1932

Abstract

The hypocotyl is the embryonic stem connecting the primary root to the cotyledons. Hypocotyl length varies tremendously depending on the conditions. This developmental plasticity and the simplicity of the organ explain its success as a model for growth regulation. Light and temperature are prominent growth-controlling cues, using shared signaling elements. Mechanisms controlling hypocotyl elongation in etiolated seedlings reaching the light differ from those in photoautotrophic seedlings. However, many common growth regulators intervene in both situations. Multiple photoreceptors including phytochromes, which also respond to temperature, control the activity of several transcription factors, thereby eliciting rapid transcriptional reprogramming. Hypocotyl growth often depends on sensing in green tissues and interorgan communication comprising auxin. Hypocotyl auxin, in conjunction with other hormones, determines epidermal cell elongation. Plants facing cues with opposite effects on growth control hypocotyl elongation through intricate mechanisms. We discuss the status of the field and end by highlighting open questions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-062923-023852
2024-07-22
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-062923-023852.html?itemId=/content/journals/10.1146/annurev-arplant-062923-023852&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Achard P, Liao L, Jiang C, Desnos T, Bartlett J, et al. 2007.. DELLAs contribute to plant photomorphogenesis. . Plant Physiol. 143:(3):116372
    [Crossref] [Google Scholar]
  2. 2.
    Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. 2020.. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. . Plant Physiol. Biochem. 156::6477
    [Crossref] [Google Scholar]
  3. 3.
    Arsuffi G, Braybrook SA. 2018.. Acid growth: an ongoing trip. . J. Exp. Bot. 69:(2):13746
    [Crossref] [Google Scholar]
  4. 4.
    Bai MY, Shang JX, Oh E, Fan M, Bai Y, et al. 2012.. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. . Nat. Cell Biol. 14:(8):81017
    [Crossref] [Google Scholar]
  5. 5.
    Ballaré CL, Austin AT. 2019.. Recalculating growth and defense strategies under competition: key roles of photoreceptors and jasmonates. . J. Exp. Bot. 70:(13):342534
    [Crossref] [Google Scholar]
  6. 6.
    Baskin TI. 2015.. Auxin inhibits expansion rate independently of cortical microtubules. . Trends Plant Sci. 20:(8):47172
    [Crossref] [Google Scholar]
  7. 7.
    Bellini C, Pacurar DI, Perrone I. 2014.. Adventitious roots and lateral roots: similarities and differences. . Annu. Rev. Plant Biol. 65::63966
    [Crossref] [Google Scholar]
  8. 8.
    Bellstaedt J, Trenner J, Lippmann R, Poeschl Y, Zhang X, et al. 2019.. A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. . Plant Physiol. 180:(2):75766
    [Crossref] [Google Scholar]
  9. 9.
    Blanco-Touriñán N, Legris M, Minguet EG, Costigliolo-Rojas C, Nohales MA, et al. 2020.. COP1 destabilizes DELLA proteins in Arabidopsis. . PNAS 117:(24):1379299
    [Crossref] [Google Scholar]
  10. 10.
    Boccaccini A, Legris M, Krahmer J, Allenbach-Petrolati L, Goyal A, et al. 2020.. Low blue light enhances phototropism by releasing cryptochrome1-mediated inhibition of PIF4 expression. . Plant Physiol. 183:(4):178093
    [Crossref] [Google Scholar]
  11. 11.
    Boron AK, Vissenberg K. 2014.. The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion. . Plant Cell Rep. 33:(5):697706
    [Crossref] [Google Scholar]
  12. 12.
    Bou Daher F, Chen Y, Bozorg B, Clough J, Jönsson H, Braybrook SA. 2018.. Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry. . eLife 7::e38161
    [Crossref] [Google Scholar]
  13. 13.
    Bou-Torrent J, Galstyan A, Gallemí M, Cifuentes-Esquivel N, Molina-Contreras MJ, et al. 2014.. Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis. . J. Exp. Bot. 65:(11):293747
    [Crossref] [Google Scholar]
  14. 14.
    Braidwood L, Breuer C, Sugimoto K. 2014.. My body is a cage: mechanisms and modulation of plant cell growth. . New Phytol. 201:(2):388402
    [Crossref] [Google Scholar]
  15. 15.
    Burko Y, Willige BC, Seluzicki A, Novák O, Ljung K, Chory J. 2022.. PIF7 is a master regulator of thermomorphogenesis in shade. . Nat. Commun. 13:(1):4942
    [Crossref] [Google Scholar]
  16. 16.
    Bursch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz C, Johansson H. 2020.. Identification of BBX proteins as rate-limiting cofactors of HY5. . Nat. Plants 6:(8):92128
    [Crossref] [Google Scholar]
  17. 17.
    Busse JS, Evert RF. 1999.. Pattern of differentiation of the first vascular elements in the embryo and seedling of Arabidopsis thaliana. . Int. J. Plant Sci. 160:(1):113
    [Crossref] [Google Scholar]
  18. 18.
    Casal JJ, Balasubramanian S. 2019.. Thermomorphogenesis. . Annu. Rev. Plant Biol. 70::32146
    [Crossref] [Google Scholar]
  19. 19.
    Casal JJ, Fankhauser C. 2023.. Shade avoidance in the context of climate change. . Plant Physiol. 191:(3):147591
    [Crossref] [Google Scholar]
  20. 20.
    Chebli Y, Geitmann A. 2017.. Cellular growth in plants requires regulation of cell wall biochemistry. . Curr. Opin. Cell Biol. 44::2835
    [Crossref] [Google Scholar]
  21. 21.
    Chen D, Lyu M, Kou X, Li J, Yang Z, et al. 2022.. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. . Mol. Cell 82:(16):301529
    [Crossref] [Google Scholar]
  22. 22.
    Chen S, Lory N, Stauber J, Hoecker U. 2015.. Photoreceptor specificity in the light-induced and COP1-mediated rapid degradation of the repressor of photomorphogenesis SPA2 in Arabidopsis. . PLOS Genet. 11:(9):e1005516
    [Crossref] [Google Scholar]
  23. 23.
    Chen Y, Hu X, Liu S, Su T, Huang H, et al. 2021.. Regulation of Arabidopsis photoreceptor CRY2 by two distinct E3 ubiquitin ligases. . Nat. Commun. 12:(2155):2155
    [Crossref] [Google Scholar]
  24. 24.
    Cheng Y-L, Tu S-L. 2018.. Alternative splicing and cross-talk with light signaling. . Plant Cell Physiol. 59:(6):110410
    [Crossref] [Google Scholar]
  25. 25.
    Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F, et al. 2020.. An RNA thermoswitch regulates daytime growth in Arabidopsis. . Nat. Plants 6:(5):52232
    [Crossref] [Google Scholar]
  26. 26.
    Cosgrove DJ. 2016.. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. . J. Exp. Bot. 67:(2):46376
    [Crossref] [Google Scholar]
  27. 27.
