1932

Abstract

Leaves form veins whose patterns vary from a single vein running the length of the leaf to networks of staggering complexity where huge numbers of veins connect to other veins at both ends. For the longest time, vein formation was thought to be controlled only by the polar, cell-to-cell transport of the plant hormone auxin; recent evidence suggests that is not so. Instead, it turns out that vein patterning features are best accounted for by a combination of polar auxin transport, facilitated auxin diffusion through plasmodesma intercellular channels, and auxin signal transduction—though the latter's precise contribution remains unclear. Equally unclear remain the sites of auxin production during leaf development, on which that vein patterning mechanism ought to depend. Finally, whether that vein patterning mechanism can account for the variety of vein arrangements found in nature remains unknown. Addressing those questions will be the exciting challenge of future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-062923-030348
2024-07-22
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-062923-030348.html?itemId=/content/journals/10.1146/annurev-arplant-062923-030348&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aloni R. 2021.. Vascular Differentiation and Plant Hormones. Cham, Switz:.: Springer
    [Google Scholar]
  2. 2.
    Alonso-Peral MM, Candela H, del Pozo JC, Martinez-Laborda A, Ponce MR, Micol JL. 2006.. The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis. . Development 133::375566
    [Crossref] [Google Scholar]
  3. 3.
    Alvin K, Chaloner WG. 1970.. Parallel evolution in leaf venation: an alternative view of angiosperm origins. . Nature 226::66263
    [Crossref] [Google Scholar]
  4. 4.
    Arnott HJ. 1959.. Anastomoses in the venation of Ginkgo biloba. . Am. J. Bot. 46::40511
    [Crossref] [Google Scholar]
  5. 5.
    Arnott HJ. 1960.. Tracheoidal idioblasts in Botrychium. . Trans. Am. Microsc. Soc. 79::97103
    [Crossref] [Google Scholar]
  6. 6.
    Ash A, Ellis B, Hickey LJ, Johnson K, Wilf P, Wing S. 1999.. Manual of Leaf Architecture. Washington, DC:: Smithsonian
    [Google Scholar]
  7. 7.
    Avery GS Jr. 1935.. Differential distribution of a phytohormone in the developing leaf of Nicotiana, and its relation to polarized growth. . Bull. Torrey Bot. Club 62::31330
    [Crossref] [Google Scholar]
  8. 8.
    Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G. 1995.. The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. . Development 121::417182
    [Crossref] [Google Scholar]
  9. 9.
    Barra-Jiménez A, Ragni L. 2017.. Secondary development in the stem: when Arabidopsis and trees are closer than it seems. . Curr. Opin. Plant Biol. 35::14551
    [Crossref] [Google Scholar]
  10. 10.
    Bayer EM, Smith RS, Mandel T, Nakayama N, Sauer M, et al. 2009.. Integration of transport-based models for phyllotaxis and midvein formation. . Genes Dev. 23::37384
    [Crossref] [Google Scholar]
  11. 11.
    Baylis T, Cierlik I, Sundberg E, Mattsson J. 2013.. SHORT INTERNODES/STYLISH genes, regulators of auxin biosynthesis, are involved in leaf vein development in Arabidopsis thaliana. . New Phytol. 197::73750
    [Crossref] [Google Scholar]
  12. 12.
    Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk MG, et al. 2016.. Connective auxin transport in the shoot facilitates communication between shoot apices. . PLOS Biol. 14::e1002446
    [Crossref] [Google Scholar]
  13. 13.
    Biedroń M, Banasiak A. 2018.. Auxin-mediated regulation of vascular patterning in Arabidopsis thaliana leaves. . Plant Cell Rep. 37::121529
    [Crossref] [Google Scholar]
  14. 14.
    Boke NH. 1940.. Histogenesis and morphology of the phyllode in certain species of Acacia. . Am. J. Bot. 27:(2):7390
    [Crossref] [Google Scholar]
  15. 15.
    Brumos J, Zhao C, Gong Y, Soriano D, Patel AP, et al. 2020.. An improved recombineering toolset for plants. . Plant Cell 32::10022
    [Crossref] [Google Scholar]
  16. 16.
    Caggiano MP, Yu X, Bhatia N, Larsson A, Ram H, et al. 2017.. Cell type boundaries organize plant development. . eLife 6::e27421
    [Crossref] [Google Scholar]
  17. 17.
    Candela H, Martinez-Laborda A, Micol JL. 1999.. Venation pattern formation in Arabidopsis thaliana vegetative leaves. . Dev. Biol. 205::20516
    [Crossref] [Google Scholar]
  18. 18.
    Carland F, Nelson T. 2009.. CVP2- and CVL1-mediated phosphoinositide signaling as a regulator of the ARF GAP SFC/VAN3 in establishment of foliar vein patterns. . Plant J. 59::895907
    [Crossref] [Google Scholar]
  19. 19.
