1932

Abstract

Endocytosis is an essential eukaryotic process that maintains the homeostasis of the plasma membrane proteome by vesicle-mediated internalization. Its predominant mode of operation utilizes the polymerization of the scaffold protein clathrin forming a coat around the vesicle; therefore, it is termed clathrin-mediated endocytosis (CME). Throughout evolution, the machinery that mediates CME is marked by losses, multiplications, and innovations. CME employs a limited number of conserved structural domains and folds, whose assembly and connections are species dependent. In plants, many of the domains are grouped into an ancient multimeric complex, the TPLATE complex, which occupies a central position as an interaction hub for the endocytic machinery. In this review, we provide an overview of the current knowledge regarding the structural aspects of plant CME, and we draw comparisons to other model systems. To do so, we have taken advantage of recent developments with respect to artificial intelligence–based protein structure prediction.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070122-023455
2024-07-22
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070122-023455.html?itemId=/content/journals/10.1146/annurev-arplant-070122-023455&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adam T, Bouhidel K, Der C, Robert F, Najid A, et al. 2012.. Constitutive expression of clathrin hub hinders elicitor-induced clathrin-mediated endocytosis and defense gene expression in plant cells. . FEBS Lett. 586:(19):329398
    [Crossref] [Google Scholar]
  2. 2.
    Adamowski M, Narasimhan M, Kania U, Glanc M, De Jaeger G, Friml J. 2018.. A functional study of AUXILIN-LIKE1 and 2, two putative clathrin uncoating factors in Arabidopsis. . Plant Cell 30:(3):70016
    [Crossref] [Google Scholar]
  3. 3.
    Ahn G, Kim H, Kim DH, Hanh H, Yoon Y, et al. 2017.. SH3 domain-containing protein 2 plays a crucial role at the step of membrane tubulation during cell plate formation. . Plant Cell 29:(6):1388405
    [Crossref] [Google Scholar]
  4. 4.
    Aniento F, de Medina Hernández VS, Dagdas Y, Rojas-Pierce M, Russinova E. 2022.. Molecular mechanisms of endomembrane trafficking in plants. . Plant Cell 34:(1):14673
    [Crossref] [Google Scholar]
  5. 5.
    Arora D, Abel NB, Liu C, van Damme P, Yperman K, et al. 2020.. Establishment of proximity-dependent biotinylation approaches in different plant model systems. . Plant Cell 32:(11):3388407
    [Crossref] [Google Scholar]
  6. 6.
    Arora D, van Damme D. 2021.. Motif-based endomembrane trafficking. . Plant Physiol. 186:(1):22138
    [Crossref] [Google Scholar]
  7. 7.
    Bar M, Aharon M, Benjamin S, Rotblat B, Horowitz M, Avni A. 2008.. AtEHDs, novel Arabidopsis EH-domain-containing proteins involved in endocytosis. . Plant J. 55:(6):102538
    [Crossref] [Google Scholar]
  8. 8.
    Bar M, Leibman M, Schuster S, Pitzhadza H, Avni A. 2013.. EHD1 functions in endosomal recycling and confers salt tolerance. . PLOS ONE 8:(1):e54533
    [Crossref] [Google Scholar]
  9. 9.
    Bar M, Sharfman M, Schuster S, Avni A. 2009.. The coiled-coil domain of EHD2 mediates inhibition of LeEix2 endocytosis and signaling. . PLOS ONE 4:(11):e7973
    [Crossref] [Google Scholar]
  10. 10.
    Barth M, Holstein SEH. 2004.. Identification and functional characterization of Arabidopsis AP180, a binding partner of plant αC-adaptin. . J. Cell Sci. 117:(10):205162
    [Crossref] [Google Scholar]
  11. 11.
    Bashline L, Li S, Zhu X, Gu Y. 2015.. The TWD40-2 protein and the AP2 complex cooperate in the clathrin-mediated endocytosis of cellulose synthase to regulate cellulose biosynthesis. . PNAS 112:(41):1287075
    [Crossref] [Google Scholar]
  12. 12.
