 49.
    Karl T, Guenther A, Yokelson RJ, Greenberg J, Potosnak M, et al. 2007.. The tropical forest and fire emissions experiment: emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. . J. Geophys. Res. Atm. 112::D18302
    [Google Scholar]
  50. 50.
    Keenan RJ. 2015.. Climate change impacts and adaptation in forest management: a review. . Ann. Forest Sci. 72::14567
    [Crossref] [Google Scholar]
  51. 51.
    Kesselmeier J, Staudt M. 1999.. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. . J. Atmos. Chem. 33::2388
    [Crossref] [Google Scholar]
  52. 52.
    Komoto H, Nagahama A, Miyawaki-Kuwakado A, Hata Y, Kyozuka J, et al. 2024.. The transcriptional changes underlying the flowering phenology shift of Arabidopsis halleri in response to climate warming. . Plant Cell Env. 47::17486
    [Crossref] [Google Scholar]
  53. 53.
    Körner C, Basler D. 2010.. Phenology under global warming. . Science 327::146162
    [Crossref] [Google Scholar]
  54. 54.
    Koss AR, Sekimoto K, Gilman JB, Selimovic V, Coggon MM, et al. 2018.. Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. . Atmos. Chem. Phys. 18::3299319
    [Crossref] [Google Scholar]
  55. 55.
    Kudo G, Ida TY. 2013.. Early onset of spring increases the phenological mismatch between plants and pollinators. . Ecology 94::231120
    [Crossref] [Google Scholar]
  56. 56.
    Kudoh H. 2016.. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments. . New Phytol. 210::399412
    [Crossref] [Google Scholar]
  57. 57.
    Lancaster LT, Humphreys AM. 2020.. Global variation in the thermal tolerances of plants. . PNAS 117::1358087
    [Crossref] [Google Scholar]
  58. 58.
    Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN. 2009.. Biogenic volatile organic compounds in the Earth system. . New Phytol. 183::2751
    [Crossref] [Google Scholar]
  59. 59.
    Lawrence PJ, Chase TN. 2007.. Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). . J. Geophys. Res. Biogeosci. 112::G01023
    [Google Scholar]
  60. 60.
    Lelieveld J, Butler TM, Crowley JN, Dillon TJ, Fischer H, et al. 2008.. Atmospheric oxidation capacity sustained by a tropical forest. . Nature 452::73740
    [Crossref] [Google Scholar]
  61. 61.
    Li Z, Paul R, Tis TB, Saville AC, Hansel JC, et al. 2019.. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. . Nat. Plants 5::85666
    [Crossref] [Google Scholar]
  62. 62.
    Lieth H. 1974.. Phenology and Seasonality Modeling. Berlin:: Springer
    [Google Scholar]
  63. 63.
    Linderholm HW. 2006.. Growing season changes in the last century. . Agric. Forest Meteorol. 137::114
    [Crossref] [Google Scholar]
  64. 64.
    Loivamäki M, Louis S, Cinege G, Zimmer I, Fischbach RJ, Schnitzler JP. 2007.. Circadian rhythms of isoprene biosynthesis in Grey poplar leaves. . Plant Physiol. 143::54051
    [Crossref] [Google Scholar]
  65. 65.
    Loreto F, D'Auria S. 2022.. How do plants sense volatiles sent by other plants?. Trends Plant Sci. 27::2938
    [Crossref] [Google Scholar]
  66. 66.
    Loreto F, Fineschi S. 2015.. Reconciling functions and evolution of isoprene emission in higher plants. . New Phytol. 206::57882
    [Crossref] [Google Scholar]
  67. 67.
    Maja MM, Kasurinen A, Yli-Pirilä P, Joutsensaari J, Klemola T, et al. 2014.. Contrasting responses of silver birch VOC emissions to short- and long-term herbivory. . Tree Physiol. 34::24152
    [Crossref] [Google Scholar]
  68. 68.
    Manos PS, Stanford AM. 2001.. The historical biogeography of Fagaceae: tracking the tertiary history of temperate and subtropical forests of the Northern Hemisphere. . Int. J. Plant Sci. 162::S7793
    [Crossref] [Google Scholar]
  69. 69.
    Masui N, Shiojiri K, Agathokleous E, Tani A, Koike T. 2023.. Elevated O3 threatens biological communications mediated by plant volatiles: a review focusing on the urban environment. . Crit. Rev. Environ. Sci. Technol. 53::19822001
    [Crossref] [Google Scholar]
  70. 70.
    Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ, Schnitzler RP. 2005.. Diurnal and seasonal variation of isoprene biosynthesis-related genes in Grey poplar leaves. . Plant Physiol. 139::47484
    [Crossref] [Google Scholar]
  71. 71.