    Costigliolo Rojas C, Bianchimano L, Oh J, Romero Montepaone S, Tarkowská D, et al. 2022.. Organ-specific COP1 control of BES1 stability adjusts plant growth patterns under shade or warmth. . Dev. Cell 57::200925.e6 27. This article provides strong evidence for BES1 and COP1 controlling the differential growth response occurring in hypocotyls versus cotyledons.
    [Crossref] [Google Scholar]
  28. 28.
    Crawford AJ, McLachlan DH, Hetherington AM, Franklin KA. 2012.. High temperature exposure increases plant cooling capacity. . Curr. Biol. 22:(10):R39697
    [Crossref] [Google Scholar]
  29. 29.
    Creux N, Harmer S. 2019.. Circadian rhythms in plants. . Cold Spring Harb. Perspect. Biol. 11:(9):a034611
    [Crossref] [Google Scholar]
  30. 30.
    Crocco CD, Locascio A, Escudero CM, Alabadí D, Blázquez MA, Botto JF. 2015.. The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana. . Nat. Commun. 6:(1):6202
    [Crossref] [Google Scholar]
  31. 31.
    Das D, St Onge KR, Voesenek LACJ, Pierik R, Sasidharan R. 2016.. Ethylene- and shade-induced hypocotyl elongation share transcriptome patterns and functional regulators. . Plant Physiol. 172:(2):71833
    [Google Scholar]
  32. 32.
    de Lucas M, Davière J-M, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, et al. 2008.. A molecular framework for light and gibberellin control of cell elongation. . Nature 451:(7177):48084
    [Crossref] [Google Scholar]
  33. 33.
    de Wit M, George GM, Ince , Dankwa-Egli B, Hersch M, et al. 2018.. Changes in resource partitioning between and within organs support growth adjustment to neighbor proximity in Brassicaceae seedlings. . PNAS 115:(42):E995361
    [Crossref] [Google Scholar]
  34. 34.
    de Wit M, Keuskamp DH, Bongers FJ, Hornitschek P, Gommers CMM, et al. 2016.. Integration of phytochrome and cryptochrome signals determines plant growth during competition for light. . Curr. Biol. 26::332026
    [Crossref] [Google Scholar]
  35. 35.
    Delker C, Quint M, Wigge PA. 2022.. Recent advances in understanding thermomorphogenesis signaling. . Curr. Opin. Plant Biol. 68::102231
    [Crossref] [Google Scholar]
  36. 36.
    Derbyshire P, Findlay K, McCann MC, Roberts K. 2007.. Cell elongation in Arabidopsis hypocotyls involves dynamic changes in cell wall thickness. . J. Exp. Bot. 58:(8):207989
    [Crossref] [Google Scholar]
  37. 37.
    Djakovic-Petrovic T, de Wit M, Voesenek LACJ, Pierik R. 2007.. DELLA protein function in growth responses to canopy signals. . Plant J. 51:(1):11726
    [Crossref] [Google Scholar]
  38. 38.
    Dong H, Liu J, He G, Liu P, Sun J. 2020.. Photoexcited phytochrome B interacts with brassinazole resistant 1 to repress brassinosteroid signaling in Arabidopsis. . J. Integr. Plant Biol. 62:(5):65267
    [Crossref] [Google Scholar]
  39. 39.
    Dong J, Tang D, Gao Z, Yu R, Li K, et al. 2014.. Arabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark. . Plant Cell 26:(9):363045
    [Crossref] [Google Scholar]
  40. 40.
    Dowson-Day MJ, Millar AJ. 1999.. Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. . Plant J. 17:(1):6371
    [Crossref] [Google Scholar]
  41. 41.
    Du M, Daher FB, Liu Y, Steward A, Tillmann M, et al. 2022.. Biphasic control of cell expansion by auxin coordinates etiolated seedling development. . Sci. Adv. 8:(2):eabj1570 41. Elegant paper showing how changes in auxin concentration can explain the growth dynamics of etiolated hypocotyls.
    [Crossref] [Google Scholar]
  42. 42.
    Eastmond PJ, Astley HM, Parsley K, Aubry S, Williams BP, et al. 2015.. Arabidopsis uses two gluconeogenic gateways for organic acids to fuel seedling establishment. . Nat. Commun. 6::6659
    [Crossref] [Google Scholar]
  43. 43.
    Favero DS, Lambolez A, Sugimoto K. 2021.. Molecular pathways regulating elongation of aerial plant organs: a focus on light, the circadian clock, and temperature. . Plant J. 105:(2):392420
    [Crossref] [Google Scholar]
  44. 44.
    Favory J-J, Stec A, Gruber H, Rizzini L, Oravecz A, et al. 2009.. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. . EMBO J. 28:(5):591601
    [Crossref] [Google Scholar]
  45. 45.
    Fendrych M, Leung J, Friml J. 2016.. Tir1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. . eLife 5::e19048 45. Compelling evidence supporting the role of the canonical auxin signaling pathway during hypocotyl growth promotion.
    [Crossref] [Google Scholar]
  46. 46.
    Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, et al. 2008.. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. . Nature 451:(7177):47579
    [Crossref] [Google Scholar]
  47. 47.
    Fernández-Milmanda GL, Ballaré CL. 2021.. Shade avoidance: expanding the color and hormone palette. . Trends Plant Sci. 26:(5):50923
    [Crossref] [Google Scholar]
  48. 48.
    Fernández-Milmanda GL, Crocco CD, Reichelt M, Mazza CA, Köllner TG, et al. 2020.. A light-dependent molecular link between competition cues and defence responses in plants. . Nat. Plants 6:(3):22330
    [Crossref] [Google Scholar]
  49. 49.
    Fiorucci A-S, Fankhauser C. 2017.. Plant strategies for enhancing access to sunlight. . Curr. Biol. 27:(17):R93140
    [Crossref] [Google Scholar]
  50. 50.
    Fiorucci A-S, Galvão VC, Ince , Boccaccini A, Goyal A, et al. 2020.. PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings. . New Phytol. 226:(1):5058
    [Crossref] [Google Scholar]
  51. 51.
    Folta KM, Spalding EP. 2001.. Opposing roles of phytochrome A and phytochrome B in early cryptochrome-mediated growth inhibition: phytochrome and early blue light growth responses. . Plant J. 28:(3):33340
    [Crossref] [Google Scholar]
  52. 52.
    Folta KM, Spalding EP. 2001.. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. . Plant J. 26::47178
    [Crossref] [Google Scholar]
  53. 53.
    Galvão RM, Li M, Kothadia SM, Haskel JD, Decker PV, et al. 2012.. Photoactivated phytochromes interact with HEMERA and promote its accumulation to establish photomorphogenesis in Arabidopsis. . Genes Dev. 26:(16):185163
    [Crossref] [Google Scholar]
  54. 54.
    Gangappa SN, Berriri S, Kumar SV. 2017.. PIF4 coordinates thermosensory growth and immunity in Arabidopsis. . Curr. Biol. 27:(2):24349
    [Crossref] [Google Scholar]
  55. 55.
