1932

Abstract

Plant roots associate with diverse microbes (including bacteria, fungi, archaea, protists, and viruses) collectively called the root-associated microbiome. Among them, mycorrhizal fungi colonize host roots and improve their access to nutrients, usually phosphorus and nitrogen. In exchange, plants deliver photosynthetic carbon to the colonizing fungi. This nutrient exchange affects key soil processes, the carbon cycle, and plant health and therefore has a strong influence on the plant and microbe ecosystems. The framework of nutrient exchange and regulation between host plant and arbuscular mycorrhizal fungi has recently been established. The local and systemic regulation of mycorrhizal symbiosis by plant nutrient status and the autoregulation of mycorrhizae are strategies by which plants maintain a stabilizing free-market symbiosis. A better understanding of the synergistic effects between mycorrhizal fungi and mycorrhizosphere microorganisms is an essential precondition for their use as biofertilizers and bioprotectors for sustainable agriculture and forestry management.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-061722-090342
2023-05-22
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-061722-090342.html?itemId=/content/journals/10.1146/annurev-arplant-061722-090342&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdelmalik AM, Alsharani TS, Al-Qarawi AA, Ahmed AI, Aref IM. 2020. Response of growth and drought tolerance of Acacia seyal Del. seedlings to arbuscular mycorrhizal fungi. Plant Soil Environ 6:264–71
    [Google Scholar]
  2. 2.
    Adriano-Anaya ML, Salvador-Figueroa M, Ocampo JA, García-Romera I. 2006. Hydrolytic enzyme activities in maize (Zea mays) and sorghum (Sorghum bicolor) roots inoculated with Gluconacetobacter diazotrophicus and Glomus intraradices. Soil Biol. Biochem. 38:879–86
    [Google Scholar]
  3. 3.
    Akiyama K, Matsuzaki K, Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–27Identifies that strigolactones are host plant–derived molecular signals triggering fungal hyphae branching.
    [Google Scholar]
  4. 4.
    Alexander T, Meier R, Toth R, Weber HC. 1988. Dynamics of arbuscule development and degeneration in mycorrhizas of Triticumaestivum L. and Avena sativa L. with reference to Zea mays L. New Phytol 110:363–70
    [Google Scholar]
  5. 5.
    Al-Karaki GN, Al-Raddad A. 1997. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83–88
    [Google Scholar]
  6. 6.
    Allen JW, Shachar-Hill Y. 2009. Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149:549–60
    [Google Scholar]
  7. 7.
    Andrino A, Guggenberger G, Kernchen S, Mikutta R, Sauheitl L, Boy J. 2021. Production of organic acids by arbuscular mycorrhizal fungi and their contribution in the mobilization of phosphorus bound to iron oxides. Front Plant Sci 12:661842
    [Google Scholar]
  8. 8.
    Balzergue C, Chabaud M, Barker DG, Becard G, Rochange SF. 2013. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Front Plant Sci 4:426
    [Google Scholar]
  9. 9.
    Balzergue C, Puech-Pagés V, Becard G, Rochange SF. 2011. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J. Exp. Bot. 62:1049–60
    [Google Scholar]
  10. 10.
    Barceló M, van Bodegom PM, Tedersoo L, Olsson PA, Soudzilovskaia NA. 2022. Mycorrhizal tree impacts on topsoil biogeochemical properties in tropical forests. J. Ecol. 110:1271–82
    [Google Scholar]
  11. 11.
    Becquer A, Trap J, Irshad U, Ali MA, Claude P 2014. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Front. Plant Sci. 5:548
    [Google Scholar]
  12. 12.
    Bennett AE, Groten K. 2022. The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annu. Rev. Plant Biol. 73:649–72
    [Google Scholar]
  13. 13.
    Besserer A, Puech-Pagés V, Kiefer P, Gomez-Roldan V, Jauneau A et al. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLOS Biol 4:1239–47
    [Google Scholar]
  14. 14.
    Blanke V, Renker C, Wagner M, Fullner K, Held M et al. 2005. Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–92
    [Google Scholar]
  15. 15.
    Bonfante P, Genre A. 2010. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1:48
    [Google Scholar]
  16. 16.
    Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN. 2013. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol 199:188–202
    [Google Scholar]
  17. 17.
    Branscheid A, Sieh D, Pant BD, May P, Devers EA et al. 2010. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol. Plant Microbe Interact. 23:915–26
    [Google Scholar]
  18. 18.
    Breuillin-Sessoms F, Floss DS, Gomez SK, Pumplin N, Ding Y et al. 2015. Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3. Plant Cell 27:1352–66
    [Google Scholar]
  19. 19.
    Bücking H, Heyser W. 2003. Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition. Mycorrhiza 13:59–68
    [Google Scholar]
  20. 20.
    Bücking H, Liepold E, Ambilwade P. 2012. The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. Plant Science NK Dhal, SC Sahu 107–38. London: IntechOpen
    [Google Scholar]
  21. 21.
    Burke DJ, Carrino-Kyker SR. 2021. The influence of mycorrhizal fungi on rhizosphere bacterial communities in forests. Forest Microbiology, Vol. 1: Tree Microbiome: Phyllosphere, Endosphere and Rhizosphere FO Asiegbu, A Kovalchuk 257–75. Cambridge, MA: Academic
    [Google Scholar]
  22. 22.
    Carotenuto G, Chabaud M, Miyata K, Capozzi M, Takeda N et al. 2017. The rice LysM receptor-like kinase OsCERK1 is required for the perception of short-chain chitin oligomers in arbuscular mycorrhizal signaling. New Phytol 214:1440–46
    [Google Scholar]
  23. 23.