    McGlynn DF, Barry LER, Lerdau MT, Pusede SE, Isaacman-VanWertz G. 2021.. Measurement report: variability in the composition of biogenic volatile organic compounds in a Southeastern US forest and their role in atmospheric reactivity. . Atmos. Chem. Phys. 21::1575570
    [Crossref] [Google Scholar]
  72. 72.
    Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, et al. 2006.. European phenological response to climate change matches the warming pattern. . Glob. Change Biol. 12::196976
    [Crossref] [Google Scholar]
  73. 73.
    Miyazaki Y, Maruyama Y, Chiba Y, Kobayashi MJ, Joseph B, et al. 2014.. Nitrogen as a key regulator of flowering in Fagus crenata: understanding the physiological mechanism of masting by gene expression analysis. . Ecol. Lett. 17::1299309
    [Crossref] [Google Scholar]
  74. 74.
    Monson RK, Jones RT, Rosenstiel TN, Schnitzler JP. 2013.. Why only some plants emit isoprene. . Plant Cell Environ. 36::50316
    [Crossref] [Google Scholar]
  75. 75.
    Morin X, Augspurger C, Chuine I. 2007.. Process-based modeling of species’ distributions: What limits temperate tree species’ range boundaries?. Ecology 88::228091
    [Crossref] [Google Scholar]
  76. 76.
    Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, et al. 2004.. Genetic analysis of genome-wide variation in human gene expression. . Nature 430::74347
    [Crossref] [Google Scholar]
  77. 77.
    Mu ZB, Llusià J, Zeng JQ, Zhang YL, Asensio D, et al. 2022.. An overview of the isoprenoid emissions from tropical plant species. . Front. Plant Sci. 13::833030
    [Crossref] [Google Scholar]
  78. 78.
    Nachtomy O, Shavit A, Yakhini Z. 2007.. Gene expression and the concept of the phenotype. . Stud. Hist. Philos. Biol. Biomed. Sci. 38::23854
    [Crossref] [Google Scholar]
  79. 79.
    Nagano AJ, Kawagoe T, Sugisaka J, Honjo MN, Iwayama K, Kudoh H. 2019.. Annual transcriptome dynamics in natural environments reveals plant seasonal adaptation. . Nat. Plants 5::7483
    [Crossref] [Google Scholar]
  80. 80.
    Nagano AJ, Sato Y, Mihara M, Antonio BA, Motoyama R, et al. 2012.. Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. . Cell 151::135869
    [Crossref] [Google Scholar]
  81. 81.
    Nagashima A, Higaki T, Koeduka T, Ishigami K, Hosokawa S, et al. 2019.. Transcriptional regulators involved in responses to volatile organic compounds in plants. . J. Biol. Chem. 294::225666
    [Crossref] [Google Scholar]
  82. 82.
    Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006.. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. . Plant Physiol. 140::41132
    [Crossref] [Google Scholar]
  83. 83.
    Niinemets Ü, Arneth A, Kuhn U, Monson RK, Peñuelas J, Staudt M. 2010.. The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. . Biogeosciences 7::220323
    [Crossref] [Google Scholar]
  84. 84.
    Numata S, Yamaguchi K, Shimizu M, Sakurai G, Morimoto A, et al. 2022.. Impacts of climate change on reproductive phenology in tropical rainforests of Southeast Asia. . Commun. Biol. 5::311
    [Crossref] [Google Scholar]
  85. 85.
    Oleksiak MF, Churchill GA, Crawford DL. 2002.. Variation in gene expression within and among natural populations. . Nat. Genet. 32::26166
    [Crossref] [Google Scholar]
  86. 86.
    Park JH, Goldstein AH, Timkovsky J, Fares S, Weber R, et al. 2013.. Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds. . Science 341::64347
    [Crossref] [Google Scholar]
  87. 87.
    Parmesan C. 2006.. Ecological and evolutionary responses to recent climate change. . Annu. Rev. Ecol. Evol. Syst. 37::63769
    [Crossref] [Google Scholar]
  88. 88.
    Parmesan C, Yohe G. 2003.. A globally coherent fingerprint of climate change impacts across natural systems. . Nature 421::3742
    [Crossref] [Google Scholar]
  89. 89.
    Parveen S, Lqbal MA, Mutanda I, Harun-Ur-Rashid M, Inafuku M, Oku H. 2019.. Plant hormone effects on isoprene emission from tropical tree in Ficus septica. . Plant Cell Environ. 42::171528
    [Crossref] [Google Scholar]
  90. 90.
