1932

Abstract

Despite the numerous advances made in our understanding of the physiology and molecular genetics of salinity tolerance, there have been relatively few applications of these to improve the salt tolerance of crops. The most significant advances have historically utilized intraspecific variation, introgression of traits from close crop wild relatives, or, less frequently, introgression from more distant relatives. Advanced lines often fail due to difficulties in the introgression or tracking of traits or due to yield penalties associated with the alleles in nonsaline environments. However, the greatest limitation is that salinity is not a primary trait for breeders. We must close the gap between research and delivery, especially for farmers who have precious few alternatives. These efforts should include a reassessment of old techniques such as grafting current crops with salt-tolerant hybrid rootstocks. Alternatively, future crops can be produced via domestication of salt-tolerant wild species—an approach that is now feasible in our lifetime.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-061422-104322
2023-05-22
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-061422-104322.html?itemId=/content/journals/10.1146/annurev-arplant-061422-104322&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ait El Aouad B, Fadli A, Aderdour T, Talha A, Benkirane R, Benyahia H 2015. Investigating salt tolerance in citrus rootstocks under greenhouse conditions using growth and biochemical indicators. Biolife 3:827–37
    [Google Scholar]
  2. 2.
    Albacete A, Martínez-Andújar C, Ghanem ME, Acosta M, Sánchez-Bravo J et al. 2009. Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant Cell Environ. 32:928–38
    [Google Scholar]
  3. 3.
    Al-Harbi A, Hejazi A, Al-Omran A. 2017. Responses of grafted tomato (Solanum lycopersiocon L.) to abiotic stresses in Saudi Arabia. Saudi J. Biol. Sci. 24:1274–80
    [Google Scholar]
  4. 4.
    Ali AAM, Romdhane WB, Tarroum M, Al-Dakhil M, Al-Doss A et al. 2021. Analysis of salinity tolerance in tomato introgression lines based on morpho-physiological and molecular traits. Plants 10:2594
    [Google Scholar]
  5. 5.
    Allen SG, Dobrenz AK, Schonhorst MH, Stoner JE. 1985. Heritability of NaCl tolerance in germinating alfalfa seeds. Agron. J. 77:99–101
    [Google Scholar]
  6. 6.
    Al-Tamimi N, Brien C, Oakey H, Berger B, Saade S et al. 2016. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Commun. 7:13342
    [Google Scholar]
  7. 7.
    An P, Inanaga S, Li XJ, Eneji AE, Zhu NW. 2005. Interactive effects of salinity and air humidity on two tomato cultivars differing in salt tolerance. J. Plant Nutr. 28:459–73
    [Google Scholar]
  8. 8.
    Arcadia Biosci 2018. Accelerating development of abiotic stress tolerant rice and wheat Final Rep. Arcadia Biosci., Davis, CA. https://pdf.usaid.gov/pdf_docs/PA00TM4V.pdf
    [Google Scholar]
  9. 9.
    Armenta-Bojórquez AD, Valenzuela-Castañeda AR, Fitzsimmons K, López-Alvarez ES, Rodríguez-Quiroz G, Valenzuela-Quiñónez W. 2021. Pacific white shrimp and tomato production using water effluents and salinity-tolerant grafted plants in an integrated aquaponic production system. J. Clean. Prod. 278:124064
    [Google Scholar]
  10. 10.
    Ashraf M, Munns R. 2022. Evolution of approaches to increase the salt tolerance of crops. Crit. Rev. Plant Sci. 41:128–60
    [Google Scholar]
  11. 11.
    Asins MJ, Bolarín MC, Pérez-Alfocea F, Estañ MT, Martínez-Andújar C et al. 2010. Genetic analysis of physiological components of salt tolerance conferred by Solanum rootstocks. What is the rootstock doing for the scion?. Theor. Appl. Genet. 121:105–15
    [Google Scholar]
  12. 12.
    Asins MJ, Raga V, Roca D, Belver A, Carbonell EA. 2015. Genetic dissection of tomato rootstock effects on scion traits under moderate salinity. Theor. Appl. Genet. 128:667–79
    [Google Scholar]
  13. 13.
    Atwell BJ, Wang H, Scafaro AP. 2014. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa?. Plant Sci. 215–16:48–58
    [Google Scholar]
  14. 14.