    Carteron A, Vellend M, Laliberté E. 2022. Mycorrhizal dominance reduces local tree species diversity across US forests. Nat. Ecol. Evol 6:370–74
    [Google Scholar]
  24. 24.
    Casieri L, Ait Lahmidi N, Doidy J, Veneault-Fourrey C, Migeon A et al. 2013. Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23:597–625
    [Google Scholar]
  25. 25.
    Chalot M, Blaudez D, Brun A. 2006. Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci 11:263–66
    [Google Scholar]
  26. 26.
    Charpentier M, Bredemeier R, Wanner G, Takeda N, Schleiff E, Parniske M. 2008. Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell 20:3467–79
    [Google Scholar]
  27. 27.
    Charpentier M, Sun J, Vaz Martins T, Radhakrishnan GV, Findlay K et al. 2016. Nuclear-localized cyclic nucleotide–gated channels mediate symbiotic calcium oscillations. Science 352:1102–5
    [Google Scholar]
  28. 28.
    Chen J, Zhang H, Zhang X, Tang M. 2017. Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis. Front. Plant Sci. 8:1739
    [Google Scholar]
  29. 29.
    Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A et al. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–18
    [Google Scholar]
  30. 30.
    Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol. Plant Microbe Interact. 11:1017–28
    [Google Scholar]
  31. 31.
    Dai H, Zhang X, Zhao B, Shi J, Zhang C et al. 2022. Colonization of mutualistic mycorrhizal and parasitic blast fungi requires OsRAM2-regulated fatty acid biosynthesis in rice. Mol. Plant Microbe Interact. 35:178–86
    [Google Scholar]
  32. 32.
    Das D, Paries M, Hobecker K, Gigl M, Dawid C et al. 2022. PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis. Nat. Commun. 13:477
    [Google Scholar]
  33. 33.
    Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L et al. 2015. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–73
    [Google Scholar]
  34. 34.
    de Bary HA 1866. Morphologie und Physiologie der Pilze, Flechten und Myxomyceten Leipzig, Ger: W. Engelmann
    [Google Scholar]
  35. 35.
    Deveau A, Palin B, Delaruelle C, Peter M, Kohler A et al. 2007. The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 175:743–55
    [Google Scholar]
  36. 36.
    Dietz S, von Bülow J, Beitz E, Nehls U. 2011. The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: lessons for symbiotic functions. New Phytol 190:927–40
    [Google Scholar]
  37. 37.
    Dong J, Ma G, Sui L, Wei M, Satheesh V et al. 2019. Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis. Mol. Plant 12:1463–73
    [Google Scholar]
  38. 38.
    Drechsler N, Courty P-E, Brulé D, Kunze R. 2018. Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice. Mycorrhiza 28:93–100
    [Google Scholar]
  39. 39.
    Emmett BD, Lévesque-Tremblay V, Harrison MJ. 2021. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J 15:2276–88
    [Google Scholar]
  40. 40.
    Endre G, Kereszt A, Kevei Z, Mihacea S, Kaló P, Kiss GB. 2002. A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–66
    [Google Scholar]
  41. 41.
    Favre-Godal Q, Gourguillon L, Lordel-Madeleine S, Gindro K, Choisy P. 2020. Orchids and their mycorrhizal fungi: an insufficiently explored relationship. Mycorrhiza 30:5–22
    [Google Scholar]
  42. 42.
    Feng F, Sun J, Radhakrishnan GV, Lee T, Bozsóki Z et al. 2019. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nat. Commun. 10:5047
    [Google Scholar]
  43. 43.
    Fierer N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15:579–90
    [Google Scholar]
  44. 44.
    Figueiredo AF, Boy J, Guggenberger G. 2021. Common mycorrhizae network: a review of the theories and mechanisms behind underground interactions. Front. Fungal Biol. 2:735299
    [Google Scholar]
  45. 45.
    Fiorilli V, Vannini C, Ortolani F, Garcia-Seco D, Chiapello M et al. 2018. Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Sci. Rep 8:9625
    [Google Scholar]
  46. 46.
    Floss DS, Gomez SK, Park H-J, MacLean AM, Muller LM et al. 2017. A transcriptional program for arbuscule degeneration during AM symbiosis is regulated by MYB1. Curr. Biol. 27:1206–12
    [Google Scholar]
  47. 47.
    Floss DS, Levy JG, Levesque-Tremblay V, Pumplin N, Harrison MJ. 2013. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. PNAS 110:E5025–34
    [Google Scholar]
  48. 48.
    Foo E, Ross JJ, Jones WT, Reid JB. 2013. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann. Bot. 111:769–79
    [Google Scholar]
  49. 49.
    Founoune H, Duponnois R, A, Sall S, Branget I et al. 2002. Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytol 153:81–89
    [Google Scholar]
  50. 50.
    Frank AB. 1885. Ueber die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber. Dtsch. Bot. Ges. 3:128–45
    [Google Scholar]
  51. 51.
    Frank AB. 1887. Ueber neue Mycorhiza-Formen. Ber. Dtsch. Bot. Ges. 5:395–409
    [Google Scholar]
  52. 52.
    Frey-Klett P, Garbaye J, Tarkka M. 2007. The mycorrhiza helper bacteria revisited. New Phytol 176:22–36
    [Google Scholar]
  53. 53.