    Gangappa SN, Kumar SV. 2017.. DET1 and HY5 control PIF4-mediated thermosensory elongation growth through distinct mechanisms. . Cell Rep. 18:(2):34451
    [Crossref] [Google Scholar]
  56. 56.
    Gao H, Song W, Severing E, Vayssières A, Huettel B, et al. 2022.. PIF4 enhances DNA binding of CDF2 to co-regulate target gene expression and promote Arabidopsis hypocotyl cell elongation. . Nat. Plants 8:(9):108293
    [Crossref] [Google Scholar]
  57. 57.
    Gendreau E, Traas J, Demos T, Grandjean O, Caboche M, Höfte H. 1997.. Cellular basis of hypocotyl growth in Arabidopsis thaliana. . Plant Physiol. 114::295305
    [Crossref] [Google Scholar]
  58. 58.
    Ghosh S, Nelson JF, Cobb GMC, Etchells JP, de Lucas M. 2022.. Light regulates xylem cell differentiation via PIF in Arabidopsis. . Cell Rep. 40:(3):111075
    [Crossref] [Google Scholar]
  59. 59.
    Haga K, Sakai T. 2023.. Photosensory adaptation mechanisms in hypocotyl phototropism: how plants recognize the direction of a light source. . J. Exp. Bot. 74:(6):175869
    [Crossref] [Google Scholar]
  60. 60.
    Han R, Ma L, Lv Y, Qi L, Peng J, et al. 2023.. SALT OVERLY SENSITIVE2 stabilizes phytochrome-interacting factors PIF4 and PIF5 to promote Arabidopsis shade avoidance. . Plant Cell 35:(8):297296
    [Crossref] [Google Scholar]
  61. 61.
    Hao Y, Zeng Z, Zhang X, Xie D, Li X, et al. 2023.. Green means go: Green light promotes hypocotyl elongation via brassinosteroid signaling. . Plant Cell 35:(5):130417
    [Crossref] [Google Scholar]
  62. 62.
    Hayashi Y, Takahashi K, Inoue S-I, Kinoshita T. 2014.. Abscisic acid suppresses hypocotyl elongation by dephosphorylating plasma membrane H+-ATPase in Arabidopsis thaliana. . Plant Cell Physiol. 55:(4):84553
    [Crossref] [Google Scholar]
  63. 63.
    Hayes S, Pantazopoulou CK, van Gelderen K, Reinen E, Tween AL, et al. 2019.. Soil salinity limits plant shade avoidance. . Curr. Biol. 29:(10):166976.e4 63. Elegant article identifying mechanisms underlying signal integration of environmental cues with opposing effects on hypocotyl elongation.
    [Crossref] [Google Scholar]
  64. 64.
    Hayes S, Sharma A, Fraser DP, Trevisan M, Cragg-Barber CK, et al. 2017.. UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis. . Curr. Biol. 27:(1):12027
    [Crossref] [Google Scholar]
  65. 65.
    He G, Liu J, Dong H, Sun J. 2019.. The blue-light receptor CRY1 interacts with BZR1 and BIN2 to modulate the phosphorylation and nuclear function of BZR1 in repressing BR signaling in Arabidopsis. . Mol. Plant 12:(5):689703
    [Crossref] [Google Scholar]
  66. 66.
    Han X, Zhang Y, Lou Z, Li J, Wang Z, . 2023.. Time series single-cell transcriptional atlases reveal cell fate differentiation driven by light in Arabidopsis seedlings. . Nat. Plants 9::2095109
    [Crossref] [Google Scholar]
  67. 67.
    Hersch M, Lorrain S, de Wit M, Trevisan M, Ljung K, Bergmann S. 2014.. Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis. . PNAS 111:(17):651520
    [Crossref] [Google Scholar]
  68. 68.
    Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, et al. 2012.. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. . Plant J. 71:(5):699711
    [Crossref] [Google Scholar]
  69. 69.
    Hornitschek P, Lorrain S, Zoete V, Michielin O, Fankhauser C. 2009.. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. . EMBO J. 28:(24):3893902
    [Crossref] [Google Scholar]
  70. 70.
    Huang X, Yang P, Ouyang X, Chen L, Deng XW. 2014.. Photoactivated UVR8-COP1 module determines photomorphogenic UV-B signaling output in Arabidopsis. . PLOS Genet. 10:(3):e1004218
    [Crossref] [Google Scholar]
  71. 71.
    Hwang G, Kim S, Cho J-Y, Paik I, Kim J-I, Oh E. 2019.. Trehalose-6-phosphate signaling regulates thermoresponsive hypocotyl growth in Arabidopsis thaliana. . EMBO Rep. 20::e47828
    [Crossref] [Google Scholar]
  72. 72.
    Ibañez C, Delker C, Martinez C, Bürstenbinder K, Janitza P, et al. 2018.. Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. . Curr. Biol. 28:(2):30310.e3
    [Crossref] [Google Scholar]
  73. 73.
    Iglesias MJ, Sellaro R, Zurbriggen MD, Casal JJ. 2018.. Multiple links between shade avoidance and auxin networks. . J. Exp. Bot. 69:(2):21328
    [Crossref] [Google Scholar]
  74. 74.
    Ince , Krahmer J, Fiorucci A-S, Trevisan M, Galvão VC, et al. 2022.. A combination of plasma membrane sterol biosynthesis and autophagy is required for shade-induced hypocotyl elongation. . Nat. Commun. 13:(1):5659 74. Article showing that different features of canopy shade elicit different pathways, which are collectively required for hypocotyl growth promotion.
    [Crossref] [Google Scholar]
  75. 75.
    Ivakov AA, Flis A, Apelt F, Fünfgeld M, Scherer U, et al. 2017.. Cellulose synthesis and cell expansion are regulated by different mechanisms in growing Arabidopsis hypocotyls. . Plant Cell 29:(6):130515
    [Crossref] [Google Scholar]
  76. 76.
    Jenkins GI. 2017.. Photomorphogenic responses to ultraviolet-B light. . Plant Cell Environ. 40::254457
    [Crossref] [Google Scholar]
  77. 77.
    Jung J-H, Barbosa AD, Hutin S, Kumita JR, Gao M, et al. 2020.. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. . Nature 585::25660
    [Crossref] [Google Scholar]
  78. 78.
    Jung J-H, Domijan M, Klose C, Biswas S, Ezer D, et al. 2016.. Phytochromes function as thermosensors in Arabidopsis. . Science 354:(6314):88689 78. Article providing strong evidence for phytochromes acting as thermosensors controlling hypocotyl growth depending on temperature and light.
    [Crossref] [Google Scholar]
  79. 79.
    Kawamoto N, Morita MT. 2022.. Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle. . New Phytol. 236:(5):163754
    [Crossref] [Google Scholar]
  80. 80.
    Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J, Ballaré CL. 2011.. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. . Plant J. 67:(2):195207
    [Crossref] [Google Scholar]
  81. 81.