    Avcu S, Dasgan HY, Akhoundnejad Y, Ergun O. 2020. The effects of rootstock to improve melon growth and physiological responses in salt stress. Acta Hortic. 1273:183–90
    [Google Scholar]
  15. 15.
    Ayers RS, Westcot DW. 1985. Water quality for agriculture FAO Irrig. Drain. Pap., Food Agric. Organ. U.N., Rome https://www.fao.org/3/t0234e/T0234E00.htm
    [Google Scholar]
  16. 16.
    Bao A-K, Du B-Q, Touil L, Kang P, Wang Q-L, Wang S-M. 2016. Co-expression of tonoplast Cation/H+ antiporter and H+-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions. Plant Biotechnol. J. 14:964–75
    [Google Scholar]
  17. 17.
    Bennett SJ, Barrett-Lennard EG, Colmer TD 2009. Salinity and waterlogging as constraints to saltland pasture production: a review. Agric. Ecosyst. Environ. 129:349–60
    [Google Scholar]
  18. 18.
    Bohra A, Kilian B, Sivasankar S, Caccamo M, Mba C et al. 2022. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 40:412–31
    [Google Scholar]
  19. 19.
    Chen H-t, Liu X-q, Zhang H-m, Yuan X-x, Gu H-p et al. 2018. Advances in salinity tolerance of soybean: Genetic diversity, heredity, and gene identification contribute to improving salinity tolerance. J. Integr. Agric. 17:2215–21
    [Google Scholar]
  20. 20.
    Chen R, Cheng Y, Han S, Van Handel B, Dong L et al. 2017. Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar—sea rice 86. BMC Genom. 18:655
    [Google Scholar]
  21. 21.
    Coban A, Akhoundnejad Y, Dere S, Yildiz Dasgan H. 2020. Impact of salt-tolerant rootstock on the enhancement of sensitive tomato plant responses to salinity. HortScience 55:35–39
    [Google Scholar]
  22. 22.
    Colla G, Rouphael Y, Jawad R, Kumar P, Rea E, Cardarelli M 2013. The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Sci. Hortic. 164:380–91
    [Google Scholar]
  23. 23.
    Colmer TD, Flowers TJ, Munns R. 2006. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57:1059–78
    [Google Scholar]
  24. 24.
    Cox TS, Glover JD, Van Tassel DL, Cox CM, DeHaan LR. 2006. Prospects for developing perennial grain crops. BioScience 56:649–59
    [Google Scholar]
  25. 25.
    Crain J, Haghighattalab A, DeHaan L, Poland J. 2021. Development of whole-genome prediction models to increase the rate of genetic gain in intermediate wheatgrass (Thinopyrum intermedium) breeding. Plant Genome 14:e20089
    [Google Scholar]
  26. 26.
    Cuartero J, Bolarín MC, Asíns MJ, Moreno V. 2006. Increasing salt tolerance in the tomato. J. Exp. Bot. 57:1045–58
    [Google Scholar]
  27. 27.
    Di Gioia F, Signore A, Serio F, Santamaria P. 2013. Grafting improves tomato salinity tolerance through sodium partitioning within the shoot. HortScience 48:855–62
    [Google Scholar]
  28. 28.
    Dry IB, Davies C, Dunlevy JD, Smith HM, Thomas MR et al. 2022. Development of new wine-, dried- and tablegrape scions and rootstocks for Australian viticulture: past, present and future. Aust. J. Grape Wine Res. 28:177–95
    [Google Scholar]
  29. 29.
    Elsheery NI, Helaly MN, Omar SA, John SVS, Zabochnicka-Swiątek M et al. 2020. Physiological and molecular mechanisms of salinity tolerance in grafted cucumber. South Afr. J. Bot. 130:90–102
    [Google Scholar]
  30. 30.
    Eslami S, Hoekstra P, Minderhoud PSJ, Trung NN, Hoch JM et al. 2021. Projections of salt intrusion in a mega-delta under climatic and anthropogenic stressors. Commun. Earth Environ. 2:142
    [Google Scholar]
  31. 31.
    Estañ MT, Martinez-Rodriguez MM, Perez-Alfocea F, Flowers TJ, Bolarin MC. 2004. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J. Exp. Bot. 56:703–12
    [Google Scholar]
  32. 32.
    Estañ MT, Villalta I, Bolarín MC, Carbonell EA, Asins MJ. 2008. Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks. Theor. Appl. Genet. 118:305–12
    [Google Scholar]
  33. 33.