    Garcia K, Zimmermann SD. 2014. The role of mycorrhizal associations in plant potassium nutrition. Front. Plant Sci 5:337
    [Google Scholar]
  54. 54.
    Ge S, He L, Jin L, Xia X, Li L et al. 2022. Light-dependent activation of HY5 promotes mycorrhizal symbiosis in tomato by systemically regulating strigolactone biosynthesis. New Phytol 233:1900–14Reveals a phyB-HY5-SL systemic signaling cascade regulating arbuscular mycorrhizal symbiosis.
    [Google Scholar]
  55. 55.
    Genre A, Chabaud M, Balzergue C, Puech-Pagés V, Novero M et al. 2013. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202
    [Google Scholar]
  56. 56.
    Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P. 2008. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–20
    [Google Scholar]
  57. 57.
    Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG. 2005. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–99Describes the cellular process of AM fungi development within root cells.
    [Google Scholar]
  58. 58.
    Genre A, Lanfranco L, Perotto S, Bonfante P. 2020. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 18:649–60
    [Google Scholar]
  59. 59.
    Giovannetti M, Tolosano M, Volpe V, Kopriva S, Bonfante P. 2014. Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol 204:609–19
    [Google Scholar]
  60. 60.
    Gobbato E, Marsh JF, Vernie T, Wang E, Maillet F et al. 2012. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr. Biol. 22:2236–41
    [Google Scholar]
  61. 61.
    Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagés V, Dun EA et al. 2008. Strigolactone inhibition of shoot branching. Nature 455:189–94
    [Google Scholar]
  62. 62.
    Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD et al. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–23Elucidates nitrogen transfer from extraradical mycelium to intraradical mycelium using stable isotope labelling.
    [Google Scholar]
  63. 63.
    Groth M, Takeda N, Perry J, Uchida H, Draxl S et al. 2010. NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 22:2509–26
    [Google Scholar]
  64. 64.
    Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P. 2009. A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83
    [Google Scholar]
  65. 65.
    Gupta SK, Chakraborty AP. 2020. Mycorrhiza helper bacteria: future prospects. Int. J. Res. Rev. 7:387–91
    [Google Scholar]
  66. 66.
    Gutjahr C, Gobbato E, Choi J, Riemann M, Johnson MG et al. 2015. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350:1521–24
    [Google Scholar]
  67. 67.
    Gutjahr C, Parniske M. 2013. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu. Rev. Cell Dev. Biol. 29:593–617
    [Google Scholar]
  68. 68.
    Harrison MJ, Dewbre GR, Liu J. 2002. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–29
    [Google Scholar]
  69. 69.
    Hawkins H, George E 1999. Effect of plant nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiol. Plant. 105:694–700
    [Google Scholar]
  70. 70.
    He J, Zhang C, Dai H, Liu H, Zhang X et al. 2019. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Mol. Plant 12:1561–76Identifies the mycorrhizal factor receptor in rice and demonstrates its function in AM symbiosis.
    [Google Scholar]
  71. 71.
    Heck C, Kuhn H, Heidt S, Walter S, Rieger N, Requena N. 2016. Symbiotic fungi control plant root cortex development through the novel GRAS transcription factor MIG1. Curr. Biol. 26:2770–78
    [Google Scholar]
  72. 72.
    Hijikata N, Murase M, Tani C, Ohtomo R, Osaki M, Ezawa T. 2010. Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. New Phytol 186:285–89
    [Google Scholar]
  73. 73.
    Ho I, Trappe JM. 1973. Translocation of 14C from Festuca plants to their endomycorrhizal fungi. Nat. New Biol. 244:30–31
    [Google Scholar]
  74. 74.
    Hobbie EA. 2006. Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87:563–69
    [Google Scholar]
  75. 75.
    Hodge A, Campbell CD, Fitter AH. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–99
    [Google Scholar]
  76. 76.
    Högberg MN, Högberg P. 2002. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154:791–95
    [Google Scholar]
  77. 77.
    Hortal S, Plett KL, Plett JM, Cresswell T, Johansen M et al. 2017. Role of plant–fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME J 11:2666–76
    [Google Scholar]
  78. 78.
    Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z et al. 2019. Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat. Plants 5:401–13
    [Google Scholar]
  79. 79.
    Huang D, Ma M, Wang Q, Zhang M, Jing G et al. 2020. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiol. Biochem. 149:245–55
    [Google Scholar]
  80. 80.
    Ivanov S, Austin J II, Berg HR, Harrison MJ 2019. Extensive membrane systems at the host–arbuscular mycorrhizal fungus interface. Nat. Plants 5:194–203
    [Google Scholar]
  81. 81.
    Jargeat P, Rekangalt D, Verner M-C, Gay G, Debaud J-C et al. 2003. Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr. Genet. 43:199–205
    [Google Scholar]
  82. 82.
    Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD et al. 2011. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant J 68:954–65
    [Google Scholar]
  83. 83.
    Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ. 2007. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. PNAS 104:1720–25
    [Google Scholar]
  84. 84.
    Jiang F, Zhang L, Zhou J, George TS, Feng G. 2021. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol 230:304–15Confirms the trophic interactions between AM fungi and MHBs for the exploitation of organic P in discrete soil patches.
    [Google Scholar]
  85. 85.
    Jiang Y, Wang W, Xie Q, Liu N, Liu L et al. 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–75Together with Reference 117, shows that plant hosts provide carbon mainly in the form of fatty acids rather than sugars to AM fungi.
    [Google Scholar]
  86. 86.