    Channing A, Zamuner A, Edwards D, Guido D. 2011.. Equisetum thermale sp. nov. (Equisetales) from the Jurassic San Agustín hot spring deposit, Patagonia: anatomy, paleoecology, and inferred paleoecophysiology. . Am. J. Bot. 98::68097
    [Crossref] [Google Scholar]
  20. 20.
    Cheng Y, Dai X, Zhao Y. 2006.. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. . Genes Dev. 20::179099 20. Evidence of a role for auxin production in vein patterning (see also References 11, 72, 98, and 154).
    [Crossref] [Google Scholar]
  21. 21.
    Cho H, Dang TV, Hwang I. 2017.. Emergence of plant vascular system: roles of hormonal and non-hormonal regulatory networks. . Curr. Opin. Plant Biol. 35::9197
    [Crossref] [Google Scholar]
  22. 22.
    Cieslak M, Owens A, Prusinkiewicz P. 2021.. Computational models of auxin-driven patterning in shoots. . Cold Spring Harb. Perspect. Biol. 14::a040097 22. Introduction to modeling of vein patterning (see also References 10, 93, 94, and 118).
    [Crossref] [Google Scholar]
  23. 23.
    Conklin PA, Strable J, Li S, Scanlon MJ. 2019.. On the mechanisms of development in monocot and eudicot leaves. . New Phytol. 221::70624
    [Crossref] [Google Scholar]
  24. 24.
    Cook SD. 2019.. An historical review of phenylacetic acid. . Plant Cell Physiol. 60::24354
    [Crossref] [Google Scholar]
  25. 25.
    Cross GL. 1937.. The origin and development of the foliage leaves and stipules of Morus alba. . Bull. Torrey Bot. Club 64::14563
    [Crossref] [Google Scholar]
  26. 26.
    Cross GL. 1942.. Structure of the apical meristem and development of the foliage leaves of Cunninghamia lanceolata. . Am. J. Bot. 29::288301
    [Crossref] [Google Scholar]
  27. 27.
    De Rybel B, Mähönen AP, Helariutta Y, Weijers D. 2016.. Plant vascular development: from early specification to differentiation. . Nat. Rev. Mol. Cell Biol. 17::3040
    [Crossref] [Google Scholar]
  28. 28.
    Deyholos MK, Cordner G, Beebe D, Sieburth LE. 2000.. The SCARFACE gene is required for cotyledon and leaf vein patterning. . Development 127::320513
    [Crossref] [Google Scholar]
  29. 29.
    Donner TJ, Sherr I, Scarpella E. 2009.. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. . Development 136::323546
    [Crossref] [Google Scholar]
  30. 30.
    Duthie AV. 1912.. Anatomy of Gnetum africanum. . Ann. Bot. 26::593602
    [Crossref] [Google Scholar]
  31. 31.
    Esau K. 1943.. Origin and development of primary vascular tissues in seed plants. . Bot. Rev. 9::125206 31. Origin of the concept of procambium and debate over the existence of that tissue.
    [Crossref] [Google Scholar]
  32. 32.
    Esau K. 1965.. Vascular Differentiation in Plants. New York:: Holt Rinehart & Winston
    [Google Scholar]
  33. 33.
    Eshed Y, Baum SF, Perea JV, Bowman JL. 2001.. Establishment of polarity in lateral organs of plants. . Curr. Biol. 11::125160
    [Crossref] [Google Scholar]
  34. 34.
    Esteve-Bruna D, Perez-Perez JM, Ponce MR, Micol JL. 2013.. incurvata13, a novel allele of AUXIN RESISTANT6, reveals a specific role for auxin and the SCF complex in Arabidopsis embryogenesis, vascular specification, and leaf flatness. . Plant Physiol. 161::130320
    [Crossref] [Google Scholar]
  35. 35.
    Etchells JP, Smit ME, Gaudinier A, Williams CJ, Brady SM. 2016.. A brief history of the TDIF-PXY signalling module: balancing meristem identity and differentiation during vascular development. . New Phytol. 209::47484
    [Crossref] [Google Scholar]
  36. 36.
    Feugier FG, Iwasa Y. 2006.. How canalization can make loops: a new model of reticulated leaf vascular pattern formation. . J. Theor. Biol. 243::23544
    [Crossref] [Google Scholar]
  37. 37.
    Fischer U, Kucukoglu M, Helariutta Y, Bhalerao RP. 2019.. The dynamics of cambial stem cell activity. . Annu. Rev. Plant Biol. 70::293319
    [Crossref] [Google Scholar]
  38. 38.
    Foster AS. 1935.. A histogenetic study of foliar determination in Carya buckleyi var. Arkansana. . Am. J. Bot. 22::88147
    [Crossref] [Google Scholar]
  39. 39.
    Foster AS. 1956.. Plant idioblasts: remarkable examples of cell specialization. . Protoplasma 46::18493
    [Crossref] [Google Scholar]
  40. 40.
    Foster AS. 1972.. Venation patterns in the leaves of Ephedra. . J. Arnold Arboretum 53::36485
    [Crossref] [Google Scholar]
  41. 41.