    Farm Online. 2018. New saltbush variety helps plug feed gap. Farm Online Nov. 5. https://www.farmonline.com.au/story/5742371/new-saltbush-variety-helps-plug-feed-gap/
    [Google Scholar]
  34. 34.
    Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytol. 179:945–63
    [Google Scholar]
  35. 35.
    Flowers TJ, Flowers SA, Hajibagheri MA, Yeo AR. 1990. Salt tolerance in the halophytic wild rice. Porteresia coarctata Tateoka. New Phytol. 114:675–84
    [Google Scholar]
  36. 36.
    Flowers TJ, Troke PF, Yeo AR. 1977. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28:89–121
    [Google Scholar]
  37. 37.
    Food Agric. Organ. U.N. (FAO). 2004. What is happening to agrobiodiversity?. Building on Gender, Agrobiodiversity and Local Knowledge Rome: Food Agric. Organ. U.N https://www.fao.org/3/y5609e/y5609e02.htm#bm2
    [Google Scholar]
  38. 38.
    Food Agric. Organ. U.N. (FAO). 2022. Global Map of Salt-affected Soils (GSASmap. Food and Agriculture Organization of the United Nations. https://www.fao.org/global-soil-partnership/gsasmap/en
    [Google Scholar]
  39. 39.
    Foolad MR. 2004. Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Organ Cult. 76:101–19
    [Google Scholar]
  40. 40.
    Fu X-Z, Khan EU, Hu S-S, Fan Q-J, Liu J-H. 2011. Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Environ. Exp. Bot. 74:106–13
    [Google Scholar]
  41. 41.
    Gaikwad KB, Singh N, Kaur P, Rani S, Babu HP, Singh K 2021. Deployment of wild relatives for genetic improvement in rice (Oryza sativa). Plant Breed. 140:23–52
    [Google Scholar]
  42. 42.
    Gallasch P, Dalton G. 1989. Selecting salt-tolerant citrus rootstocks. Aust. J. Agric. Res. 40:137–44
    [Google Scholar]
  43. 43.
    Gao W, Schlüter S, Blaser SRGA, Shen J, Vetterlein D. 2019. A shape-based method for automatic and rapid segmentation of roots in soil from X-ray computed tomography images: Rootine. Plant Soil 441:643–55
    [Google Scholar]
  44. 44.
    Gautam R, Singh R, Mishra B, Qadar A, Gurbachan S et al. 2009. Basmati CSR 30 (Yamini)—the first salt tolerant basmati variety is a boon to the farmers. Tech. Bull., Cent. Soil Salin. Res. Inst., Karnal, India
  45. 45.
    Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L et al. 2018. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 13:2944–63
    [Google Scholar]
  46. 46.
    Greenway H, Munns R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31:149–90
    [Google Scholar]
  47. 47.
    Gregorio GB, Senadhira D. 1993. Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theor. Appl. Genet. 86:333–38
    [Google Scholar]
  48. 48.
    Guan R, Qu Y, Guo Y, Yu L, Liu Y et al. 2014. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J. 80:937–50
    [Google Scholar]
  49. 49.
    Gul B, Ansari R, Flowers TJ, Khan MA. 2013. Germination strategies of halophyte seeds under salinity. Environ. Exp. Bot. 92:4–18
    [Google Scholar]
  50. 50.
    Haider M, Hossain M. 2013. Impact of salinity on livelihood strategies of farmers. J. Soil Sci. Plant Nutr. 13:417–31
    [Google Scholar]
  51. 51.
    Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:463–99
    [Google Scholar]
  52. 52.
    Hopmans JW, Qureshi AS, Kisekka I, Munns R, Grattan SR et al. 2021. Critical knowledge gaps and research priorities in global soil salinity. Adv. Agron. 169:1–191
    [Google Scholar]
  53. 53.
    Houston K, Qiu J, Wege S, Hrmova M, Oakey H et al. 2020. Barley sodium content is regulated by natural variants of the Na+ transporter HvHKT1;5. Commun. Biol. 3:258
    [Google Scholar]
  54. 54.
    Islam MR, Salam MA, Bhuiyan MAR, Rahman MA, Yasmeen R et al. 2008. BRRI Dhan 47: a salt tolerant rice variety for Boro season isolated through participatory variety selection. Int. J. Biol. Res. 5:1–6
    [Google Scholar]
  55. 55.