    Jiang Y, Xie Q, Wang W, Yang J, Zhang X et al. 2018. Medicago AP2-domain transcription factor WRI5a is a master regulator of lipid biosynthesis and transfer during mycorrhizal symbiosis. Mol. Plant 11:1344–59
    [Google Scholar]
  87. 87.
    Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y. 2005. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–96
    [Google Scholar]
  88. 88.
    Jin Y, Liu H, Luo D, Yu N, Dong W et al. 2016. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nat. Commun. 7:12433
    [Google Scholar]
  89. 89.
    Johansen A, Finlay RD, Olsson PA. 1996. Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 133:705–12
    [Google Scholar]
  90. 90.
    Kadowaki K, Yamamoto S, Sato H, Tanabe AS, Hidaka A, Toju H. 2018. Mycorrhizal fungi mediate the direction and strength of plant–soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Commun. Biol. 1:196
    [Google Scholar]
  91. 91.
    Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH et al. 2006. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. PNAS 103:359–64
    [Google Scholar]
  92. 92.
    Karlo M, Boschiero C, Landerslev KG, Blanco GS, Wen J et al. 2020. The CLE53-SUNN genetic pathway negatively regulates arbuscular mycorrhiza root colonization in Medicago truncatula. J. Exp. Bot. 71:4972–84
    [Google Scholar]
  93. 93.
    Kemppainen MJ, Alvarez Crespo MC, Pardo AG 2010. fHANT-AC genes of the ectomycorrhizal fungus Laccaria bicolor are not repressed by l-glutamine allowing simultaneous utilization of nitrate and organic nitrogen sources. Environ. Microbiol. Rep 2:541–53
    [Google Scholar]
  94. 94.
    Kemppainen M, Duplessis S, Martin F, Pardo AG. 2009. RNA silencing in the model mycorrhizal fungus Laccaria bicolor: gene knock-down of nitrate reductase results in inhibition of symbiosis with Populus. Environ. Microbiol. 11:1878–96
    [Google Scholar]
  95. 95.
    Kim S, Zeng W, Bernard S, Liao J, Venkateshwaran M et al. 2019. Ca2+-regulated Ca2+ channels with an RCK gating ring control plant symbiotic associations. Nat. Commun. 10:3703
    [Google Scholar]
  96. 96.
    Kobae Y, Hata S. 2010. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant Cell Physiol 51:341–53
    [Google Scholar]
  97. 97.
    Kobae Y, Kameoka H, Sugimura Y, Saito K, Ohtomo R et al. 2018. Strigolactone biosynthesis genes of rice are required for the punctual entry of arbuscular mycorrhizal fungi into the roots. Plant Cell Physiol 59:544–53
    [Google Scholar]
  98. 98.
    Kobae Y, Ohmori Y, Saito C, Yano K, Ohtomo R, Fujiwara T. 2016. Phosphate treatment strongly inhibits new arbuscule development but not the maintenance of arbuscule in mycorrhizal rice roots. Plant Physiol 171:566–79
    [Google Scholar]
  99. 99.
    Kohler A, Kuo A, Nagy LG, Morin E, Barry KW et al. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47:41015Extensive analysis of multiple ECM, ORM, and ERM fungal genomes elucidates the genetic bases of mycorrhizal lifestyle evolution.
    [Google Scholar]
  100. 100.
    Koide RT, Mosse B. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–63
    [Google Scholar]
  101. 101.
    Krajinski F, Courty P-E, Sieh D, Franken P, Zhang H et al. 2014. The H+-ATPase HA1 of Medicago truncatula is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis. Plant Cell 26:1808–17
    [Google Scholar]
  102. 102.
    Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M et al. 2012. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–44
    [Google Scholar]
  103. 103.
    Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A. 2012. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–84
    [Google Scholar]
  104. 104.
    Labbé JL, Weston DJ, Dunkirk N, Pelletier DA, Tuskan GA. 2014. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus. Front. Plant Sci. 5:579
    [Google Scholar]
  105. 105.
    Larsen PE, Sreedasyam A, Trivedi G, Podila GK, Cseke LJ, Collart FR. 2011. Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome. BMC Syst. Biol. 5:70
    [Google Scholar]
  106. 106.
    Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT. 2007. Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol 174:892–903
    [Google Scholar]
  107. 107.
    Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O et al. 2004. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–64
    [Google Scholar]
  108. 108.
    Li M, Liu K, Li Z, Lu H, Ye Q et al. 2022. Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy. Nat. Plants 8:373–88
    [Google Scholar]
  109. 109.
    Lioussanne L, Perreault F, Jolicoeur M, St-Arnaud M. 2010. The bacterial community of tomato rhizosphere is modified by inoculation with arbuscular mycorrhizal fungi but unaffected by soil enrichment with mycorrhizal root exudates or inoculation with Phytophthora nicotianae. Soil Biol. Biochem. 42:473–83
    [Google Scholar]
  110. 110.
    Liu J, Liu J, Liu J, Cui M, Huang Y et al. 2019. The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake. Plant Physiol 180:465–79
    [Google Scholar]
  111. 111.
    Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ. 2007. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–44
    [Google Scholar]
  112. 112.
    Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S et al. 2011. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–65
    [Google Scholar]
  113. 113.
    Loth-Pereda V, Orsini E, Courty P-E, Lota F, Kohler A et al. 2011. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiol 156:2141–54
    [Google Scholar]
  114. 114.
    Louarn J, Carbonne F, Delavault P, Bécard G, Rochange S. 2012. Reduced germination of Orobanche cumana seeds in the presence of arbuscular mycorrhizal fungi or their exudates. PLOS ONE 7:e49273
    [Google Scholar]
  115. 115.