    Keuskamp DH, Pollmann S, Voesenek LACJ, Peeters AJM, Pierik R. 2010.. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. . PNAS 107:(52):2274044
    [Crossref] [Google Scholar]
  82. 82.
    Keuskamp DH, Sasidharan R, Vos I, Peeters AJM, Voesenek LACJ, Pierik R. 2011.. Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. . Plant J. 67::20817
    [Crossref] [Google Scholar]
  83. 83.
    Kim C, Kwon Y, Jeong J, Kang M, Lee GS, et al. 2023.. Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins. . Nat. Commun. 14:(1):1708
    [Crossref] [Google Scholar]
  84. 84.
    Kim S, Hwang G, Kim S, Thi TN, Kim H, et al. 2020.. The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway. . Nat. Commun. 11:(1):1053
    [Crossref] [Google Scholar]
  85. 85.
    Kodaira K-S, Qin F, Tran L-SP, Maruyama K, Kidokoro S, et al. 2011.. Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. . Plant Physiol. 157:(2):74256
    [Crossref] [Google Scholar]
  86. 86.
    Kohnen MV, Schmid-Siegert E, Trevisan M, Petrolati LA, Sénéchal F, et al. 2016.. Neighbor detection induces organ-specific transcriptomes, revealing patterns underlying hypocotyl-specific growth. . Plant Cell 28:(12):2889904
    [Crossref] [Google Scholar]
  87. 87.
    Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, et al. 2009.. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. . Curr. Biol. 19:(5):40813
    [Crossref] [Google Scholar]
  88. 88.
    Kozuka T, Sawada Y, Imai H, Kanai M, Hirai MY, et al. 2020.. Regulation of sugar and storage oil metabolism by phytochrome during de-etiolation. . Plant Physiol. 182:(2):111429
    [Crossref] [Google Scholar]
  89. 89.
    Kudo M, Kidokoro S, Yoshida T, Mizoi J, Kojima M, et al. 2019.. A gene-stacking approach to overcome the trade-off between drought stress tolerance and growth in Arabidopsis. . Plant J. 97:(2):24056
    [Crossref] [Google Scholar]
  90. 90.
    Kunihiro A, Yamashino T, Mizuno T. 2010.. Phytochrome-interacting factors PIF4 and PIF5 are implicated in the regulation of hypocotyl elongation in response to blue light in Arabidopsis thaliana. . Biosci. Biotechnol. Biochem. 74:(12):253841
    [Crossref] [Google Scholar]
  91. 91.
    Lau K, Podolec R, Chappuis R, Ulm R, Hothorn M. 2019.. Plant photoreceptors and their signaling components compete for COP1 binding via VP peptide motifs. . EMBO J. 38:(18):e102140 91. Insightful mechanistic study identifying a mechanism by which photoreceptors control the activity of COP1.
    [Crossref] [Google Scholar]
  92. 92.
    Lau OS, Deng XW. 2012.. The photomorphogenic repressors COP1 and DET1: 20 years later. . Trends Plant Sci. 17:(10):58493
    [Crossref] [Google Scholar]
  93. 93.
    Legris M, Ince , Fankhauser C. 2019.. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. . Nat. Commun. 10::5219
    [Crossref] [Google Scholar]
  94. 94.
    Legris M, Klose C, Burgie ES, Rojas CCR, Neme M, et al. 2016.. Phytochrome B integrates light and temperature signals in Arabidopsis. . Science 354:(6314):897900 94. Article providing strong evidence for phytochromes acting as thermosensors controlling hypocotyl growth depending on temperature and light.
    [Crossref] [Google Scholar]
  95. 95.
    Lehmann F, Hardtke CS. 2016.. Secondary growth of the Arabidopsis hypocotyl-vascular development in 4 dimensions. . Curr. Opin. Plant Biol. 29::915
    [Crossref] [Google Scholar]
  96. 96.
    Leivar P, Monte E, Oka Y, Liu T, Carle C, et al. 2008.. Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. . Curr. Biol. 18:(23):181523
    [Crossref] [Google Scholar]
  97. 97.
    Leivar P, Tepperman JM, Cohn MM, Monte E, Al-Sady B, et al. 2012.. Dynamic antagonism between phytochromes and PIF family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis. . Plant Cell 24:(4):1398419
    [Crossref] [Google Scholar]
  98. 98.
    Leone M, Keller MM, Cerrudo I, Ballaré CL. 2014.. To grow or defend? Low red: far-red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability. . New Phytol. 204:(2):35567
    [Crossref] [Google Scholar]
  99. 99.
    Li J, Wang X, Qin T, Zhang Y, Liu X, et al. 2011.. MDP25, a novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis. . Plant Cell 23:(12):441127
    [Crossref] [Google Scholar]
  100. 100.
    Li K, Gao Z, He H, Terzaghi W, Fan L-M, et al. 2015.. Arabidopsis DET1 represses photomorphogenesis in part by negatively regulating DELLA protein abundance in darkness. . Mol. Plant 8:(4):62230
    [Crossref] [Google Scholar]
  101. 101.
    Li K, Yu R, Fan L-M, Wei N, Chen H, Deng XW. 2016.. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. . Nat. Commun. 7::11868
    [Crossref] [Google Scholar]
  102. 102.
    Li L, Gallei M, Friml J. 2022.. Bending to auxin: fast acid growth for tropisms. . Trends Plant Sci. 27:(5):44049
    [Crossref] [Google Scholar]
  103. 103.
    Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, et al. 2012.. Linking photoreceptor excitation to changes in plant architecture. . Genes Dev. 26::78590
    [Crossref] [Google Scholar]
  104. 104.
    Lian N, Liu X, Wang X, Zhou Y, Li H, et al. 2017.. COP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation. . PNAS 114:(46):1232126
    [Crossref] [Google Scholar]
  105. 105.
    Liang T, Mei S, Shi C, Yang Y, Peng Y, et al. 2018.. UVR8 interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis. . Dev. Cell 44:(4):51223.e5
    [Crossref] [Google Scholar]
  106. 106.
    Lilley-Steward JL, Gee CW, Sairanen I, Ljung K, Nemhauser JL. 2012.. An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation. . Plant Physiol. 160:(4):226170
    [Crossref] [Google Scholar]
  107. 107.
    Lin W, Zhou X, Tang W, Takahashi K, Pan X, et al. 2021.. TMK-based cell-surface auxin signalling activates cell-wall acidification. . Nature 599:(7884):27882
    [Crossref] [Google Scholar]
  108. 108.
    Lindbäck L, Hu Y, Ackermann A, Artz O, Pedmale UV. 2022.. UBP12 and UBP13 deubiquitinases destabilize the CRY2 blue light receptor to regulate Arabidopsis growth. . Curr. Biol. 32::322131.e6
    [Crossref] [Google Scholar]
  109. 109.
    Ling JJ, Li J, Zhu D, Deng XW. 2017.. Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness. . PNAS 114:(13):353944
    [Crossref] [Google Scholar]
  110. 110.