    Peñuelas J, Llusià J. 2004.. Plant VOC emissions: making use of the unavoidable. . Trends Ecol. Evol. 19::4024
    [Crossref] [Google Scholar]
  91. 91.
    Peñuelas J, Rutishauser T, Filella I. 2009.. Phenology feedbacks on climate change. . Science 324::88788
    [Crossref] [Google Scholar]
  92. 92.
    Peñuelas J, Staudt M. 2010.. BVOCs and global change. . Trends Plant Sci. 15::13344
    [Crossref] [Google Scholar]
  93. 93.
    Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M, et al. 2008.. Net carbon dioxide losses of northern ecosystems in response to autumn warming. . Nature 451::4952
    [Crossref] [Google Scholar]
  94. 94.
    Piao SL, Wang XH, Park T, Chen C, Lian X, et al. 2020.. Characteristics, drivers and feedbacks of global greening. . Nat. Rev. Earth Environ. 1::1427
    [Crossref] [Google Scholar]
  95. 95.
    Picazo-Aragonés J, Terrab A, Balao F. 2020.. Plant volatile organic compounds evolution: transcriptional regulation, epigenetics and polyploidy. . Int. J. Mol. Sci. 21::8956
    [Crossref] [Google Scholar]
  96. 96.
    Primack RB, Higuchi H, Miller-Rushing AJ. 2009.. The impact of climate change on cherry trees and other species in Japan. . Biol. Conserv. 142::194349
    [Crossref] [Google Scholar]
  97. 97.
    Ramya M, Jang S, HR An, Lee SY, Park PM, Park PH. 2020.. Volatile organic compounds from orchids: from synthesis and function to gene regulation. . Int. J. Mol. Sci. 21::1160
    [Crossref] [Google Scholar]
  98. 98.
    Rasmussen RA, Went FW. 1965.. Volatile organic material of plant origin in atmosphere. . PNAS 53::21520
    [Crossref] [Google Scholar]
  99. 99.
    Rathcke B, Lacey EP. 1985.. Phenological patterns of terrestrial plants. . Annu. Rev. Ecol. Syst. 16::179214
    [Crossref] [Google Scholar]
  100. 100.
    Richards CL, Rosas U, Banta J, Bhambhra N, Purugganan MD. 2012.. Genome-wide patterns of Arabidopsis gene expression in nature. . PLOS Genet. 8::48295
    [Crossref] [Google Scholar]
  101. 101.
    Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA, et al. 2010.. Influence of spring and autumn phenological transitions on forest ecosystem productivity. . Philos. Trans. R. Soc. B 365::322746
    [Crossref] [Google Scholar]
  102. 102.
    Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O'Keefe J. 2009.. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. . Tree Physiol. 29::32131
    [Crossref] [Google Scholar]
  103. 103.
    Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M. 2013.. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. . Agric. Forest Meteorol. 169::15673
    [Crossref] [Google Scholar]
  104. 104.
    Román-Palacios C, Wiens JJ. 2020.. Recent responses to climate change reveal the drivers of species extinction and survival. . PNAS 117::421117
    [Crossref] [Google Scholar]
  105. 105.
    Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. 2003.. Fingerprints of global warming on wild animals and plants. . Nature 421::5760
    [Crossref] [Google Scholar]
  106. 106.
    Rosenkranz M, Chen YY, Zhu PY, Vlot AC. 2021.. Volatile terpenes—mediators of plant-to-plant communication. . Plant J. 108::61731
    [Crossref] [Google Scholar]
  107. 107.
    Rosenzweig C, Elliott J, Deryng D, Ruane AC, Muller C, et al. 2014.. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. . PNAS 111::326873
    [Crossref] [Google Scholar]
  108. 108.
    Sakai S, Harrison RD, Momose K, Kuraji K, Nagamasu H, et al. 2006.. Irregular droughts trigger mass flowering in aseasonal tropical forests in Asia. . Am. J. Botany 93::113439
    [Crossref] [Google Scholar]
  109. 109.
    Sakai S, Momose K, Yumoto T, Nagamitsu T, Nagamasu H, et al. 1999.. Plant reproductive phenology over four years including an episode of general flowering in a lowland dipterocarp forest, Sarawak, Malaysia. . Am. J. Bot. 86::141436
    [Crossref] [Google Scholar]
  110. 110.
    Sasaki K, Saito T, Lamsa M, Oksman-Caldentey KM, Suzuki M, et al. 2007.. Plants utilize isoprene emission as a thermotolerance mechanism. . Plant Cell Physiol. 48::125462
    [Crossref] [Google Scholar]
  111. 111.