    Louche J, Ali MA, Cloutier-Hurteau B, Sauvage F-X, Quiquampoix H, Plassard C. 2010. Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol. Ecol. 73:323–35
    [Google Scholar]
  116. 116.
    Lucic E, Veneault-Fourrey C, Kohler A, Martin F, Chalot M, Brun-Jacob A. 2008. A gene repertoire for nitrogen transporters in Laccaria bicolor. New Phytol 180:343–64
    [Google Scholar]
  117. 117.
    Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV et al. 2017. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–78Together with Reference 85, provides insight into the dependence of AM fungi on their hosts for fatty acids.
    [Google Scholar]
  118. 118.
    Maillet F, Poinsot V, Andre O, Puech-Pagés V, Haouy A et al. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63Identifies Myc-LCOs from AM fungi as mycorrhizal factors activating symbiotic response in root cells.
    [Google Scholar]
  119. 119.
    Medici A, Szponarski W, Dangeville P, Safi A, Dissanayake IM et al. 2019. Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants. Plant Cell 31:1171–84
    [Google Scholar]
  120. 120.
    Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H. 2005. Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709–15
    [Google Scholar]
  121. 121.
    Messinese E, Mun J-H, Yeun LH, Jayaraman D, Rougé P et al. 2007. A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol. Plant Microbe Interact. 20:912–21
    [Google Scholar]
  122. 122.
    Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA et al. 2004. A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. PNAS 101:4701–5
    [Google Scholar]
  123. 123.
    Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A et al. 2020. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11:5125
    [Google Scholar]
  124. 124.
    Morandi D, Sagan M, Prado-Vivant E, Duc G. 2000. Influence of genes determining supernodulation on root colonization by the mycorrhizal fungus Glomus mosseae in Pisum sativum and Medicago truncatula mutants. Mycorrhiza 10:37–42
    [Google Scholar]
  125. 125.
    Mosse B. 1953. Fructifications associates with mycorrhizal strawberry roots. Nature 171:974
    [Google Scholar]
  126. 126.
    Mosse B. 1962. The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J. Gen. Microbiol. 27:509–20
    [Google Scholar]
  127. 127.
    Mosse B. 1973. Plant growth responses to vesicular-arbuscular mycorrhiza. IV. In soil given additional phosphate. New Phytol 72:127–36
    [Google Scholar]
  128. 128.
    Müller LM, Flokova K, Schnabel E, Sun X, Fei Z et al. 2019. A CLE–SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. Nat. Plants 5:933–39Demonstrates that the CLE-SUNN module regulates arbuscular mycorrhizal symbiosis.
    [Google Scholar]
  129. 129.
    Nadal M, Sawers R, Naseem S, Bassin B, Kulicke C et al. 2017. An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nat. Plants 3:17073
    [Google Scholar]
  130. 130.
    Nanjareddy K, Blanco L, Arthikala MK, Affantrange XA, Sanchez F, Lara M. 2014. Nitrate regulates rhizobial and mycorrhizal symbiosis in common bean (Phaseolus vulgaris L.). J. Integr. Plant Biol. 56:281–98
    [Google Scholar]
  131. 131.
    Nehls U, Plassard C. 2018. Nitrogen and phosphate metabolism in ectomycorrhizas. New Phytol 220:1047–58
    [Google Scholar]
  132. 132.
    Nguyen NH, Bruns TD. 2015. The microbiome of Pinus muricata ectomycorrhizae: community assemblages, fungal species effects, and Burkholderia as important bacteria in multipartnered symbioses. Microb. Ecol. 69:914–21
    [Google Scholar]
  133. 133.
    Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D. 2014. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLOS ONE 9:e90841
    [Google Scholar]
  134. 134.
    Nouri E, Surve R, Bapaume L, Stumpe M, Chen M et al. 2021. Phosphate suppression of arbuscular mycorrhizal symbiosis involves gibberellic acid signaling. Plant Cell Physiol 62:959–70
    [Google Scholar]
  135. 135.
    Orwin KH, Kirschbaum MUF, St John MG, Dickie IA. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol. Lett. 14:493–502
    [Google Scholar]
  136. 136.
    Osman KT. 2013. Nutrient dynamics in forest soil. Forest Soils97–121. Cham, Switz: Springer
    [Google Scholar]
  137. 137.
    Pan S, Wang Y, Qiu Y, Chen D, Zhang L et al. 2020. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi. Glob. Change Biol. 26:6568–80
    [Google Scholar]
  138. 138.
    Pandey P, Wang M, Baldwin IT, Pandey SP, Groten K 2018. Complex regulation of microRNAs in roots of competitively-grown isogenic Nicotiana attenuata plants with different capacities to interact with arbuscular mycorrhizal fungi. BMC Genom 19:937
    [Google Scholar]
  139. 139.
    Parihar M, Rakshit A, Meena VS, Gupta VK, Rana K et al. 2020. The potential of arbuscular mycorrhizal fungi in C cycling: a review. Arch. Microbiol. 202:1581–96
    [Google Scholar]
  140. 140.
    Park H-J, Floss DS, Levesque-Tremblay V, Bravo A, Harrison MJ. 2015. Hyphal branching during arbuscule development requires Reduced Arbuscular Mycorrhiza1. Plant Physiol 169:2774–88
    [Google Scholar]
  141. 141.
    Parniske M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6:763–75
    [Google Scholar]
  142. 142.
    Perotto S, Daghino S, Martino E 2018. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis?. New Phytol 220:1141–47
    [Google Scholar]
  143. 143.
    Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11:789–99
    [Google Scholar]
  144. 144.
    Phillips RP, Brzostek E, Midgley MG. 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol 199:41–51
    [Google Scholar]
  145. 145.
    Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V et al. 2016. A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr. Biol. 26:987–98
    [Google Scholar]
  146. 146.
    Plassard C, Bonafos B, Touraine B. 2000. Differential effects of mineral and organic N sources, and of ectomycorrhizal infection by Hebeloma cylindrosporum, on growth and N utilization in Pinus pinaster. Plant Cell Environ 23:1195–205
    [Google Scholar]
  147. 147.
    Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM. 2016. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26:673–84
    [Google Scholar]
  148. 148.
    Porcel R, Ruiz-Lozano JM. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 55:1743–50
    [Google Scholar]
  149. 149.
    Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, Barea JM. 1999. β-1,3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149–57
    [Google Scholar]
  150. 150.
    Priyadharsini P, Rojamala K, Koshila Ravi R, Muthuraja R, Nagaraj K, Muthukumar T 2017. Mycorrhizosphere: the extended rhizosphere and its significance. Plant-Microbe Interaction: An Approach to Sustainable Agriculture DK Choudhary, A Varma, N Tuteja 97–124. Singapore: Springer
    [Google Scholar]
  151. 151.
    Pumplin N, Harrison MJ. 2009. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol 151:809–19
    [Google Scholar]
  152. 152.
    Püschel D, Bitterlich M, Rydlová J, Jansa J. 2020. Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae. Mycorrhiza 30:299–313
    [Google Scholar]
  153. 153.
    Rausch C, Daram P, Brunner S, Jansa J, Laloi M et al. 2001. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–66
    [Google Scholar]
  154. 154.
    Read DJ, Leake JR, Péreš Moreno J 2004. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Botany 82:1243–63
    [Google Scholar]
  155. 155.
    Redecker D, Kodner R, Graham LE. 2000. Glomalean fungi from the Ordovician. Science 289:1920–21
    [Google Scholar]
  156. 156.
    Rich MK, Vigneron N, Libourel C, Keller J, Xue L et al. 2021. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science 372:864–68
    [Google Scholar]
  157. 157.
    Roth R, Hillmer S, Funaya C, Chiapello M, Schumacher K et al. 2019. Arbuscular cell invasion coincides with extracellular vesicles and membrane tubules. Nat. Plants 5:204–11
    [Google Scholar]
  158. 158.
    Ruiz-Lozano JM, Aroca R, Zamarreño AM, Molina S, Andreo-Jiménez B et al. 2016. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–52
    [Google Scholar]
  159. 159.
    Russo G, Carotenuto G, Fiorilli V, Volpe V, Chiapello M et al. 2019. Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi. New Phytol 221:1036–48Suggests that anticlinal division of cortical cells occurs during arbuscular mycorrhizal fungi accommodation.
    [Google Scholar]
  160. 160.
    Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H et al. 2007. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19:610–24
    [Google Scholar]
  161. 161.
    Sakamoto K, Nohara Y. 2009. Soybean (Glycine max [L.] Merr.) shoots systemically control arbuscule formation in mycorrhizal symbiosis. Soil Sci. Plant Nutr. 55:252–57
    [Google Scholar]
  162. 162.
    Sanders FE, Tinker PB. 1971. Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature 233:278–79
    [Google Scholar]
  163. 163.
    Sangwan S, Prasanna R. 2022. Mycorrhizae helper bacteria: unlocking their potential as bioenhancers of plant–arbuscular mycorrhizal fungal associations. Microb. Ecol. 84:1–10
    [Google Scholar]
  164. 164.
    Sathiyadash K, Muthukumar T, Karthikeyan V, Rajendran K 2020. Orchid mycorrhizal fungi: structure, function, and diversity. Orchid Biology: Recent Trends & Challenges SM Khasim, SN Hegde, MT González-Arnao, K Thammasiri 239–80. Singapore: Springer
    [Google Scholar]
  165. 165.
    Schaarschmidt S, Gresshoff PM, Hause B. 2013. Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization. Genome Biol 14:R62
    [Google Scholar]
  166. 166.
    Schausberger P, Peneder S, Jürschik S, Hoffmann D. 2012. Mycorrhiza changes plant volatiles to attract spider mite enemies. Funct. Ecol. 26:441–49
    [Google Scholar]
  167. 167.
    Seemann C, Heck C, Voß S, Schmoll J, Enderle E et al. 2022. Root cortex development is fine-tuned by the interplay of MIGs, SCL3 and DELLAs during arbuscular mycorrhizal symbiosis. New Phytol 233:948–65
    [Google Scholar]
  168. 168.
    Shah F, Nicolás C, Bentzer J, Ellström M, Smits M et al. 2016. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol 209:1705–19
    [Google Scholar]
  169. 169.
    Shi J, Zhao B, Zheng S, Zhang X, Wang X et al. 2021. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184:5527–40.e18Reveals that the PHR-centered network controls arbuscular mycorrhizal symbiosis and the conserved P-sensing pathway was co-opted for mycorrhizal symbiosis.
    [Google Scholar]
  170. 170.
    Siasou E, Standing D, Killham K, Johnson D 2009. Mycorrhizal fungi increase biocontrol potential of Pseudomonas fluorescens. Soil Biol. Biochem. 41:1341–43
    [Google Scholar]
  171. 171.