    Foster AS, Arnott HJ. 1960.. Morphology and dichotomous vasculature of the leaf of Kingdonia uniflora. . Am. J. Bot. 47::68498
    [Crossref] [Google Scholar]
  42. 42.
    Fujita H, Mochizuki A. 2006.. The origin of the diversity of leaf venation pattern. . Dev. Dyn. 235::271021
    [Crossref] [Google Scholar]
  43. 43.
    Fukuda H, Ohashi-Ito K. 2019.. Vascular tissue development in plants. . Curr. Top. Dev. Biol. 131::14160
    [Crossref] [Google Scholar]
  44. 44.
    Furuta KM, Hellmann E, Helariutta Y. 2014.. Molecular control of cell specification and cell differentiation during procambial development. . Annu. Rev. Plant Biol. 65::60738
    [Crossref] [Google Scholar]
  45. 45.
    Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, et al. 1998.. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. . Science 282::222630
    [Crossref] [Google Scholar]
  46. 46.
    Gardiner J, Donner TJ, Scarpella E. 2011.. Simultaneous activation of SHR and ATHB8 expression defines switch to preprocambial cell state in Arabidopsis leaf development. . Dev. Dyn. 240::26170
    [Crossref] [Google Scholar]
  47. 47.
    Girolami G. 1954.. Leaf histogenesis in Linum usitatissimum. . Am. J. Bot. 41::26473
    [Crossref] [Google Scholar]
  48. 48.
    Goodwin K, Nelson CM. 2020.. Branching morphogenesis. . Development 147::dev184499
    [Crossref] [Google Scholar]
  49. 49.
    Hunziker P, Greb T. 2024.. Stem cells and differentiation in vascular tissues. . Annu. Rev. Plant Biol. 75::399425
    [Crossref] [Google Scholar]
  50. 50.
    Guseman JM, Lee JS, Bogenschutz NL, Peterson KM, Virata RE, et al. 2010.. Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASE-LIKE 8). . Development 137::173141
    [Crossref] [Google Scholar]
  51. 51.
    Hardtke CS. 2023.. Phloem development. . New Phytol. 239::85267
    [Crossref] [Google Scholar]
  52. 52.
    Hardtke CS, Berleth T. 1998.. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. . EMBO J. 17::140511
    [Crossref] [Google Scholar]
  53. 53.
    Hartmann FP, Barbier de Reuille P, Kuhlemeier C. 2019.. Toward a 3D model of phyllotaxis based on a biochemically plausible auxin-transport mechanism. . PLOS Comp. Biol. 15::e1006896
    [Crossref] [Google Scholar]
  54. 54.
    Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, et al. 2005.. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. . Curr. Biol. 15::1899911
    [Crossref] [Google Scholar]
  55. 55.
    Herbst D. 1971.. Disjunct foliar veins in Hawaiian euphorbias. . Science 171::124748
    [Crossref] [Google Scholar]
  56. 56.
    Herbst D. 1972.. Ontogeny of foliar venation in Euphorbia forbesii. . Am. J. Bot. 59::84350
    [Crossref] [Google Scholar]
  57. 57.
    Hirakawa Y, Kondo Y, Fukuda H. 2010.. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. . Plant Cell 22::261829
    [Crossref] [Google Scholar]
  58. 58.
    Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, et al. 2008.. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. . PNAS 105::1520813
    [Crossref] [Google Scholar]
  59. 59.
    Hsü J. 1944.. Structure and growth of the shoot apex of Sinocalamus beecheyana McClure. . Am. J. Bot. 31:(7):40411
    [Crossref] [Google Scholar]
  60. 60.
    Huang CF, Yu CP, Wu YH, Lu MJ, Tu SL, et al. 2017.. Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves. . PNAS 114::E688491
    [Google Scholar]
  61. 61.
    Inamdar JA, Shenoy KN, Rao NV. 1983.. Leaf architecture of some monocotyledons with reticulate venation. . Ann. Bot. 52::72535
    [Crossref] [Google Scholar]
  62. 62.
    Jacobs WP. 1952.. The role of auxin in differentiation of xylem around a wound. . Am. J. Bot. 39::3019
    [Crossref] [Google Scholar]
  63. 63.
    Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ. 2009.. WOX4 promotes procambial development. . Plant Physiol. 152::134656
    [Crossref] [Google Scholar]
  64. 64.
    Johnson MA. 1943.. Foliar development in Zamia. . Am. J. Bot. 30::36678
    [Crossref] [Google Scholar]
  65. 65.
    Johnston R, Leiboff S, Scanlon MJ. 2015.. Ontogeny of the sheathing leaf base in maize (Zea mays). . New Phytol. 205::30615
    [Crossref] [Google Scholar]
  66. 66.
    Jouannet V, Brackmann K, Greb T. 2015.. ( Pro)cambium formation and proliferation: two sides of the same coin?. Curr. Opin. Plant Biol. 23::5460
    [Crossref] [Google Scholar]
  67. 67.
    Kang J, Dengler N. 2002.. Cell cycling frequency and expression of the homeobox gene ATHB-8 during leaf vein development in Arabidopsis. . Planta 216::21219
    [Crossref] [Google Scholar]
  68. 68.