    Beacham GM, Partlow EA, Hollopeter G. 2019.. Conformational regulation of AP1 and AP2 clathrin adaptor complexes. . Traffic 20:(10):74151
    [Crossref] [Google Scholar]
  13. 13.
    Beacham GM, Partlow EA, Lange JJ, Hollopeter G. 2018.. NECAPs are negative regulators of the AP2 clathrin adaptor complex. . eLife 7::e32242
    [Crossref] [Google Scholar]
  14. 14.
    Bednarek SY, Backues SK. 2010.. Plant dynamin-related protein families DRP1 and DRP2 in plant development. . Biochem. Soc. Trans. 38:(3):797806
    [Crossref] [Google Scholar]
  15. 15.
    Blanc C, Charette SJ, Mattei S, Aubry L, Smith EW, et al. 2009.. Dictyostelium Tom1 participates to an ancestral ESCRT-0 complex. . Traffic 10:(2):16171
    [Crossref] [Google Scholar]
  16. 16.
    Borner GHH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, et al. 2005.. Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. . Plant Physiol. 137:(1):10416
    [Crossref] [Google Scholar]
  17. 17.
    Busch DJ, Houser JR, Hayden CC, Sherman MB, Lafer EM, Stachowiak JC. 2015.. Intrinsically disordered proteins drive membrane curvature. . Nat. Commun. 6::7875
    [Crossref] [Google Scholar]
  18. 18.
    Cao Y, He Q, Qi Z, Zhang Y, Lu L, et al. 2020.. Dynamics and endocytosis of Flot1 in Arabidopsis require CPI1 function. . Int. J. Mol. Sci. 21:(5):1552
    [Crossref] [Google Scholar]
  19. 19.
    Carlsson AE, Bayly PV. 2014.. Force generation by endocytic actin patches in budding yeast. . Biophys. J. 106:(8):1596606
    [Crossref] [Google Scholar]
  20. 20.
    Chamberland JP, Antonow LT, Santos MD, Ritter B. 2016.. NECAP2 controls clathrin coat recruitment to early endosomes for fast endocytic recycling. . J. Cell Sci. 129:(13):262537
    [Crossref] [Google Scholar]
  21. 21.
    Coleman J, Evans D, Hawes C, Horsley D, Cole L. 1987.. Structure and molecular organization of higher plant coated vesicles. . J. Cell Sci. 88:(1):3545
    [Crossref] [Google Scholar]
  22. 22.
    Dacks JB, Poon PP, Field MC. 2008.. Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. . PNAS 105:(2):58893
    [Crossref] [Google Scholar]
  23. 23.
    Dacks JB, Robinson MS. 2017.. Outerwear through the ages: evolutionary cell biology of vesicle coats. . Curr. Opin. Cell Biol. 47::10816
    [Crossref] [Google Scholar]
  24. 24.
    Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, et al. 2022.. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. . Plant Cell 34:(6):215073
    [Crossref] [Google Scholar]
  25. 25.
    Daumke O, Lundmark R, Vallis Y, Martens S, Butler PJG, McMahon HT. 2007.. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. . Nature 449::92327
    [Crossref] [Google Scholar]
  26. 26.
    Day KJ, Kago G, Wang L, Richter JB, Hayden CC, et al. 2021.. Liquid-like protein interactions catalyse assembly of endocytic vesicles. . Nat. Cell Biol. 23::36676
    [Crossref] [Google Scholar]
  27. 27.
    Dejonghe W, Kuenen S, Mylle E, Vasileva M, Keech O, et al. 2016.. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. . Nat. Commun. 7::11710
    [Crossref] [Google Scholar]
  28. 28.
    Dejonghe W, Sharma I, Denoo B, De Munck S, Lu Q, et al. 2019.. Disruption of endocytosis through chemical inhibition of clathrin heavy chain function. . Nat. Chem. Biol. 15::64149 28. Describes endosidin 9-17, a derivative of endosidin 9 lacking its protonophore function, allowing conditional inhibition of clathrin-mediated endocytosis in plants.