    Liu M-J, Wu S-H, Chen H-M, Wu S-H. 2012.. Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis. . Mol. Syst. Biol. 8::566
    [Crossref] [Google Scholar]
  111. 111.
    Liu X, Jiang W, Li Y, Nie H, Cui L, et al. 2023.. FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB. . Nat. Plants 9:(4):64560
    [Crossref] [Google Scholar]
  112. 112.
    Liu Y, Wei H, Ma M, Li Q, Kong D, et al. 2019.. Arabidopsis FHY3 and FAR1 proteins regulate the balance between growth and defense responses under shade conditions. . Plant Cell 31:(9):2089106
    [Crossref] [Google Scholar]
  113. 113.
    Lu XD, Zhou CM, Xu PB, Luo Q, Lian HL, Yang HQ. 2015.. Red-light-dependent interaction of phyB with SPA1 promotes COP1–SPA1 dissociation and photomorphogenic development in Arabidopsis. . Mol. Plant 8:(3):46778
    [Crossref] [Google Scholar]
  114. 114.
    Ma D, Li X, Guo Y, Chu J, Fang S, et al. 2016.. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. . PNAS 113:(1):22429
    [Crossref] [Google Scholar]
  115. 115.
    Ma L, Han R, Yang Y, Liu X, Li H, et al. 2023.. Phytochromes enhance SOS2-mediated PIF1 and PIF3 phosphorylation and degradation to promote Arabidopsis salt tolerance. . Plant Cell 35:(8):29973020
    [Crossref] [Google Scholar]
  116. 116.
    Ma L, Li J, Qu L, Hager J, Chen Z, et al. 2001.. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. . Plant Cell 13:(12):2589607
    [Crossref] [Google Scholar]
  117. 117.
    Mao Z, He S, Xu F, Wei X, Jiang L, et al. 2020.. Photoexcited CRY1 and phyB interact directly with ARF6 and ARF8 to regulate their DNA-binding activity and auxin-induced hypocotyl elongation in Arabidopsis. . New Phytol. 225:(2):84865
    [Crossref] [Google Scholar]
  118. 118.
    Mao Z, Wei X, Li L, Xu P, Zhang J, et al. 2021.. Arabidopsis cryptochrome 1 controls photomorphogenesis through regulation of H2A.Z deposition. . Plant Cell 33:(6):196179
    [Crossref] [Google Scholar]
  119. 119.
    Martínez C, Espinosa-Ruíz A, De Lucas M, Bernardo-García S, Franco-Zorrilla JM, Prat S. 2018.. PIF 4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. . EMBO J. 37:(23):e99552
    [Crossref] [Google Scholar]
  120. 120.
    Miao L, Zhao J, Yang G, Xu P, Cao X, et al. 2022.. Arabidopsis cryptochrome 1 undergoes COP1 and LRBs-dependent degradation in response to high blue light. . New Phytol. 234:(4):134762
    [Crossref] [Google Scholar]
  121. 121.
    Miao R, Russinova E, Rodriguez PL. 2022.. Tripartite hormonal regulation of plasma membrane H+-ATPase activity. . Trends Plant Sci. 27:(6):588600
    [Crossref] [Google Scholar]
  122. 122.
    Minami A, Takahashi K, Inoue S-I, Tada Y, Kinoshita T. 2019.. Brassinosteroid induces phosphorylation of the plasma membrane H+-ATPase during hypocotyl elongation in Arabidopsis thaliana. . Plant Cell Physiol. 60:(5):93544
    [Crossref] [Google Scholar]
  123. 123.
    Molina-Contreras MJ, Paulišić S, Then C, Moreno-Romero J, Pastor-Andreu P, et al. 2019.. Photoreceptor activity contributes to contrasting responses to shade in Cardamine and Arabidopsis seedlings. . Plant Cell 31:(11):264963
    [Google Scholar]
  124. 124.
    Moriconi V, Binkert M, Costigliolo C, Sellaro R, Ulm R, Casal JJ. 2018.. Perception of sunflecks by the UV-B photoreceptor UV RESISTANCE LOCUS8. . Plant Physiol. 177:(1):7581
    [Crossref] [Google Scholar]
  125. 125.
    Murcia G, Enderle B, Hiltbrunner A, Casal JJ. 2021.. Phytochrome B and PCH1 protein dynamics store night temperature information. . Plant J. 105:(1):2233
    [Crossref] [Google Scholar]
  126. 126.
    Nagashima A, Suzuki G, Uehara Y, Saji K, Furukawa T, et al. 2007.. Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. . Plant J. 53:(3):51629
    [Crossref] [Google Scholar]
  127. 127.
    Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, et al. 2007.. Rhythmic growth explained by coincidence between internal and external cues. . Nature 448:(7151):35861
    [Crossref] [Google Scholar]
  128. 128.
    Oh E, Zhu J-Y, Bai M-Y, Arenhart RA, Sun Y, Wang Z-Y. 2014.. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. . eLife 3::e03031
    [Crossref] [Google Scholar]
  129. 129.
    Ortigosa A, Fonseca S, Franco-Zorrilla JM, Fernández-Calvo P, Zander M, et al. 2020.. The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. . Plant J. 102:(1):13852
    [Crossref] [Google Scholar]
  130. 130.
    Pacín M, Legris M, Casal JJ. 2013.. COP1 re-accumulates in the nucleus under shade. . Plant J. 75:(4):63141
    [Crossref] [Google Scholar]
  131. 131.
    Pacín M, Semmoloni M, Legris M, Finlayson SA, Casal JJ. 2016.. Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance. . New Phytol. 211:(3):96779
    [Crossref] [Google Scholar]
  132. 132.
    Paredez AR, Somerville CR, Ehrhardt DW. 2006.. Visualization of cellulose synthase demonstrates functional association with microtubules. . Science 312:(5779):149195
    [Crossref] [Google Scholar]
  133. 133.
    Park E, Kim Y, Choi G. 2018.. Phytochrome B requires PIF degradation and sequestration to induce light responses across a wide range of light conditions. . Plant Cell 30:(6):127792
    [Crossref] [Google Scholar]
  134. 134.
    Park Y-J, Lee H-J, Ha J-H, Kim JY, Park C-M. 2017.. COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. . New Phytol. 215::26980
    [Crossref] [Google Scholar]
  135. 135.
    Patitaki E, Schivre G, Zioutopoulou A, Perrella G, Bourbousse C, et al. 2022.. Light, chromatin, action: nuclear events regulating light signaling in Arabidopsis. . New Phytol. 236:(2):33349
    [Crossref] [Google Scholar]
  136. 136.
    Paulišić S, Qin W, Arora Verasztó H, Then C, Alary B, et al. 2021.. Adjustment of the PIF7-HFR1 transcriptional module activity controls plant shade adaptation. . EMBO J. 40:(1):e104273
    [Crossref] [Google Scholar]
  137. 137.