    Kang J, Dengler N. 2004.. Vein pattern development in adult leaves of Arabidopsis thaliana. . Int. J. Plant Sci. 165::23142
    [Crossref] [Google Scholar]
  69. 69.
    Kasahara H. 2016.. Current aspects of auxin biosynthesis in plants. . Biosci. Biotechnol. Biochem. 80::3442
    [Crossref] [Google Scholar]
  70. 70.
    Keng H. 1963.. Aspects of morphology of Phyllocladus hypophyllus. . Ann. Bot. 27::6978
    [Crossref] [Google Scholar]
  71. 71.
    Klucking EP. 1988.. Leaf Venation Patterns, Vol. 3: Myrtraceae. Berlin: Cramer
    [Google Scholar]
  72. 72.
    Kneuper I, Teale W, Dawson JE, Tsugeki R, Katifori E, et al. 2021.. Auxin biosynthesis and cellular efflux act together to regulate leaf vein patterning. . J. Exp. Bot. 72::115165
    [Crossref] [Google Scholar]
  73. 73.
    Koizumi K, Sugiyama M, Fukuda H. 2000.. A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question. . Development 127::3197204
    [Crossref] [Google Scholar]
  74. 74.
    Koller AL, Rost TL. 1988.. Structural analysis of water-storage tissue in leaves of Sansevieria (Agavaceae). . Bot. Gaz. 149::26074
    [Crossref] [Google Scholar]
  75. 75.
    Kramer EM. 2009.. Auxin-regulated cell polarity: an inside job?. Trends Plant Sci. 14::24247
    [Crossref] [Google Scholar]
  76. 76.
    Krishna A, Gardiner J, Donner TJ, Scarpella E. 2021.. Control of vein-forming, striped gene expression by auxin signaling. . BMC Biol. 19::213
    [Crossref] [Google Scholar]
  77. 77.
    Kumar D, Kellogg EA. 2019.. Getting closer: vein density in C4 leaves. . New Phytol. 221::126067
    [Crossref] [Google Scholar]
  78. 78.
    Langdon LM. 1927.. Anatomy of seedling buds of Quercus. . Bot. Gaz. 84::18799
    [Crossref] [Google Scholar]
  79. 79.
    Lavania D, Linh NM, Scarpella E. 2021.. Of cells, strands, and networks: auxin and the patterned formation of the vascular system. . Cold Spring Harb. Perspect. Biol. 13:(6):a039958
    [Crossref] [Google Scholar]
  80. 80.
    Lee BH, Johnston R, Yang Y, Gallavotti A, Kojima M, et al. 2009.. Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. . Plant Physiol. 150::20516
    [Crossref] [Google Scholar]
  81. 81.
    Lersten N. 1965.. Histogenesis of leaf venation in Trifolium wormskioldii (Leguminosea). . Am. J. Bot. 52::76774
    [Crossref] [Google Scholar]
  82. 82.
    Lin W, Wang Y, Coudert Y, Kierzkowski D. 2021.. Leaf morphogenesis: insights from the moss Physcomitrium patens. . Front. Plant Sci. 12::736212
    [Crossref] [Google Scholar]
  83. 83.
    Linh NM, Scarpella E. 2022.. Leaf vein patterning is regulated by the aperture of plasmodesmata intercellular channels. . PLOS Biol. 20::e3001781 83. Experimental evidence for facilitated auxin diffusion through plasmodesmata in vein patterning (see also References 22 and 93 for modeling evidence).
    [Crossref] [Google Scholar]
  84. 84.
    Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, et al. 1999.. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. . Development 126::46981
    [Crossref] [Google Scholar]
  85. 85.
    Magee AR, van Wyk B-E, Tilney PM, Sales F, Hedge I, Downie SR. 2009.. Billburttia, a new genus of Apiaceae (tribe Apieae) endemic to Madagascar. . Plant Syst. Evol. 283::23745
    [Crossref] [Google Scholar]
  86. 86.
    Marcos D, Berleth T. 2014.. Dynamic auxin transport patterns preceding vein formation revealed by live-imaging of Arabidopsis leaf primordia. . Front. Plant Sci. 5::235
    [Crossref] [Google Scholar]
  87. 87.
    Mattsson J, Ckurshumova W, Berleth T. 2003.. Auxin signaling in Arabidopsis leaf vascular development. . Plant Physiol. 131::132739
    [Crossref] [Google Scholar]
  88. 88.
    Mattsson J, Sung ZR, Berleth T. 1999.. Responses of plant vascular systems to auxin transport inhibition. . Development 126::297991 88. Evidence of a role for polar auxin transport in vein patterning (see also References 148 and 167).
    [Crossref] [Google Scholar]
  89. 89.
    Mazur E, Gallei M, Adamowski M, Han H, Robert HS, Friml J. 2020.. Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis. . Plant Sci. 293::110414
    [Crossref] [Google Scholar]
  90. 90.