    Satake A, Kawagoe T, Saburi Y, Chiba Y, Sakurai G, Kudoh H. 2013.. Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes. . Nat. Commun. 4::2303
    [Crossref] [Google Scholar]
  112. 112.
    Satake A, Kawatsu K, Teshima K, Kabeya D, Han QM. 2019.. Field transcriptome revealed a novel relationship between nitrate transport and flowering in Japanese beech. . Sci. Rep. 9::4325
    [Crossref] [Google Scholar]
  113. 113.
    Satake A, Nagahama A, Sasaki E. 2022.. A cross-scale approach to unravel the molecular basis of plant phenology in temperate and tropical climates. . New Phytol. 233::234053
    [Crossref] [Google Scholar]
  114. 114.
    Satake A, Ohta K, Takeda-Kamiya N, Toyooka K, Kusumi J. 2023.. Seasonal gene-expression signatures of delayed fertilization in Fagaceae. . Mol. Ecol. 32::480113
    [Crossref] [Google Scholar]
  115. 115.
    Sekimoto K, Koss AR. 2021.. Modern mass spectrometry in atmospheric sciences: measurement of volatile organic compounds in the troposphere using proton-transfer-reaction mass spectrometry. . J. Mass Spectrom. 56::e4619
    [Crossref] [Google Scholar]
  116. 116.
    Sharkey TD, Monson RK. 2017.. Isoprene research—60 years later, the biology is still enigmatic. . Plant Cell Environ. 40::167178
    [Crossref] [Google Scholar]
  117. 117.
    Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong DM, Fernandez DE. 2005.. Evolution of the isoprene biosynthetic pathway in Kudzu. . Plant Physiol. 137::70012
    [Crossref] [Google Scholar]
  118. 118.
    Sharkey TD, Yeh SS. 2001.. Isoprene emission from plants. . Annu. Rev. Plant Physiol. Plant Mol. Biol. 52::40736
    [Crossref] [Google Scholar]
  119. 119.
    Shrivastava M, Andreae MO, Artaxo P, Barbosa HMJ, Berg LK, et al. 2019.. Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. . Nat. Commun. 10::1046
    [Crossref] [Google Scholar]
  120. 120.
    Šimpraga M, Ghimire RP, Van Der Straeten D, Blande JD, Kasurinen A, et al. 2019.. Unravelling the functions of biogenic volatiles in boreal and temperate forest ecosystems. . Eur. J. Forest Res. 138::76387
    [Crossref] [Google Scholar]
  121. 121.
    Sindelarova K, Granier C, Bouarar I, Guenther A, Tilmes S, et al. 2014.. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. . Atmos. Chem. Phys. 14::931741
    [Crossref] [Google Scholar]
  122. 122.
    Singh RK, Svystun T, AlDahmash B, Jonsson AM, Bhalerao RP. 2017.. Photoperiod- and temperature-mediated control of phenology in trees—a molecular perspective. . New Phytol. 213::51124
    [Crossref] [Google Scholar]
  123. 123.
    Singsaas EL, Lerdau M, Winter K, Sharkey TD. 1997.. Isoprene increases thermotolerance of isoprene-emitting species. . Plant Physiol. 115::141320
    [Crossref] [Google Scholar]
  124. 124.
    Skibbe M, Qu N, Galis I, Baldwin IT. 2008.. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. . Plant Cell 20::19842000
    [Crossref] [Google Scholar]
  125. 125.
    Smith AB, Godsoe W, Rodriguez-Sanchez F, Wang HH, Warren D. 2019.. Niche estimation above and below the species level. . Trends Ecol. Evol. 34::26073
    [Crossref] [Google Scholar]
  126. 126.
    Sung S, Amasino RM. 2005.. Remembering winter: toward a molecular understanding of vernalization. . Annu. Rev. Plant Biol. 56::491508
    [Crossref] [Google Scholar]
  127. 127.
    Taylor TC, McMahon SM, Smith MN, Boyle B, Violle C, et al. 2018.. Isoprene emission structures tropical tree biogeography and community assembly responses to climate. . New Phytol. 220::43546
    [Crossref] [Google Scholar]
  128. 128.
    Taylor TC, Wisniewski WT, Alves EG, Oliveira RC, Saleska SR. 2021.. A new field instrument for leaf volatiles reveals an unexpected vertical profile of isoprenoid emission capacities in a tropical forest. . Front. Forests Glob. Change 4::668228
    [Crossref] [Google Scholar]
  129. 129.
    Tholl D. 2006.. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. . Curr. Opin. Plant Biol. 9::297304
    [Crossref] [Google Scholar]
  130. 130.