    Smith GR, Finlay RD, Stenlid J, Vasaitis R, Menkis A. 2017. Growing evidence for facultative biotrophy in saprotrophic fungi: data from microcosm tests with 201 species of wood-decay basidiomycetes. New Phytol 215:747–55
    [Google Scholar]
  172. 172.
    Song Y, Chen D, Lu K, Sun Z, Zeng R. 2015. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci. 6:786
    [Google Scholar]
  173. 173.
    Soudzilovskaia NA, van Bodegom PM, Terrer C, van't Zelfde M, McCallum I et al. 2019. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10:5077
    [Google Scholar]
  174. 174.
    Stracke S, Kistner C, Yoshida S, Mulder L, Sato S et al. 2002. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–62
    [Google Scholar]
  175. 175.
    Stuart EK, Plett KL. 2020. Digging deeper: in search of the mechanisms of carbon and nitrogen exchange in ectomycorrhizal symbioses. Front. Plant Sci 10:1658
    [Google Scholar]
  176. 176.
    Sun J, Miller JB, Granqvist E, Wiley-Kalil A, Gobbato E et al. 2015. Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell 27:823–38
    [Google Scholar]
  177. 177.
    Sun Q, Fu Z, Finlay R, Lian B. 2019. Transcriptome analysis provides novel insights into the capacity of the ectomycorrhizal fungus Amanita pantherina to weather K-containing feldspar and apatite. Appl. Environ. Microbiol. 85:e00719-19
    [Google Scholar]
  178. 178.
    Sun X, Chen W, Ivanov S, MacLean AM, Wight H et al. 2019. Genome and evolution of the arbuscular mycorrhizal fungus Diversispora epigaea (formerly Glomus versiforme) and its bacterial endosymbionts. New Phytol 221:1556–73
    [Google Scholar]
  179. 179.
    Takeda N, Maekawa T, Hayashi M. 2012. Nuclear-localized and deregulated calcium- and calmodulin-dependent protein kinase activates rhizobial and mycorrhizal responses in Lotus japonicus. Plant Cell 24:810–22
    [Google Scholar]
  180. 180.
    Talaat NB, Shawky BT. 2011. Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J. Plant Nutr. Soil Sci 174:283–91
    [Google Scholar]
  181. 181.
    Tanaka Y, Yano K. 2005. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–54
    [Google Scholar]
  182. 182.
    Tedersoo L, Bahram M, Toots M, Diédhiou AG, Henkel TW et al. 2012. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol. Ecol. 21:4160–70
    [Google Scholar]
  183. 183.
    Tedersoo L, Bahram M, Zobel M. 2020. How mycorrhizal associations drive plant population and community biology. Science 367:eaba1223
    [Google Scholar]
  184. 184.
    Tedersoo L, May T, Smith M 2009. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–63
    [Google Scholar]
  185. 185.
    Teste FP, Jones MD, Dickie IA. 2020. Dual-mycorrhizal plants: their ecology and relevance. New Phytol 225:1835–51
    [Google Scholar]
  186. 186.
    Thiergart T, Zgadzaj R, Bozsóki Z, Garrido-Oter R, Radutoiu S, Schulze-Lefert P. 2019. Lotus japonicus symbiosis genes impact microbial interactions between symbionts and multikingdom commensal communities. mBio 10:e01833-19
    [Google Scholar]
  187. 187.
    Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. PNAS 110:20117–22
    [Google Scholar]
  188. 188.
    Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD. 2007. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol. Ecol. 61:295–304
    [Google Scholar]
  189. 189.
    Uroz S, Oger P, Morin E, Frey-Klett P. 2012. Distinct ectomycorrhizospheres share similar bacterial communities as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl. Environ. Microb. 78:3020–24
    [Google Scholar]
  190. 190.
    van der Heijden MG, Martin FM, Selosse MA, Sanders IR. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–23
    [Google Scholar]
  191. 191.
    van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB et al. 2013. Plant–soil feedbacks: the past, the present and future challenges. J. Ecol. 101:265–76
    [Google Scholar]
  192. 192.
    Venkateshwaran M, Jayaraman D, Chabaud M, Genre A, Balloon AJ et al. 2015. A role for the mevalonate pathway in early plant symbiotic signaling. PNAS 112:9781–86
    [Google Scholar]
  193. 193.
    Vierheilig H. 2004. Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. J. Plant Physiol. 161:339–41
    [Google Scholar]
  194. 194.
    Vierheilig H, Garcia-Garrido JM, Wyss U, Piché Y. 2000. Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi. Soil Biol. Biochem. 32:589–95
    [Google Scholar]
  195. 195.
    Vos C, Claerhout S, Mkandawire R, Panis B, De Waele D, Elsen A. 2012. Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354:335–45
    [Google Scholar]
  196. 196.
    Wang C, Velandia K, Kwon C-T, Wulf KE, Nichols DS et al. 2021. The role of CLAVATA signalling in the negative regulation of mycorrhizal colonization and nitrogen response of tomato. J. Exp. Bot. 72:1702–13
    [Google Scholar]
  197. 197.
    Wang D, Dong W, Murray J, Wang E 2022. Innovation and appropriation in mycorrhizal and rhizobial symbioses. Plant Cell 34:1573–99
    [Google Scholar]
  198. 198.
    Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B et al. 2012. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 22:2242–46
    [Google Scholar]
  199. 199.
    Wang E, Yu N, Bano SA, Liu C, Miller AJ et al. 2014. A H+-ATPase that energizes nutrient uptake during mycorrhizal symbioses in rice and Medicago truncatula. Plant Cell 26:1818–30
    [Google Scholar]
  200. 200.