    Mazur E, Kulik I, Hajný J, Friml J. 2020.. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis. . New Phytol. 226::137583
    [Crossref] [Google Scholar]
  91. 91.
    McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. 2001.. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. . Nature 411::70913
    [Crossref] [Google Scholar]
  92. 92.
    Melnyk CW. 2017.. Connecting the plant vasculature to friend or foe. . New Phytol. 213::161117
    [Crossref] [Google Scholar]
  93. 93.
    Mitchison GJ. 1980.. A model for vein formation in higher plants. . Proc. R. Soc. Lond. B 207::79109
    [Crossref] [Google Scholar]
  94. 94.
    Mitchison GJ. 1981.. The polar transport of auxin and vein patterns in plants. . Philos. Trans. R. Soc. Lond. B 295::46171
    [Crossref] [Google Scholar]
  95. 95.
    Naramoto S, Sawa S, Koizumi K, Uemura T, Ueda T, et al. 2009.. Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. . Development 136::152938
    [Crossref] [Google Scholar]
  96. 96.
    Nelson T, Dengler N. 1997.. Leaf vascular pattern formation. . Plant Cell 9::112135
    [Crossref] [Google Scholar]
  97. 97.
    Nieminen K, Blomster T, Helariutta Y, Mähönen AP. 2015.. Vascular cambium development. . Arabidopsis Book 13::e0177
    [Crossref] [Google Scholar]
  98. 98.
    Nishimura T, Hayashi K, Suzuki H, Gyohda A, Takaoka C, et al. 2014.. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. . Plant J. 77::35266
    [Crossref] [Google Scholar]
  99. 99.
    O'Connor DL, Runions A, Sluis A, Bragg J, Vogel JP, et al. 2014.. A division in PIN-mediated auxin patterning during organ initiation in grasses. . PLOS Comput. Biol. 10::e1003447
    [Crossref] [Google Scholar]
  100. 100.
    Ohtani M, Akiyoshi N, Takenaka Y, Sano R, Demura T. 2017.. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation. . J. Exp. Bot. 68::1726
    [Crossref] [Google Scholar]
  101. 101.
    Paliwal GS, Garg M, Harjal N. 1976.. Evolution of foliar venation in Embryobionta. . Curr. Sci. 45::17174
    [Google Scholar]
  102. 102.
    Perico C, Tan S, Langdale JA. 2022.. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin. . New Phytol. 234::783803
    [Crossref] [Google Scholar]
  103. 103.
    Petrášek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, et al. 2006.. PIN proteins perform a rate-limiting function in cellular auxin efflux. . Science 312::91418
    [Crossref] [Google Scholar]
  104. 104.
    Petricka JJ, Nelson TM. 2007.. Arabidopsis nucleolin affects plant development and patterning. . Plant Physiol. 144::17386
    [Crossref] [Google Scholar]
  105. 105.
    Powers SK, Strader LC. 2020.. Regulation of auxin transcriptional responses. . Dev. Dyn. 249::48395
    [Crossref] [Google Scholar]
  106. 106.
    Prabhakaran Mariyamma N, Clarke KJ, Yu H, Wilton EE, Van Dyk J, et al. 2018.. Members of the Arabidopsis FORKED1-LIKE gene family act to localize PIN1 in developing veins. . J. Exp. Bot. 69::477390
    [Crossref] [Google Scholar]
  107. 107.
    Pray TR. 1960.. Ontogeny of the open dichotomous venation in the pinna of the fern Nephrolepis. . Am. J. Bot. 47::31928
    [Crossref] [Google Scholar]
  108. 108.
    Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T. 1996.. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. . Planta 200::22937 108. Evidence of a role for auxin signaling in vein patterning (see also References 167 and 174).
    [Crossref] [Google Scholar]
  109. 109.
    Radhakrishnan D, Shanmukhan AP, Kareem A, Aiyaz M, Varapparambathu V, et al. 2020.. A coherent feed-forward loop drives vascular regeneration in damaged aerial organs of plants growing in a normal developmental context. . Development 147::dev185710
    [Crossref] [Google Scholar]
  110. 110.
    Radoeva T, Ten Hove CA, Saiga S, Weijers D. 2016.. Molecular characterization of Arabidopsis GAL4/UAS enhancer trap lines identifies novel cell-type-specific promoters. . Plant Physiol. 171::116981
    [Google Scholar]
  111. 111.
    Ramachandran P, Carlsbecker A, Etchells JP. 2017.. Class III HD-ZIPs govern vascular cell fate: an HD view on patterning and differentiation. . J. Exp. Bot. 68::5569
    [Crossref] [Google Scholar]
  112. 112.
    Raven JA. 1975.. Transport of indole acetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. . New Phytol. 74::16372
    [Crossref] [Google Scholar]
  113. 113.
    Ravichandran SJ, Linh NM, Scarpella E. 2020.. The canalization hypothesis—challenges and alternatives. . New Phytol. 227::105159
    [Crossref] [Google Scholar]
  114. 114.