    Ismail AM, Heuer S, Thomson MJ, Wissuwa M. 2007. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol. 65:547–70
    [Google Scholar]
  56. 56.
    Ismail AM, Horie T. 2017. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu. Rev. Plant Biol. 68:405–34
    [Google Scholar]
  57. 57.
    James RA, Blake C, Zwart AB, Hare RA, Rathjen AJ, Munns R. 2012. Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Funct. Plant Biol. 39:609–18
    [Google Scholar]
  58. 58.
    Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B et al. 2017. The genome of Chenopodium quinoa. Nature 542:307–12
    [Google Scholar]
  59. 59.
    Jelodar NB, Blackhall NW, Hartman TPV, Brar DS, Khush G et al. 1999. Intergeneric somatic hybrids of rice [Oryza sativa L. (+) Porteresia coarctata (Roxb.) Tateoka]. Theor. Appl. Genet. 99:570–77
    [Google Scholar]
  60. 60.
    Kumar P, Sharma PK. 2020. Soil salinity and food security in India. Front. Sustain. Food Syst. 4:533781
    [Google Scholar]
  61. 61.
    Li T, Yang X, Yu Y, Si X, Zhai X et al. 2018. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36:1160–63
    [Google Scholar]
  62. 62.
    Li Y, Zhang Y, Feng F, Liang D, Cheng L et al. 2010. Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell Tissue Organ Cult. 102:337–45
    [Google Scholar]
  63. 63.
    Lv S, Jiang P, Chen X, Fan P, Wang X, Li Y 2012. Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiol. Biochem. 51:47–52
    [Google Scholar]
  64. 64.
    Lyon N. 2021. Awnless wheats provide option to mitigate frost risk. Grain Central Sept. 20. https://www.graincentral.com/cropping/awnless-wheats-provide-option-to-mitigate-frost-risk/
    [Google Scholar]
  65. 65.
    Maas EV, Grattan SR. 1999. Crop yields as affected by salinity. Agricultural Drainage RW Skaggs, J van Schilfgaarde 55–108. Madison, WI: Am. Soc. Agron. Inc.
    [Google Scholar]
  66. 66.
    McDonald GK, Taylor JD, Verbyla A, Kuchel H. 2013. Assessing the importance of subsoil constraints to yield of wheat and its implications for yield improvement. Crop Pasture Sci. 63:1043–65
    [Google Scholar]
  67. 67.
    Mills D, Robinson K, Hodges TK 1985. Sodium and potassium fluxes and compartmentation in roots of atriplex and oat. Plant Physiol. 78:500–9
    [Google Scholar]
  68. 68.
    Mishra B, Singh RK, Senadhira D 2008. Advances in breeding salt-tolerant rice varieties. Advances in Rice Genetics (Part 2) GS Khush, DS Brar, B Hardy 5–7. Singapore: World Sci. Publ. Co.
    [Google Scholar]
  69. 69.
    Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ et al. 2009. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type–specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–78
    [Google Scholar]
  70. 70.
    Morton MJL, Awlia M, Al-Tamimi N, Saade S, Pailles Y et al. 2019. Salt stress under the scalpel—dissecting the genetics of salt tolerance. Plant J. 97:148–63
    [Google Scholar]
  71. 71.
    Mudge K, Janick J, Scofield S, Goldschmidt EE. 2009. A history of grafting. Horticultural Reviews J Janick 437–93. Hoboken, NJ: John Wiley
    [Google Scholar]
  72. 72.
    Mujeeb-Kazi A, Munns R, Rasheed A, Ogbonnaya FC, Ali N et al. 2019. Breeding strategies for structuring salinity tolerance in wheat. Adv. Agron. 155:121–87
    [Google Scholar]
  73. 73.
    Multani DS, Jena KK, Brar DS, de Los Reyes BG, Angeles ER, Khush GS 1994. Development of monosomic alien addition lines and introgression of genes from Oryza australiensis Domin. to cultivated rice O. sativa L. Theor. Appl. Genet. 88:102–9
    [Google Scholar]
  74. 74.
    Munns R. 2007. Utilizing genetic resources to enhance productivity of salt-prone land. CABI Rev. https://doi.org/10.1079/PAVSNNR20072009
    [Google Scholar]
  75. 75.
    Munns R, Day DA, Fricke W, Watt M, Arsova B et al. 2020. Energy costs of salt tolerance in crop plants. New Phytol. 225:1072–90
    [Google Scholar]
  76. 76.