    Peaucelle A, Wightman R, Höfte H. 2015.. The control of growth symmetry breaking in the Arabidopsis hypocotyl. . Curr. Biol. 25:(13):174652
    [Crossref] [Google Scholar]
  138. 138.
    Pedmale UV, Huang S-SC, Zander M, Cole BJ, Hetzel J, et al. 2016.. Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. . Cell 164:(1–2):23345
    [Crossref] [Google Scholar]
  139. 139.
    Pelletier S, Van Orden J, Wolf S, Vissenberg K, Delacourt J, et al. 2010.. A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. . New Phytol. 188:(3):72639
    [Crossref] [Google Scholar]
  140. 140.
    Perrella G, Bäurle I, van Zanten M. 2022.. Epigenetic regulation of thermomorphogenesis and heat stress tolerance. . New Phytol. 234:(4):114460
    [Crossref] [Google Scholar]
  141. 141.
    Pham VN, Kathare PK, Huq E. 2018.. Dynamic regulation of PIF5 by COP1–SPA complex to optimize photomorphogenesis in Arabidopsis. . Plant J. 96:(2):26073
    [Crossref] [Google Scholar]
  142. 142.
    Pham VN, Kathare PK, Huq E. 2018.. Phytochromes and phytochrome interacting factors. . Plant Physiol. 176::102538
    [Crossref] [Google Scholar]
  143. 143.
    Pierik R, Djakovic-Petrovic T, Keuskamp DH, de Wit M, Voesenek LACJ. 2009.. Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and DELLA proteins in Arabidopsis. . Plant Physiol. 149:(4):170112
    [Crossref] [Google Scholar]
  144. 144.
    Podolec R, Demarsy E, Ulm R. 2021.. Perception and signaling of ultraviolet-B radiation in plants. . Annu. Rev. Plant Biol. 72::793822
    [Crossref] [Google Scholar]
  145. 145.
    Podolec R, Wagnon TB, Leonardelli M, Johansson H, Ulm R. 2022.. Arabidopsis B-box transcription factors BBX20-22 promote UVR8 photoreceptor-mediated UV-B responses. . Plant J. 111:(2):42239
    [Crossref] [Google Scholar]
  146. 146.
    Ponnu J, Hoecker U. 2021.. Illuminating the COP1/SPA ubiquitin ligase: fresh insights into its structure and functions during plant photomorphogenesis. . Front. Plant Sci. 12::662793
    [Crossref] [Google Scholar]
  147. 147.
    Ponnu J, Hoecker U. 2022.. Signaling mechanisms by Arabidopsis cryptochromes. . Front. Plant Sci. 13::844714
    [Crossref] [Google Scholar]
  148. 148.
    Ponnu J, Riedel T, Penner E, Schrader A, Hoecker U. 2019.. Cryptochrome 2 competes with COP1 substrates to repress COP1 ubiquitin ligase activity during Arabidopsis photomorphogenesis. . PNAS 116:(52):2713341
    [Crossref] [Google Scholar]
  149. 149.
    Procko C, Burko Y, Jaillais Y, Ljung K, Long JA, Chory J. 2016.. The epidermis coordinates auxin-induced stem growth in response to shade. . Genes Dev. 30:(13):152941 149. Elegant article showing the key role of auxin in the epidermis to promote hypocotyl elongation in the shade.
    [Crossref] [Google Scholar]
  150. 150.
    Procko C, Crenshaw CM, Ljung K, Noel JP, Chory J. 2014.. Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. . Plant Physiol. 165:(3):1285301
    [Crossref] [Google Scholar]
  151. 151.
    Pucciariello O, Legris M, Costigliolo Rojas C, Iglesias MJ, Esteban Hernando C, et al. 2018.. Rewiring of auxin signaling under persistent shade. . PNAS 115:(21):561217
    [Crossref] [Google Scholar]
  152. 152.
    Qiu Y, Li M, Kim RJ-A, Moore CM, Chen M. 2019.. Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. . Nat. Commun. 10:(1):140
    [Crossref] [Google Scholar]
  153. 153.
    Qiu Y, Li M, Pasoreck EK, Long L, Shi Y, et al. 2015.. HEMERA couples the proteolysis and transcriptional activity of PHYTOCHROME INTERACTING FACTORs in Arabidopsis photomorphogenesis. . Plant Cell 27:(5):140927
    [Crossref] [Google Scholar]
  154. 154.
    Qiu Y, Pasoreck EK, Reddy AK, Nagatani A, Ma W, et al. 2017.. Mechanism of early light signaling by the carboxy-terminal output module of Arabidopsis phytochrome B. . Nat. Commun. 8:(1):1905
    [Crossref] [Google Scholar]
  155. 155.
    Qiu Y, Pasoreck EK, Yoo CY, He J, Wang H, et al. 2021.. RCB initiates Arabidopsis thermomorphogenesis by stabilizing the thermoregulator PIF4 in the daytime. . Nat. Commun. 12:(1):2042
    [Crossref] [Google Scholar]
  156. 156.
    Reed JW, Wu M-F, Reeves PH, Hodgens C, Yadav V, et al. 2018.. Three auxin response factors promote hypocotyl elongation. . Plant Physiol. 178:(2):86475
    [Crossref] [Google Scholar]
  157. 157.
    Rolauffs S, Fackendahl P, Sahm J, Fiene G, Hoecker U. 2012.. Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio. . Plant Physiol. 160:(4):201527
    [Crossref] [Google Scholar]
  158. 158.
    Romero-Montepaone S, Sellaro R, Esteban Hernando C, Costigliolo-Rojas C, Bianchimano L, et al. 2021.. Functional convergence of growth responses to shade and warmth in Arabidopsis. . New Phytol. 231:(5):1890905
    [Crossref] [Google Scholar]
  159. 159.
    Sánchez-Rodríguez C, Ketelaar KD, Schneider R, Villalobos JA, Somerville CR, et al. 2017.. BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose synthesis in Arabidopsis by phosphorylating cellulose synthase 1. . PNAS 114:(13):353338
    [Crossref] [Google Scholar]
  160. 160.
    Savaldi-Goldstein S, Peto C, Chory J. 2007.. The epidermis both drives and restricts plant shoot growth. . Nature 446:(7132):199202
    [Crossref] [Google Scholar]
  161. 161.
    Schwechheimer C. 2018.. NEDD8—its role in the regulation of Cullin-RING ligases. . Curr. Opin. Plant Biol. 45::11219
    [Crossref] [Google Scholar]
  162. 162.
    Sessa G, Carabelli M, Sassi M, Ciolfi A, Possenti M, et al. 2005.. A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis. . Genes Dev. 19:(23):281115
    [Crossref] [Google Scholar]
  163. 163.
    Sharma A, Pridgeon AJ, Liu W, Segers F, Sharma B, et al. 2023.. ELONGATED HYPOCOTYL5 (HY5) and HY5 HOMOLOGUE (HYH) maintain shade avoidance suppression in UV-B. . Plant J. 115:(5):1394407
    [Crossref] [Google Scholar]
  164. 164.