    Wang F, Kertesz MA, Feng G. 2019. Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover. Mycorrhiza 29:351–62
    [Google Scholar]
  201. 201.
    Wang S, Chen A, Xie K, Yang X, Luo Z et al. 2020. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. PNAS 117:16649–59
    [Google Scholar]
  202. 202.
    Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E 2017. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol. Plant 10:1147–58
    [Google Scholar]
  203. 203.
    Wang X, Feng H, Wang Y, Wang M, Xie X et al. 2021. Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia–legume symbiosis. Mol. Plant 14:503–16Provides insight into the coevolution of AM symbiosis and rhizobia–legume symbiosis at the rhizosphere.
    [Google Scholar]
  204. 204.
    Waters MT, Gutjahr C, Bennett T, Nelson DC. 2017. Strigolactone signaling and evolution. Annu. Rev. Plant Biol. 68:291–322
    [Google Scholar]
  205. 205.
    Wu P, Shou H, Xu G, Lian X. 2013. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr. Opin. Plant Biol. 16:205–12
    [Google Scholar]
  206. 206.
    Xie X, Lin H, Peng X, Xu C, Sun Z et al. 2016. Arbuscular mycorrhizal symbiosis requires a phosphate transceptor in the Gigaspora margarita fungal symbiont. Mol. Plant 9:1583–608
    [Google Scholar]
  207. 207.
    Xiong L, Zhu J. 2002. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–39
    [Google Scholar]
  208. 208.
    Xu Y, Zhu S, Liu F, Wang W, Wang X et al. 2018. Identification of arbuscular mycorrhiza fungi responsive microRNAs and their regulatory network in maize. Int. J. Mol. Sci. 19:3201
    [Google Scholar]
  209. 209.
    Xue L, Almario J, Fabiańska I, Saridis G, Bucher M. 2019. Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus. New Phytol 224:409–20
    [Google Scholar]
  210. 210.
    Xue L, Cui H, Buer B, Vijayakumar V, Delaux P-M et al. 2015. Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiol 167:854–71
    [Google Scholar]
  211. 211.
    Xue L, Klinnawee L, Zhou Y, Saridis G, Vijayakumar V et al. 2018. AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus. PNAS 115:E9239–46
    [Google Scholar]
  212. 212.
    Yang S-Y, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D et al. 2012. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. Plant Cell 24:4236–51
    [Google Scholar]
  213. 213.
    Yano K, Yoshida S, Müller J, Singh S, Banba M et al. 2008. CYCLOPS, a mediator of symbiotic intracellular accommodation. PNAS 105:20540–45
    [Google Scholar]
  214. 214.
    Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H. 2007. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–38
    [Google Scholar]
  215. 215.
    Yooyongwech S, Samphumphuang T, Tisarum R, Theerawitaya C, Cha-um S. 2016. Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci. Hortic. 198:107–17
    [Google Scholar]
  216. 216.
    Yu N, Luo D, Zhang X, Liu J, Wang W et al. 2014. A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Res 24:130–33
    [Google Scholar]
  217. 217.
    Zhang C, He J, Dai H, Wang G, Zhang X et al. 2021. Discriminating symbiosis and immunity signals by receptor competition in rice. PNAS 118:e2023738118
    [Google Scholar]
  218. 218.
    Zhang L, Chu Q, Zhou J, Rengel Z, Feng G. 2021. Soil phosphorus availability determines the preference for direct or mycorrhizal phosphorus uptake pathway in maize. Geoderma 403:115261
    [Google Scholar]
  219. 219.
    Zhang L, Wang M-X, Li H, Yuan L, Huang J-G, Penfold C. 2014. Mobilization of inorganic phosphorus from soils by ectomycorrhizal fungi. Pedosphere 24:683–89
    [Google Scholar]
  220. 220.
    Zhang L, Zhou J, George TS, Limpens E, Feng G. 2022. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends Plant Sci 27:402–11
    [Google Scholar]
  221. 221.
    Zhang W, Li X, Sun K, Tang M, Xu F et al. 2020. Mycelial network-mediated rhizobial dispersal enhances legume nodulation. ISME J 14:1015–29
    [Google Scholar]
  222. 222.
    Zhang X, Dong W, Sun J, Feng F, Deng Y et al. 2015. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J 81:258–67
    [Google Scholar]
  223. 223.
    Zhao D-K, Selosse M-A, Wu L, Luo Y, Shao S-C, Ruan Y-L. 2021. Orchid reintroduction based on seed germination-promoting mycorrhizal fungi derived from protocorms or seedlings. Front. Plant Sci. 12:701152
    [Google Scholar]
  224. 224.
    Zhao Z, Liu H, Wang C, Xu J-R. 2013. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genom 14:274
    [Google Scholar]
  225. 225.
    Zhou J, Chai X, Zhang L, George TS, Wang F, Feng G 2020. Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes. mSystems 5:e00929-20
    [Google Scholar]
  226. 226.
    Zhu H, Yao Q. 2004. Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J. Phytopathol. 152:537–42
    [Google Scholar]
  227. 227.
    Zhu JK. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53:247–73
    [Google Scholar]
  228. 228.
    Zou Y, Wang P, Liu C, Ni Q, Zhang D, Wu Q. 2017. Mycorrhizal trifoliate orange has greater root adaption of morphology and phytohormones in response to drought stress. Sci. Rep. 7:41134
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-061722-090342
Loading
/content/journals/10.1146/annurev-arplant-061722-090342
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error