    Munns R, James RA, Läuchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57:1025–43
    [Google Scholar]
  77. 77.
    Munns R, James RA, Xu B, Athman A, Conn SJ et al. 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat. Biotech. 30:360–64
    [Google Scholar]
  78. 78.
    Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59:651–81
    [Google Scholar]
  79. 79.
    Naeem M, Iqbal M, Shakeel A, Ul-Allah S, Hussain M et al. 2020. Genetic basis of ion exclusion in salinity stressed wheat: implications in improving crop yield. Plant Growth Regul. 92:479–96
    [Google Scholar]
  80. 80.
    Negrão S, Schmöckel SM, Tester M. 2016. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 119:1–11
    [Google Scholar]
  81. 81.
    Norman H, Dowd A-M 2021. Anameka™: elite saltbush for livestock and landscape benefits Rep. Aust. Natl. Sci. Agency, CSIRO, Canberra https://www.csiro.au/en/about/corporate-governance/ensuring-our-impact/impact-case-studies/future-industries/anameka-saltbush
    [Google Scholar]
  82. 82.
    Nutan KK, Kushwaha HR, Singla-Pareek SL, Pareek A 2017. Transcription dynamics of Saltol QTL localized genes encoding transcription factors, reveals their differential regulation in contrasting genotypes of rice. Funct. Integr. Genom. 17:69–83
    [Google Scholar]
  83. 83.
    Osman KT. 2018. Saline and sodic soils. Management of Soil Problems255–98. Cham, Switz.: Springer
    [Google Scholar]
  84. 84.
    Pailles Y. 2017. A study of wild tomatoes endemic to the Galapagos Islands as a source for salinity tolerance traits PhD Diss. King Abdullah Univ. Sci. Technol., Thuwal, Kingd. Saudi Arab.
    [Google Scholar]
  85. 85.
    Pailles Y, Awlia M, Julkowska M, Passone L, Zemmouri K et al. 2019. Diverse traits contribute to salinity tolerance of wild tomato seedlings from the Galapagos Islands. Plant Physiol. 182:534–46
    [Google Scholar]
  86. 86.
    Patil G, Do T, Vuong TD, Valliyodan B, Lee J-D et al. 2016. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci. Rep. 6:19199
    [Google Scholar]
  87. 87.
    Pattanaik C, Reddy CS, Dhal NK, Das R. 2008. Utilisation of mangrove forests in Bhitarkanika wildlife sanctuary, Orissa. Indian J. Trad. Knowl. 7:598–603
    [Google Scholar]
  88. 88.
    Plett D, Safwat G, Gilliham M, Skrumsager Møller I, Roy S et al. 2010. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLOS ONE 5:e12571
    [Google Scholar]
  89. 89.
    Razzaq A, Saleem F, Wani SH, Abdelmohsen SAM, Alyousef HA et al. 2021. De-novo domestication for improving salt tolerance in crops. Front. Plant Sci. 12:681367
    [Google Scholar]
  90. 90.
    Reeves G, Tripathi A, Singh P, Jones MRW, Nanda AK et al. 2022. Monocotyledonous plants graft at the embryonic root–shoot interface. Nature 602:280–86
    [Google Scholar]
  91. 91.
    Ren Z-H, Gao J-P, Li L-G, Cai X-L, Huang W et al. 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37:1141–46
    [Google Scholar]
  92. 92.
    Richards RA. 1992. Increasing salinity tolerance of grain crops: Is it worthwhile?. Plant Soil 146:89–98
    [Google Scholar]
  93. 93.
    Richey AS, Thomas BF, Lo M-H, Reager JT, Famiglietti JS et al. 2015. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51:5217–38
    [Google Scholar]
  94. 94.
    Rinaldo AR, Cavallini E, Jia Y, Moss SMA, McDavid DAJ et al. 2015. A grapevine anthocyanin acyltransferase, transcriptionally regulated by VvMYBA, can produce most acylated anthocyanins present in grape skins. Plant Physiol. 169:1897–916
    [Google Scholar]
  95. 95.
    Rodell M, Famiglietti JS, Wiese DN, Reager JT, Beaudoing HK et al. 2018. Emerging trends in global freshwater availability. Nature 557:651–59
    [Google Scholar]
  96. 96.
    Rodell M, Velicogna I, Famiglietti JS. 2009. Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002
    [Google Scholar]
  97. 97.