    Sharma A, Sharma B, Hayes S, Kerner K, Hoecker U, et al. 2019.. UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight. . Nat. Commun. 10:(1):4417
    [Crossref] [Google Scholar]
  165. 165.
    Sheerin DJ, Menon C, zur Oven-Krockhaus S, Enderle B, Zhu L, et al. 2015.. Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. . Plant Cell 27::189201
    [Crossref] [Google Scholar]
  166. 166.
    Shi H, Liu R, Xue C, Shen X, Wei N, et al. 2016.. Seedlings transduce the depth and mechanical pressure of covering soil using COP1 and ethylene to regulate EBF1/EBF2 for soil emergence. . Curr. Biol. 26:(2):13949 166. This article explains how mechanical stress elicited by soil regulates etiolated hypocotyl elongation and thickening.
    [Crossref] [Google Scholar]
  167. 167.
    Shin J, Kim K, Kang H, Zulfugarov IS, Bae G, et al. 2009.. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. . PNAS 106:(18):766065
    [Crossref] [Google Scholar]
  168. 168.
    Simon NML, Kusakina J, Fernández-López Á, Chembath A, Belbin FE, Dodd AN. 2018.. The energy-signaling hub SnRK1 is important for sucrose-induced hypocotyl elongation. . Plant Physiol. 176:(2):12991310
    [Crossref] [Google Scholar]
  169. 169.
    Sliwinska E, Bassel GW, Bewley JD. 2009.. Germination of Arabidopsis thaliana seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyl. . J. Exp. Bot. 60:(12):358794
    [Crossref] [Google Scholar]
  170. 170.
    Spartz AK, Ren H, Park MY, Grandt KN, Lee SH, et al. 2014.. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. . Plant Cell 26:(5):212942
    [Crossref] [Google Scholar]
  171. 171.
    Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, et al. 2009.. Hormonal regulation of temperature-induced growth in Arabidopsis. . Plant J. 60:(4):589601
    [Crossref] [Google Scholar]
  172. 172.
    Stewart JL, Maloof JN, Nemhauser JL. 2011.. PIF genes mediate the effect of sucrose on seedling growth dynamics. . PLOS ONE 6:(5):e19894
    [Crossref] [Google Scholar]
  173. 173.
    Sun J, Ma Q, Mao T. 2015.. Ethylene regulates the Arabidopsis microtubule-associated protein WAVE-DAMPENED2-LIKE5 in etiolated hypocotyl elongation. . Plant Physiol. 169:(1):32537
    [Crossref] [Google Scholar]
  174. 174.
    Sun N, Wang J, Gao Z, Dong J, He H, et al. 2016.. Arabidopsis SAURs are critical for differential light regulation of the development of various organs. . PNAS 113:(21):607176
    [Crossref] [Google Scholar]
  175. 175.
    Sun Y, Fan X-Y, Cao D-M, Tang W, He K, et al. 2010.. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. . Dev. Cell 19:(5):76577
    [Crossref] [Google Scholar]
  176. 176.
    Symons GM, Smith JJ, Nomura T, Davies NW, Yokota T, Reid JB. 2008.. The hormonal regulation of de-etiolation. . Planta 227:(5):111525
    [Crossref] [Google Scholar]
  177. 177.
    Takahashi K, Hayashi K-I, Kinoshita T. 2012.. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. . Plant Physiol. 159:(2):63241
    [Crossref] [Google Scholar]
  178. 178.
    Tavridou E, Pireyre M, Ulm R. 2020.. Degradation of the transcription factors PIF4 and PIF5 under UV-B promotes UVR8-mediated inhibition of hypocotyl growth in Arabidopsis. . Plant J. 101:(3):50717
    [Crossref] [Google Scholar]
  179. 179.
    Tavridou E, Schmid-Siegert E, Fankhauser C, Ulm R. 2020.. UVR8-mediated inhibition of shade avoidance involves HFR1 stabilization in Arabidopsis. . PLOS Genet. 16:(5):e1008797
    [Crossref] [Google Scholar]
  180. 180.
    Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, et al. 2014.. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. . PLOS Genet. 10:(6):e1004416
    [Crossref] [Google Scholar]
  181. 181.
    Ushijima T, Hanada K, Gotoh E, Yamori W, Kodama Y, et al. 2017.. Light controls protein localization through phytochrome-mediated alternative promoter selection. . Cell 171:(6):131625.e12
    [Crossref] [Google Scholar]
  182. 182.
    van der Weele CM, Spollen WG, Sharp RE, Baskin TI. 2000.. Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. . J. Exp. Bot. 51:(350):155562
    [Crossref] [Google Scholar]
  183. 183.
    Vu LD, Xu X, Zhu T, Pan L, van Zanten M, et al. 2021.. The membrane-localized protein kinase MAP4K4/TOT3 regulates thermomorphogenesis. . Nat. Commun. 12:(1):2842
    [Crossref] [Google Scholar]
  184. 184.
    Wang Q, Lin C. 2020.. Mechanisms of cryptochrome-mediated photoresponses in plants. . Annu. Rev. Plant Biol. 71::10329
    [Crossref] [Google Scholar]
  185. 185.
    Wang T, McFarlane HE, Persson S. 2016.. The impact of abiotic factors on cellulose synthesis. . J. Exp. Bot. 67:(2):54352
    [Crossref] [Google Scholar]
  186. 186.
    Wang W, Lu X, Li L, Lian H, Mao Z, et al. 2018.. Photoexcited CRYPTOCHROME1 interacts with dephosphorylated BES1 to regulate brassinosteroid signaling and photomorphogenesis in Arabidopsis. . Plant Cell 30:(9):19892005
    [Crossref] [Google Scholar]
  187. 187.
    Wang X, Jiang B, Gu L, Chen Y, Mora M, et al. 2021.. A photoregulatory mechanism of the circadian clock in Arabidopsis. . Nat. Plants 7::1397408
    [Crossref] [Google Scholar]
  188. 188.
    Wang X, Ma Q, Wang R, Wang P, Liu Y, Mao T. 2020.. Submergence stress-induced hypocotyl elongation through ethylene signaling-mediated regulation of cortical microtubules in Arabidopsis. . J. Exp. Bot. 71:(3):106777
    [Google Scholar]
  189. 189.
    Wang X, Zhang J, Yuan M, Ehrhardt DW, Wang Z, Mao T. 2012.. Arabidopsis MICROTUBULE DESTABILIZING PROTEIN40 is involved in brassinosteroid regulation of hypocotyl elongation. . Plant Cell 24:(10):401225
    [Crossref] [Google Scholar]
  190. 190.
    Wei X, Wang W, Xu P, Wang W, Guo T, et al. 2021.. Phytochrome B interacts with SWC6 and ARP6 to regulate H2A.Z deposition and photomorphogensis in Arabidopsis. . J. Integr. Plant Biol. 63:(6):113346
    [Crossref] [Google Scholar]
  191. 191.