    [Crossref] [Google Scholar]
  29. 29.
    Dergai M, Iershov A, Novokhatska O, Pankivskyi S, Rynditch A. 2016.. Evolutionary changes on the way to clathrin-mediated endocytosis in animals. . Genome Biol. Evol. 8:(3):588606
    [Crossref] [Google Scholar]
  30. 30.
    Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, et al. 2007.. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. . Curr. Biol. 17:(6):52027
    [Crossref] [Google Scholar]
  31. 31.
    Di Rubbo S, Irani NG, Kim SY, Xu ZY, Gadeyne A, et al. 2013.. The clathrin adaptor complex AP-2 mediates endocytosis of BRASSINOSTEROID INSENSITIVE1 in Arabidopsis. . Plant Cell 25:(8):298697
    [Crossref] [Google Scholar]
  32. 32.
    Dodonova SO, Diestelkoetter-Bachert P, Von Appen A, Hagen WJH, Beck R, et al. 2015.. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. . Science 349:(6244):19598
    [Crossref] [Google Scholar]
  33. 33.
    Doumane M, Lebecq A, Colin L, Fangain A, Stevens FD, et al. 2021.. Inducible depletion of PI(4,5)P2 by the synthetic iDePP system in Arabidopsis. . Nat. Plants 7::58797
    [Crossref] [Google Scholar]
  34. 34.
    Drakakaki G, Robert S, Szatmari AM, Brown MQ, Nagawa S, et al. 2011.. Clusters of bioactive compounds target dynamic endomembrane networks in vivo. . PNAS 108:(43):1785055
    [Crossref] [Google Scholar]
  35. 35.
    Fan L, Hao H, Xue Y, Zhang L, Song K, et al. 2013.. Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. . Development 140:(18):382637
    [Crossref] [Google Scholar]
  36. 36.
    Feng Y, Hiwatashi T, Minamino N, Ebine K, Ueda T. 2022.. Membrane trafficking functions of the ANTH/ENTH/VHS domain-containing proteins in plants. . FEBS Lett. 596:(17):225668
    [Crossref] [Google Scholar]
  37. 37.
    Fujimoto M, Ebine K, Nishimura K, Tsutsumi N, Ueda T. 2020.. Longin R-SNARE is retrieved from the plasma membrane by ANTH domain-containing proteins in Arabidopsis. . PNAS 117:(40):2515058
    [Crossref] [Google Scholar]
  38. 38.
    Gadeyne A, Sánchez-Rodríguez C, Vanneste S, Di Rubbo S, Zauber H, et al. 2014.. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. . Cell 156:(4):691704 38. Identifies and characterizes the octameric TPLATE complex as an essential adaptor complex for clathrin-mediated endocytosis in plants.
    [Crossref] [Google Scholar]
  39. 39.
    Gao J, Chaudhary A, Vaddepalli P, Nagel MK, Isono E, Schneitz K. 2019.. The Arabidopsis receptor kinase STRUBBELIG undergoes clathrin-dependent endocytosis. . J. Exp. Bot. 70:(15):388194
    [Crossref] [Google Scholar]
  40. 40.
    Grones P, De Meyer A, Pleskot R, Mylle E, Kraus M, et al. 2022.. The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo. . Nat. Plants 8::146783 40. Identifies the SH3 domain of TASH3 as a specific ubiquitin-binding domain of endocytic cargo proteins in plants.
    [Crossref] [Google Scholar]
  41. 41.
    Gu M, Liu Q, Watanabe S, Sun L, Hollopeter G, et al. 2013.. AP2 hemicomplexes contribute independently to synaptic vesicle endocytosis. . eLife 2::e00190
    [Crossref] [Google Scholar]
  42. 42.
    Hao H, Fan L, Chen T, Li R, Li X, et al. 2014.. Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. . Plant Cell 26:(4):172945
    [Crossref] [Google Scholar]
  43. 43.