    Richter S, Anders N, Wolters H, Beckmann H, Thomann A, et al. 2010.. Role of the GNOM gene in Arabidopsis apical-basal patterning–from mutant phenotype to cellular mechanism of protein action. . Eur. J. Cell Biol. 89::13844
    [Crossref] [Google Scholar]
  115. 115.
    Robil JM, Gao K, Neighbors CM, Boeding M, Carland FM, et al. 2021.. grasviq: an image analysis framework for automatically quantifying vein number and morphology in grass leaves. . Plant J. 107::62948
    [Crossref] [Google Scholar]
  116. 116.
    Robil JM, McSteen P. 2022.. Hormonal control of medial-lateral growth and vein formation in the maize leaf. . New Phytol. 238::12541
    [Crossref] [Google Scholar]
  117. 117.
    Rodin RJ. 1953.. Seedling morphology of Welwitschia. . Am. J. Bot. 40::37178
    [Crossref] [Google Scholar]
  118. 118.
    Rolland-Lagan AG, Prusinkiewicz P. 2005.. Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis. . Plant J. 44::85465
    [Crossref] [Google Scholar]
  119. 119.
    Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H. 2001.. Evolution and function of leaf venation architecture: a review. . Ann. Bot. 87::55366 119. Introduction to topology of vein patterns (see also Reference 168).
    [Crossref] [Google Scholar]
  120. 120.
    Rubery PH, Sheldrake AR. 1974.. Carrier-mediated auxin transport. . Planta 118::10121
    [Crossref] [Google Scholar]
  121. 121.
    Runions A, Fuhrer M, Lane B, Federl P, Rolland-Lagan A-G, Prusinkiewicz P. 2005.. Modeling and visualization of leaf venation patterns. . ACM Trans. Graph. 24::70211
    [Crossref] [Google Scholar]
  122. 122.
    Ruonala R, Ko D, Helariutta Y. 2017.. Genetic networks in plant vascular development. . Annu. Rev. Genet. 51::33559
    [Crossref] [Google Scholar]
  123. 123.
    Sachs J. 1868.. Lehrbuch der Botanik: nach dem Gegenwärtigen stand der Wissenschaft. Leipzig, Ger:.: Verlag von Wilhelm Engelmann
    [Google Scholar]
  124. 124.
    Sachs T. 1968.. On the determination of the pattern of vascular tissue in peas. . Ann. Bot. 32::78190
    [Crossref] [Google Scholar]
  125. 125.
    Sachs T. 1968.. The role of the root in the induction of xylem differentiation in peas. . Ann. Bot. 32::39199
    [Crossref] [Google Scholar]
  126. 126.
    Sachs T. 1975.. The control of the differentiation of vascular networks. . Ann. Bot. 39::197204
    [Crossref] [Google Scholar]
  127. 127.
    Sachs T. 1981.. The control of the patterned differentiation of vascular tissues. . Adv. Bot. Res. 9::151262 127. Most complete account of the canalization hypothesis and of the evidence that suggested it (see also References 129 and 130).
    [Crossref] [Google Scholar]
  128. 128.
    Sachs T. 1989.. The development of vascular networks during leaf development. . Curr. Top. Plant Biochem. Physiol. 8::16883
    [Google Scholar]
  129. 129.
    Sachs T. 1991.. Cell polarity and tissue patterning in plants. . Development 113:(Suppl. 1):8393
    [Crossref] [Google Scholar]
  130. 130.
    Sachs T. 2000.. Integrating cellular and organismic aspects of vascular differentiation. . Plant Cell Physiol. 41::64956
    [Crossref] [Google Scholar]
  131. 131.
    Sack L, Scoffoni C. 2013.. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. . New Phytol. 198::983100
    [Crossref] [Google Scholar]
  132. 132.
    Sakakibara K, Nishiyama T, Sumikawa N, Kofuji R, Murata T, Hasebe M. 2003.. Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens. . Development 130::483546
    [Crossref] [Google Scholar]
  133. 133.
    Sargent JA, Wangermann E. 1959.. The effect of some growth regulators on the vascular system of Lemna minor. . New Phytol. 58::34563
    [Crossref] [Google Scholar]
  134. 134.
    Satina S, Blakeslee AF. 1941.. Periclinal chimeras in Datura stramonium in relation to development of leaf and flower. . Am. J. Bot. 28::86271
    [Crossref] [Google Scholar]
  135. 135.
    Sauer M, Balla J, Luschnig C, Wisniewska J, Reinohl V, et al. 2006.. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. . Genes Dev. 20::290211
    [Crossref] [Google Scholar]
  136. 136.
    Sawchuk MG, Donner TJ, Scarpella E. 2008.. Auxin transport-dependent, stage-specific dynamics of leaf vein formation. . Plant Signal. Behav. 3::28689
    [Crossref] [Google Scholar]
  137. 137.
    Sawchuk MG, Edgar A, Scarpella E. 2013.. Patterning of leaf vein networks by convergent auxin transport pathways. . PLOS Genet. 9::e1003294
    [Crossref] [Google Scholar]
  138. 138.