    Weitbrecht K, Müller K, Leubner-Metzger G. 2011.. First off the mark: early seed germination. . J. Exp. Bot. 62:(10):3289309
    [Crossref] [Google Scholar]
  192. 192.
    Willige BC, Zander M, Yoo CY, Phan A, Garza RM, et al. 2021.. PHYTOCHROME-INTERACTING FACTORs trigger environmentally responsive chromatin dynamics in plants. . Nat. Genet. 53:(7):95561
    [Crossref] [Google Scholar]
  193. 193.
    Wu J, Wang W, Xu P, Pan J, Zhang T, et al. 2019.. phyB interacts with BES1 to regulate brassinosteroid signaling in Arabidopsis. . Plant Cell Physiol. 60:(2):35366
    [Crossref] [Google Scholar]
  194. 194.
    Wu Q, Li Y, Lyu M, Luo Y, Shi H, Zhong1 S. 2020.. Touch-induced seedling morphological changes are determined by ethylene-regulated pectin degradation. . Sci. Adv. 6:(48):eabc9294
    [Crossref] [Google Scholar]
  195. 195.
    Xiao C, Barnes WJ, Zamil MS, Yi H, Puri VM, Anderson CT. 2017.. Activation tagging of Arabidopsis POLYGALACTURONASE INVOLVED IN EXPANSION2 promotes hypocotyl elongation, leaf expansion, stem lignification, mechanical stiffening, and lodging. . Plant J. 89:(6):115973
    [Crossref] [Google Scholar]
  196. 196.
    Xu F, He S, Zhang J, Mao Z, Wang W, et al. 2018.. Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis. . Mol. Plant 11:(4):52341
    [Crossref] [Google Scholar]
  197. 197.
    Xu P, Chen H, Li T, Xu F, Mao Z, et al. 2021.. Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins regulate gibberellin signaling and photomorphogenesis in Arabidopsis. . Plant Cell 33:(7):237594
    [Crossref] [Google Scholar]
  198. 198.
    Xu Y, Zhu Z. 2020.. Abscisic acid suppresses thermomorphogenesis in Arabidopsis thaliana. . Plant Signal. Behav. 15:(5):1746510
    [Crossref] [Google Scholar]
  199. 199.
    Xue M, Zhang H, Zhao F, Zhao T, Li H, Jiang D. 2021.. The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis. . Mol. Plant 14:(11):1799813
    [Crossref] [Google Scholar]
  200. 200.
    Yan B, Yang Z, He G, Jing Y, Dong H, et al. 2021.. The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress gibberellin signaling and plant growth. . Plant Commun. 2:(6):100245
    [Crossref] [Google Scholar]
  201. 201.
    Yang C, Zhu T, Zhou N, Huang S, Zeng Y, et al. 2023.. PIF7-mediated epigenetic reprogramming promotes the transcriptional response to shade in Arabidopsis. . EMBO J. 42:(8):e111472
    [Crossref] [Google Scholar]
  202. 202.
    Yang C-J, Zhang C, Lu Y-N, Jin J-Q, Wang X-L. 2011.. The mechanisms of brassinosteroids’ action: from signal transduction to plant development. . Mol. Plant 4:(4):588600
    [Crossref] [Google Scholar]
  203. 203.
    Yang D-L, Yao J, Mei C-S, Tong X-H, Zeng L-J, et al. 2012.. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. . PNAS 109:(19):E1192200
    [Crossref] [Google Scholar]
  204. 204.
    Yang Y, Benning C. 2018.. Functions of triacylglycerols during plant development and stress. . Curr. Opin. Biotechnol. 49::19198
    [Crossref] [Google Scholar]
  205. 205.
    Yang Y, Liang T, Zhang L, Shao K, Gu X, et al. 2018.. UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. . Nat. Plants 4:(2):98107
    [Crossref] [Google Scholar]
  206. 206.
    Yu J, Qiu H, Liu X, Wang M, Gao Y, et al. 2015.. Characterization of tub4P287L, a β-tubulin mutant, revealed new aspects of microtubule regulation in shade: Microtubules are involved in shade avoidance. . J. Integr. Plant Biol. 57:(9):75769
    [Crossref] [Google Scholar]
  207. 207.
    Zeng Y, Wang J, Huang S, Xie Y, Zhu T, et al. 2023.. HSP90s are required for hypocotyl elongation during skotomorphogenesis and thermomorphogenesis via the COP1ELF3PIF4 pathway in Arabidopsis. . New Phytol. 239:(4):125365
    [Crossref] [Google Scholar]
  208. 208.
    Zhang B, Holmlund M, Lorrain S, Norberg M, Bakó LS, et al. 2017.. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. . eLife 6::e26759
    [Crossref] [Google Scholar]
  209. 209.
    Zhang L-L, Li W, Tian Y-Y, Davis SJ, Liu J-X. 2021.. The E3 ligase XBAT35 mediates thermoresponsive hypocotyl growth by targeting ELF3 for degradation in Arabidopsis. . J. Integr. Plant Biol. 63:(6):1097103
    [Crossref] [Google Scholar]
  210. 210.
    Zhang LL, Shao YJ, Ding L, Wang MJ, Davis SJ, Liu JX. 2021.. XBAT31 regulates thermoresponsive hypocotyl growth through mediating degradation of the thermosensor ELF3 in Arabidopsis. . Sci. Adv. 7:(19):eabf4427
    [Crossref] [Google Scholar]
  211. 211.
    Zhao X, Yu X, Foo E, Symons GM, Lopez J, et al. 2007.. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. . Plant Physiol. 145:(1):10618
    [Crossref] [Google Scholar]
  212. 212.
    Zheng Z, Guo Y, Novák O, Chen W, Ljung K, et al. 2016.. Local auxin metabolism regulates environment-induced hypocotyl elongation. . Nat. Plants 2:(4):16025
    [Crossref] [Google Scholar]
  213. 213.
    Zhong M, Zeng B, Tang D, Yang J, Qu L, et al. 2021.. The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress GA signaling during photomorphogenesis in Arabidopsis. . Mol. Plant 14:(8):132842
    [Crossref] [Google Scholar]
  214. 214.
    Zhong S, Shi H, Xue C, Wei N, Guo H, Deng XW. 2014.. Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth. . PNAS 111:(11):391320
    [Crossref] [Google Scholar]
  215. 215.
    Zhou D, Wang X, Wang X, Mao T. 2023.. PHYTOCHROME INTERACTING FACTOR 4 regulates microtubule organization to mediate high temperature-induced hypocotyl elongation in Arabidopsis. . Plant Cell 35:(6):204461
    [Crossref] [Google Scholar]
  216. 216.
    Zhou X-Y, Song L, Xue H-W. 2013.. Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7. . Mol. Plant 6:(3):887904
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-062923-023852
Loading
/content/journals/10.1146/annurev-arplant-062923-023852
Loading

Data & Media loading...

  • Article Type: Review Article