    Heinze L, Freimuth N, Rößling AK, Hahnke R, Riebschläger S, et al. 2020.. EPSIN1 and MTV1 define functionally overlapping but molecularly distinct trans-Golgi network subdomains in Arabidopsis. . PNAS 117:(41):2588089
    [Crossref] [Google Scholar]
  44. 44.
    Hirst J, Barlow L, Francisco GC, Sahlender DA, Seaman MNJ, et al. 2011.. The fifth adaptor protein complex. . PLOS Biol. 9:(10):e1001170
    [Crossref] [Google Scholar]
  45. 45.
    Hirst J, Schlacht A, Norcott JP, Traynor D, Bloomfield G, et al. 2014.. Characterization of TSET, an ancient and widespread membrane trafficking complex. . eLife 3::e02866 45. Identifies and characterizes TSET, the Dictyostelium counterpart of the plant TPLATE complex as the evolutionary link between AP and COPI.
    [Crossref] [Google Scholar]
  46. 46.
    Holstein SEH, Oliviusson P. 2005.. Sequence analysis of Arabidopsis thaliana E/ANTH-domain-containing proteins: membrane tethers of the clathrin-dependent vesicle budding machinery. . Protoplasma 226::1321
    [Crossref] [Google Scholar]
  47. 47.
    Hong Y-H, Ahn H-C, Lim J, Kim H-M, Ji H-Y, et al. 2009.. Identification of a novel ubiquitin binding site of STAM1 VHS domain by NMR spectroscopy. . FEBS Lett. 583:(2):28792
    [Crossref] [Google Scholar]
  48. 48.
    Hong Z, Bednarek SY, Blumwald E, Hwang I, Jurgens G, et al. 2003.. A unified nomenclature for Arabidopsis dynamin-related large GTPases based on homology and possible functions. . Plant Mol. Biol. 53:(3):26165
    [Crossref] [Google Scholar]
  49. 49.
    Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N, et al. 2014.. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. . Nat. Commun. 5::3978
    [Crossref] [Google Scholar]
  50. 50.
    Huang S, Konishi N, Yamaji N, Shao JF, Mitani-Ueno N, Ma JF. 2022.. Boron uptake in rice is regulated post-translationally via a clathrin-independent pathway. . Plant Physiol. 188:(3):164964
    [Crossref] [Google Scholar]
  51. 51.
    Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC, et al. 2010.. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. . Cell 141:(7):122029
    [Crossref] [Google Scholar]
  52. 52.
    Jimah JR, Hinshaw JE. 2019.. Structural insights into the mechanism of dynamin superfamily proteins. . Trends Cell Biol. 29:(3):25773
    [Crossref] [Google Scholar]
  53. 53.
    Johnson A, Dahhan DA, Gnyliukh N, Kaufmann WA, Zheden V, et al. 2021.. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. . PNAS 118:(51):e2113046118 53. Provides evidence for the membrane-bending capacity and localization of the TPLATE complex at the outer rim of endocytic pits.
    [Crossref] [Google Scholar]
  54. 54.
    Johnson MA, von Besser K, Zhou Q, Smith E, Aux G, et al. 2004.. Arabidopsis hapless mutations define essential gametophytic functions. . Genetics 168:(2):97182
    [Crossref] [Google Scholar]
  55. 55.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389 55. Describes AlphaFold2, an artificial intelligence–based approach for highly accurate protein structure prediction competitive with experimental structures.
    [Crossref] [Google Scholar]
  56. 56.
    Junková P, Daněk M, Kocourková D, Brouzdová J, Kroumanová K, et al. 2018.. Mapping of plasma membrane proteins interacting with Arabidopsis thaliana flotillin 2. . Front. Plant Sci. 9::991
    [Crossref] [Google Scholar]
  57. 57.
    Kadlecova Z, Spielman SJ, Loerke D, Mohanakrishnan A, Reed DK, Schmid SL. 2017.. Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. . J. Cell Biol. 216:(1):16779
    [Crossref] [Google Scholar]
  58. 58.