    Sawchuk MG, Head P, Donner TJ, Scarpella E. 2007.. Time-lapse imaging of Arabidopsis leaf development shows dynamic patterns of procambium formation. . New Phytol. 176::56071
    [Crossref] [Google Scholar]
  139. 139.
    Scarpella E. 2023.. Axes and polarities in leaf vein formation. . Plant Physiol. 193::11224
    [Crossref] [Google Scholar]
  140. 140.
    Scarpella E, Barkoulas M, Tsiantis M. 2010.. Control of leaf and vein development by auxin. . Cold Spring Harb. Perspect. Biol. 2::a001511
    [Crossref] [Google Scholar]
  141. 141.
    Scarpella E, Francis P, Berleth T. 2004.. Stage-specific markers define early steps of procambium development in Arabidopsis leaves and correlate termination of vein formation with mesophyll differentiation. . Development 131::344555
    [Crossref] [Google Scholar]
  142. 142.
    Scarpella E, Marcos D, Friml J, Berleth T. 2006.. Control of leaf vascular patterning by polar auxin transport. . Genes Dev. 20::101527 142. Account of the expression and localization of PIN1 during vein patterning (see also References 10, 86, and 174).
    [Crossref] [Google Scholar]
  143. 143.
    Scarpella E, Meijer AH. 2004.. Pattern formation in the vascular system of monocot and dicot plant species. . New Phytol. 164::20942
    [Crossref] [Google Scholar]
  144. 144.
    Scarpella E, Rueb S, Meijer AH. 2003.. The RADICLELESS1 gene is required for vascular pattern formation in rice. . Development 130::64558
    [Crossref] [Google Scholar]
  145. 145.
    Sharman BC, Hitch PA. 1967.. Initiation of procambial strands in leaf primordia of bread wheat, Triticum aestivum L. . Ann. Bot. 31::22943
    [Crossref] [Google Scholar]
  146. 146.
    Shirakawa M, Ueda H, Shimada T, Hara-Nishimura I. 2016.. Myrosin cells are differentiated directly from ground meristem cells and are developmentally independent of the vasculature in Arabidopsis leaves. . Plant Signal. Behav. 11::e1150403
    [Crossref] [Google Scholar]
  147. 147.
    Shushan S, Johnson MA. 1955.. The shoot apex and leaf of Dianthus caryophyllus L. . Bull. Torrey Bot. Club 82::26683
    [Crossref] [Google Scholar]
  148. 148.
    Sieburth LE. 1999.. Auxin is required for leaf vein pattern in Arabidopsis. . Plant Physiol. 121::117990
    [Crossref] [Google Scholar]
  149. 149.
    Silverstone AL, Chang C, Krol E, Sun TP. 1997.. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. . Plant J. 12::919
    [Crossref] [Google Scholar]
  150. 150.
    Simon S, Petrášek J. 2011.. Why plants need more than one type of auxin. . Plant Sci. 180::45460
    [Crossref] [Google Scholar]
  151. 151.
    Sims K, Abedi-Samakush F, Szulc N, Macias Honti MG, Mattsson J. 2021.. OsARF11 promotes growth, meristem, seed, and vein formation during rice plant development. . Int. J. Mol. Sci. 22::4089
    [Crossref] [Google Scholar]
  152. 152.
    Smith RS, Bayer EM. 2009.. Auxin transport-feedback models of patterning in plants. . Plant Cell Environ. 32::125871
    [Crossref] [Google Scholar]
  153. 153.
    Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, et al. 1999.. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. . Science 286::31618
    [Crossref] [Google Scholar]
  154. 154.
    Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie D-Y, et al. 2008.. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. . Cell 133::17791
    [Crossref] [Google Scholar]
  155. 155.
    Stevenson DW, Norstog KJ, Molsen DV. 1996.. Midribs of cycad pinnae. . Brittonia 48::6774
    [Crossref] [Google Scholar]
  156. 156.
    Strader LC, Monroe-Augustus M, Bartel B. 2008.. The IBR5 phosphatase promotes Arabidopsis auxin responses through a novel mechanism distinct from TIR1-mediated repressor degradation. . BMC Plant Biol. 8::41
    [Crossref] [Google Scholar]
  157. 157.
    Su N, Zhu A, Tao X, Ding ZJ, Chang S, et al. 2022.. Structures and mechanisms of the Arabidopsis auxin transporter PIN3. . Nature 609::61621
    [Crossref] [Google Scholar]
  158. 158.
    Sun Y, Yang B, De Rybel B. 2023.. Hormonal control of the molecular networks guiding vascular tissue development in the primary root meristem of Arabidopsis. . J. Exp. Bot. 74::696474
    [Crossref] [Google Scholar]
  159. 159.
    Thimann KV, Skoog F. 1934.. On the inhibition of bud development and other functions of growth substance in Vicia faba. . Proc. R. Soc. Lond. B 114::31739
    [Crossref] [Google Scholar]
  160. 160.