    Roy SJ, Negrão S, Tester M. 2014. Salt resistant crop plants. Curr. Opin. Biotechnol. 26:115–24
    [Google Scholar]
  98. 98.
    Rush DW, Epstein E. 1976. Genotypic responses to salinity: differences between salt-sensitive and salt-tolerant genotypes of the tomato. Plant Physiol. 57:162–66
    [Google Scholar]
  99. 99.
    Saade S, Brien C, Pailles Y, Berger B, Shahid M et al. 2020. Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages. PLOS ONE 15:e0236037
    [Google Scholar]
  100. 100.
    Saade S, Maurer A, Shahid M, Oakey H, Schmöckel SM et al. 2016. Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci. Rep. 6:32586
    [Google Scholar]
  101. 101.
    Saeed A, Saleem MF, Zakria M, Anjum SA, Shakeel A, Saeed N. 2011. Genetic variability of NaCl tolerance in tomato. Genet. Mol. Res. 10:31371–82
    [Google Scholar]
  102. 102.
    Salazar OB. 2017. Identification of proteins involved in salinity tolerance in Salicornia bigelovii PhD Diss. King Abdullah Univ. Sci. Technol., Thuwal, Kingd. Saudi Arab.
    [Google Scholar]
  103. 103.
    Salman-Minkov A, Sabath N, Mayrose I. 2016. Whole-genome duplication as a key factor in crop domestication. Nat. Plants 2:16115
    [Google Scholar]
  104. 104.
    Santos J, Al-Azzawi M, Aronson J, Flowers TJ. 2016. eHALOPH a database of salt-tolerant plants: helping put halophytes to work. Plant Cell Physiol. 57:e10
    [Google Scholar]
  105. 105.
    Sanwal SK, Mann A, Kumar A, Kesh H, Kaur G et al. 2022. Salt tolerant eggplant rootstocks modulate sodium partitioning in tomato scion and improve performance under saline conditions. Agriculture 12:183
    [Google Scholar]
  106. 106.
    Saranga Y, Cahaner A, Zamir D, Marani A, Rudich J. 1992. Breeding tomatoes for salt tolerance: inheritance of salt tolerance and related traits in interspecific populations. Theor. Appl. Genet. 84:390–96
    [Google Scholar]
  107. 107.
    Sedeek KEM, Mahas A, Mahfouz M. 2019. Plant genome engineering for targeted improvement of crop traits. Front. Plant Sci. 10:114
    [Google Scholar]
  108. 108.
    Sengupta S, Majumder AL. 2010. Porteresia coarctata (Roxb.) Tateoka, a wild rice: a potential model for studying salt-stress biology in rice. Plant Cell Environ. 33:526–42
    [Google Scholar]
  109. 109.
    Setter TL, Waters I, Stefanova K, Munns R, Barrett-Lennard EG. 2016. Salt tolerance, date of flowering and rain affect the productivity of wheat and barley on rainfed saline land. Field Crops Res. 194:31–42
    [Google Scholar]
  110. 110.
    Shahbaz M, Ashraf M. 2013. Improving salinity tolerance in cereals. Crit. Rev. Plant Sci. 32:237–49
    [Google Scholar]
  111. 111.
    Shavrukov Y, Bovill J, Afzal I, Hayes JE, Roy SJ et al. 2013. HVP10 encoding V-PPase is a prime candidate for the barley HvNax3 sodium exclusion gene: evidence from fine mapping and expression analysis. Planta 237:1111–22
    [Google Scholar]
  112. 112.
    Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ et al. 2010. HvNax3—a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Funct. Integr. Genom. 10:277–91
    [Google Scholar]
  113. 113.
    Simmonds NW, Arthur AE. 2003. Crop improvement | plant breeding, principles. Encyclopedia of Applied Plant Sciences B Thomas 105–12. Oxford, UK: Elsevier
    [Google Scholar]
  114. 114.
    Singh A, Saini ML, Behl RK. 2003. Screening of citrus rootstocks for salt tolerance in semi-arid climates—a review. Tropics 13:53–66
    [Google Scholar]
  115. 115.
    Singh H, Kumar P, Kumar A, Kyriacou MC, Colla G, Rouphael Y. 2020. Grafting tomato as a tool to improve salt tolerance. Agronomy 10:263
    [Google Scholar]
  116. 116.
    Singh RK, Kota S, Flowers TJ. 2021. Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. Theor. Appl. Genet. 134:3495–533
    [Google Scholar]
  117. 117.