    Kaksonen M, Roux A. 2018.. Mechanisms of clathrin-mediated endocytosis. . Nat. Rev. Mol. Cell Biol. 19::31326
    [Crossref] [Google Scholar]
  59. 59.
    Kaneda M, van Oostende-Triplet C, Chebli Y, Testerink C, Bednarek SY, Geitmann A. 2019.. Plant AP180 N-terminal homolog proteins are involved in clathrin-dependent endocytosis during pollen tube growth in Arabidopsis thaliana. . Plant Cell Physiol. 60:(6):131630
    [Crossref] [Google Scholar]
  60. 60.
    Kawasaki H, Kretsinger RH. 2017.. Structural and functional diversity of EF-hand proteins: evolutionary perspectives. . Protein Sci. 26:(10):1898920
    [Crossref] [Google Scholar]
  61. 61.
    Kim SY, Xu Z-Y, Song K, Kim DH, Kang H, et al. 2013.. Adaptor protein complex 2–mediated endocytosis is crucial for male reproductive organ development in Arabidopsis. . Plant Cell 25:(8):297085
    [Crossref] [Google Scholar]
  62. 62.
    Kitakura S, Vanneste S, Robert S, Löfke C, Teichmann T, et al. 2011.. Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. . Plant Cell 23:(5):192031
    [Crossref] [Google Scholar]
  63. 63.
    Klein IK, Predescu DN, Sharma T, Knezevic I, Malik AB, Predescu S. 2009.. Intersectin-2L regulates caveola endocytosis secondary to Cdc42-mediated actin polymerization. . J. Biol. Chem. 284:(38):2595361
    [Crossref] [Google Scholar]
  64. 64.
    Klinger CM, Spang A, Dacks JB, Ettema TJG. 2016.. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. . Mol. Biol. Evol. 33:(6):152841
    [Crossref] [Google Scholar]
  65. 65.
    Korbei B, Moulinier-Anzola J, De-Araujo L, Lucyshyn D, Retzer K, et al. 2013.. Arabidopsis TOL proteins act as gatekeepers for vacuolar sorting of PIN2 plasma membrane protein. . Curr. Biol. 23:(24):25005
    [Crossref] [Google Scholar]
  66. 66.
    Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, Field MC. 2013.. Molecular paleontology and complexity in the last eukaryotic common ancestor. . Crit. Rev. Biochem. Mol. Biol. 48:(4):37396
    [Crossref] [Google Scholar]
  67. 67.
    Kovtun O, Dickson VK, Kelly BT, Owen DJ, Briggs JAG. 2020.. Architecture of the AP2/clathrin coat on the membranes of clathrin-coated vesicles. . Sci. Adv. 6:(30):8381403
    [Crossref] [Google Scholar]
  68. 68.
    Kozak M, Kaksonen M. 2022.. Condensation of Ede1 promotes the initiation of endocytosis. . eLife 11::e72865
    [Crossref] [Google Scholar]
  69. 69.
    Lam BC-H, Sage TL, Bianchi F, Blumwald E. 2001.. Role of SH3 domain–containing proteins in clathrin-mediated vesicle trafficking in Arabidopsis. . Plant Cell 13:(11):2499512
    [Google Scholar]
  70. 70.
    Lam BC-H, Sage TL, Bianchi F, Blumwald E. 2002.. Regulation of ADL6 activity by its associated molecular network. . Plant J. 31:(5):56576
    [Crossref] [Google Scholar]
  71. 71.
    Larson ER, van Zelm E, Roux C, Marion-Poll A, Blatt MR. 2017.. Clathrin heavy chain subunits coordinate endo- and exocytic traffic and affect stomatal movement. . Plant Physiol. 175:(2):70820
    [Crossref] [Google Scholar]
  72. 72.
    Larson RT, Dacks JB, Barlow LD. 2019.. Recent gene duplications dominate evolutionary dynamics of adaptor protein complex subunits in embryophytes. . Traffic 20:(12):96173
    [Crossref] [Google Scholar]
  73. 73.