    Tholl D, Hossain O, Weinhold A, Röse USR, Wei QS. 2021.. Trends and applications in plant volatile sampling and analysis. . Plant J. 106::31425
    [Crossref] [Google Scholar]
  131. 131.
    Tian Z, Zeng P, Lu X, Zhou T, Han Y, et al. 2022.. Thirteen Dipterocarpoideae genomes provide insights into their evolution and borneol biosynthesis. . Plant Commun. 3::100464
    [Crossref] [Google Scholar]
  132. 132.
    Velikova V, Varkonyi Z, Szabo M, Maslenkova L, Nogues I, et al. 2011.. Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. . Plant Physiol. 157::90516
    [Crossref] [Google Scholar]
  133. 133.
    Walther GR. 2010.. Community and ecosystem responses to recent climate change. . Philos. Trans. R. Soc. B 365::201924
    [Crossref] [Google Scholar]
  134. 134.
    War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, et al. 2012.. Mechanisms of plant defense against insect herbivores. . Plant Signaling Behav. 7::130620
    [Crossref] [Google Scholar]
  135. 135.
    Warren DL, Glor RE, Turelli M. 2008.. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. . Evolution 62::286883
    [Crossref] [Google Scholar]
  136. 136.
    Wenig M, Ghirardo A, Sales JH, Pabst ES, Breitenbach HH, et al. 2019.. Systemic acquired resistance networks amplify airborne defense cues. . Nat. Commun. 10::3813
    [Crossref] [Google Scholar]
  137. 137.
    Went FW. 1960.. Blue hazes in the atmosphere. . Nature 187::64143
    [Crossref] [Google Scholar]
  138. 138.
    Wiens JJ, Graham CH. 2005.. Niche conservatism: integrating evolution, ecology, and conservation biology. . Annu. Rev. Ecol. Evol. Syst. 36::51939
    [Crossref] [Google Scholar]
  139. 139.
    Wilkinson MJ, Monson RK, Trahan N, Lee S, Brown E, et al. 2009.. Leaf isoprene emission rate as a function of atmospheric CO2 concentration. . Glob. Change Biol. 15::1189200
    [Crossref] [Google Scholar]
  140. 140.
    Yamaguchi N. 2021.. The epigenetic mechanisms regulating floral hub genes and their potential for manipulation. . J. Exp. Botany 73::127787
    [Crossref] [Google Scholar]
  141. 141.
    Yáñez-Serrano AM, Nölscher AC, Williams J, Wolff S, Alves E, et al. 2015.. Diel and seasonal changes of biogenic volatile organic compounds within and above an Amazonian rainforest. . Atmos. Chem. Phys. 15::335978
    [Crossref] [Google Scholar]
  142. 142.
    Yli-Juuti T, Mielonen T, Heikkinen L, Arola A, Ehn M, et al. 2021.. Significance of the organic aerosol driven climate feedback in the boreal area. . Nat. Commun. 12::5637
    [Crossref] [Google Scholar]
  143. 143.
    Yokouchi Y. 1994.. Seasonal and diurnal-variation of isoprene and its reaction-products in a semirural area. . Atmos. Environ. 28::265158
    [Crossref] [Google Scholar]
  144. 144.
    Yuan B, Koss AR, Warneke C, Coggon M, Sekimoto K, de Gouw JA. 2017.. Proton-transfer-reaction mass spectrometry: applications in atmospheric sciences. . Chem. Rev. 117::13187229
    [Crossref] [Google Scholar]
  145. 145.
    Zannoni N, Leppla D, de Assis P, Hoffmann T, M, et al. 2020.. Surprising chiral composition changes over the Amazon rainforest with height, time and season. . Commun. Earth Environ. 1::4
    [Crossref] [Google Scholar]
  146. 146.
    Zhao YS, Antoniou-Kourounioti RL, Calder G, Dean C, Howard M. 2020.. Temperature-dependent growth contributes to long-term cold sensing. . Nature 583::82529
    [Crossref] [Google Scholar]
  147. 147.
    Zhou BF, Yuan S, Crowl AA, Liang YY, Shi Y, et al. 2022.. Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere. . Nat. Commun. 13::1320
    [Crossref] [Google Scholar]
  148. 148.
    Zuo ZJ, Weraduwage SM, Lantz AT, Sanchez LM, Weise SE, et al. 2019.. Isoprene acts as a signaling molecule in gene networks important for stress responses and plant growth. . Plant Physiol. 180::12452
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-060223-032108
Loading
/content/journals/10.1146/annurev-arplant-060223-032108
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error