    Singh RK, Mishra B. 2006. First basmati rice variety for sodicity stress. Indian Farming 56:3–6
    [Google Scholar]
  118. 118.
    Singh YP, Mishra VK, Sharma DK, Singh S. 2016. Production technology of CSR–43: a short duration salt tolerant rice variety Rep., Cent. Soil Salin. Res/Inst. and EC-IFAD, Lucknow, India https://doi.org/10.13140/RG.2.1.3974.1526
    [Crossref] [Google Scholar]
  119. 119.
    Singh YP, Mishra VK, Singh S, Sharma DK, Singh D et al. 2016. Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices. Field Crops Res. 190:82–90
    [Google Scholar]
  120. 120.
    Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115:433–47
    [Google Scholar]
  121. 121.
    Smith SE, Johnson DW, Conta DM, Hotchkiss JR. 1994. Using climatological, geographical, and taxonomic information to identify sources of mature-plant salt tolerance in alfalfa. Crop Sci. 34:690–94
    [Google Scholar]
  122. 122.
    Solis CA, Yong MT, Vinarao R, Jena K, Holford P et al. 2020. Back to the wild: on a quest for donors toward salinity tolerant rice. Front. Plant Sci. 11:323
    [Google Scholar]
  123. 123.
    Tester M, Davenport R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91:503–27
    [Google Scholar]
  124. 124.
    van Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 71:403–33
    [Google Scholar]
  125. 125.
    Wang W, He A, Jiang G, Sun H, Jiang M et al. 2020. Ratoon rice technology: a green and resource-efficient way for rice production. Adv. Agron. 159:135–67
    [Google Scholar]
  126. 126.
    Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP et al. 2016. Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci. 21:418–37
    [Google Scholar]
  127. 127.
    Willett W, Rockström J, Loken B, Springmann M, Lang T et al. 2019. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393:447–92
    [Google Scholar]
  128. 128.
    Yensen NP Halophyte uses for the twenty-first century. Ecophysiology of High Salinity Tolerant Plants MA Khan, DJ Weber 367–96. Dordrecht, Neth: Springer
    [Google Scholar]
  129. 129.
    Yeo AR. 1981. Salt tolerance in the halophyte Suaeda maritima L. Dum.: intracellular compartmentation of ions. J. Exp. Bot. 32:487–97
    [Google Scholar]
  130. 130.
    Yichie Y, Brien C, Berger B, Roberts TH, Atwell BJ. 2018. Salinity tolerance in Australian wild Oryza species varies widely and matches that observed in O. sativa. Rice 11:66
    [Google Scholar]
  131. 131.
    Yu H, Lin T, Meng X, Du H, Zhang J et al. 2021. A route to de novo domestication of wild allotetraploid rice. Cell 184:1156–70.e14
    [Google Scholar]
  132. 132.
    Yu P, Li X, Yuan L, Li C. 2014. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment. Physiol. Plant 150:133–44
    [Google Scholar]
  133. 133.
    Zekri M, Parsons LR. 1992. Salinity tolerance of citrus rootstocks: effects of salt on root and leaf mineral concentrations. Plant Soil 147:171–81
    [Google Scholar]
  134. 134.
    Zeng Y, Li Q, Wang H, Zhang J, Du J-J et al. 2018. Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress. Plant Biotechnol. J. 16:310–21
    [Google Scholar]
  135. 135.
    Zerai DB, Glenn EP, Chatervedi R, Lu Z, Mamood AN et al. 2010. Potential for the improvement of Salicornia bigelovii through selective breeding. Ecol. Eng. 36:730–39
    [Google Scholar]
  136. 136.
    Zhang X, Kong X, Zhou R, Zhang Z, Zhang J et al. 2020. Harnessing perennial and indeterminant growth habits for ratoon cotton (Gossypium spp.) cropping. Ecosyst. Health Sustain. 6:1715264
    [Google Scholar]
  137. 137.
    Zhao J, Cheng Y, Liu Y, Xiang Y, Huang Y, Wang X. 2020. Effects of salt stress on growth of Oceanrice 86 and absorption, transportation and distribution of mineral elements. J. Huazhong Agric. Univ. 39:7–14
    [Google Scholar]
  138. 138.
    Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH et al. 2018. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36:1211–16
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-061422-104322
Loading
/content/journals/10.1146/annurev-arplant-061422-104322
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error