    Thompson NP, Jacobs WP. 1966.. Polarity of IAA effect on sieve-tube and xylem regeneration in Coleus and tomato stems. . Plant Physiol. 41::67382
    [Crossref] [Google Scholar]
  161. 161.
    Tobeña-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol JN, et al. 2002.. FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. . Genes Dev. 16::75363
    [Crossref] [Google Scholar]
  162. 162.
    Tomescu AMF. 2009.. Megaphylls, microphylls and the evolution of leaf development. . Trends Plant Sci. 14::512
    [Crossref] [Google Scholar]
  163. 163.
    Tomescu AMF. 2021.. The stele—a developmental perspective on the diversity and evolution of primary vascular architecture. . Biol. Rev. Camb. Philos. Soc. 96::126383
    [Crossref] [Google Scholar]
  164. 164.
    Ung KL, Winkler M, Schulz L, Kolb M, Janacek DP, et al. 2022.. Structures and mechanism of the plant PIN-FORMED auxin transporter. . Nature 609::60510
    [Crossref] [Google Scholar]
  165. 165.
    Vaten A, Dettmer J, Wu S, Stierhof YD, Miyashima S, et al. 2011.. Callose biosynthesis regulates symplastic trafficking during root development. . Dev. Cell 21::114455
    [Crossref] [Google Scholar]
  166. 166.
    Vaughan JG. 1954.. The morphology and growth of the vegetative and reproductive apices of Arabidopsis thaliana (L.) Heynh., Capsella bursa-pastoris (L.) Medic. and Anagallis arvensis L. . J. Linn. Soc. Bot. 55::279301
    [Crossref] [Google Scholar]
  167. 167.
    Verna C, Ravichandran SJ, Sawchuk MG, Linh NM, Scarpella E. 2019.. Coordination of tissue cell polarity by auxin transport and signaling. . eLife 8::e51061
    [Crossref] [Google Scholar]
  168. 168.
    Verna C, Sawchuk MG, Linh NM, Scarpella E. 2015.. Control of vein network topology by auxin transport. . BMC Biol. 13::94
    [Crossref] [Google Scholar]
  169. 169.
    Wagner WH Jr. 1979.. Reticulate veins in the systematics of modern ferns. . Taxon 28::8795
    [Crossref] [Google Scholar]
  170. 170.
    Wagner WH Jr., Beitel JM, Wagner FS. 1982.. Complex venation patterns in the leaves of Selaginella: megaphyll-like leaves in lycophytes. . Science 218::79394
    [Crossref] [Google Scholar]
  171. 171.
    Wangermann E. 1974.. The pathway of transport of applied indolyl-acetic acid through internode segments. . New Phytol. 73::62336
    [Crossref] [Google Scholar]
  172. 172.
    Went FW. 1928.. Wuchsstoff und Wachstum. . Recueil Travaux Botaniques Néerlandais 25::1116
    [Google Scholar]
  173. 173.
    Wenzel CL, Marrison J, Mattsson J, Haseloff J, Bougourd SM. 2012.. Ectopic divisions in vascular and ground tissues of Arabidopsis thaliana result in distinct leaf venation defects. . J. Exp. Bot. 63::535164 173. Evidence of a role for oriented cell division in vein patterning.
    [Crossref] [Google Scholar]
  174. 174.
    Wenzel CL, Schuetz M, Yu Q, Mattsson J. 2007.. Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. . Plant J. 49::38798
    [Crossref] [Google Scholar]
  175. 175.
    Wisniewska J, Xu J, Seifertova D, Brewer PB, Ruzicka K, et al. 2006.. Polar PIN localization directs auxin flow in plants. . Science 312::883
    [Crossref] [Google Scholar]
  176. 176.
    Woudenberg S, Renema J, Tomescu AMF, De Rybel B, Weijers D. 2022.. Deep origin and gradual evolution of transporting tissues: perspectives from across the land plants. . Plant Physiol. 190::8599
    [Crossref] [Google Scholar]
  177. 177.
    Yamaguchi M, Goué N, Igarashi H, Ohtani M, Nakano Y, et al. 2010.. VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. . Plant Physiol. 153::90614
    [Crossref] [Google Scholar]
  178. 178.
    Yang Z, Xia J, Hong J, Zhang C, Wei H, et al. 2022.. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. . Nature 609::61115
    [Crossref] [Google Scholar]
  179. 179.
    Yoshida S, Barbier de Reuille P, Lane B, Bassel GW, Prusinkiewicz P, et al. 2014.. Genetic control of plant development by overriding a geometric division rule. . Dev. Cell 29::7587
    [Crossref] [Google Scholar]
  180. 180.
    Yu T, Guan C, Wang J, Sajjad M, Ma L, Jiao Y. 2017.. Dynamic patterns of gene expression during leaf initiation. . J. Genet. Genom. 44::599601
    [Crossref] [Google Scholar]
  181. 181.
    Zhao Y. 2018.. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. . Annu. Rev. Plant Biol. 69::41735
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-062923-030348
Loading
/content/journals/10.1146/annurev-arplant-062923-030348
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error