    Le J, El-Assal SED, Basu D, Saad ME, Szymanski DB. 2003.. Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development. . Curr. Biol. 13:(15):134147
    [Crossref] [Google Scholar]
  74. 74.
    Lebecq A, Doumane M, Fangain A, Bayle V, Leong JX, et al. 2022.. The Arabidopsis SAC9 enzyme is enriched in a cortical population of early endosomes and restricts PI(4,5)P2 at the plasma membrane. . eLife 11::e73837
    [Crossref] [Google Scholar]
  75. 75.
    Lee G-J, Kim H, Kang H, Jang M, Dong WL, et al. 2007.. EpsinR2 interacts with clathrin, adaptor protein-3, AtVTI12, and phosphatidylinositol-3-phosphate. Implications for EpsinR2 function in protein trafficking in plant cells. . Plant Physiol. 143:(4):156175
    [Crossref] [Google Scholar]
  76. 76.
    Li R, Liu P, Wan Y, Chen T, Wang Q, et al. 2012.. A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. . Plant Cell 24:(5):210522
    [Crossref] [Google Scholar]
  77. 77.
    Liu C, Li Z, Tian D, Xu M, Pan J, et al. 2022.. AP1/2β-mediated exocytosis of tapetum-specific transporters is required for pollen development in Arabidopsis thaliana. . Plant Cell 34:(10):396182
    [Crossref] [Google Scholar]
  78. 78.
    Liu S-H, Wong ML, Craik CS, Brodsky FM, Hooper GW. 1995.. Regulation of clathrin assembly and trimerization defined using recombinant triskelion hubs. . Cell 83:(2):25767
    [Crossref] [Google Scholar]
  79. 79.
    Liu YW, Su AI, Schmid SL. 2012.. The evolution of dynamin to regulate clathrin-mediated endocytosis. . BioEssays 34:(8):64347
    [Crossref] [Google Scholar]
  80. 80.
    Lohi O, Poussu A, Mao Y, Quiocho F, Lehto V-P. 2002.. VHS domain—a longshoreman of vesicle lines. . FEBS Lett. 513:(1):1923
    [Crossref] [Google Scholar]
  81. 81.
    Mattera R, Boehm M, Chaudhuri R, Prabhu Y, Bonifacino JS. 2011.. Conservation and diversification of dileucine signal recognition by adaptor protein (AP) complex variants. . J. Biol. Chem. 286:(3):202230
    [Crossref] [Google Scholar]
  82. 82.
    Mayer BJ. 2001.. SH3 domains: complexity in moderation. . J. Cell Sci. 114:(7):125363
    [Crossref] [Google Scholar]
  83. 83.
    Mayers JR, Wang L, Pramanik J, Johnson A, Sarkeshik A, et al. 2013.. Regulation of ubiquitin-dependent cargo sorting by multiple endocytic adaptors at the plasma membrane. . PNAS 110:(29):1185762
    [Crossref] [Google Scholar]
  84. 84.
    Messa M, Fernández-Busnadiego R, Sun EW, Chen H, Czapla H, et al. 2014.. Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits. . eLife 3::e03311
    [Crossref] [Google Scholar]
  85. 85.
    More K, Klinger CM, Barlow LD, Dacks JB. 2020.. Evolution and natural history of membrane trafficking in eukaryotes. . Curr. Biol. 30:(10):R55364 85. Highlights membrane-trafficking pathways in protists and plants that differ from those in the well-understood mammalian and yeast models.
    [Crossref] [Google Scholar]
  86. 86.
    Mosesso N, Nagel M-K, Isono E. 2019.. Ubiquitin recognition in endocytic trafficking–with or without ESCRT-0. . J. Cell Sci. 132:(16):jcs232868
    [Crossref] [Google Scholar]
  87. 87.
    Moulinier-Anzola J, Schwihla M, De-Araújo L, Artner C, Jörg L, et al. 2020.. TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants. . Mol. Plant 13:(5):71731
    [Crossref] [Google Scholar]
  88. 88.
    Mravec J, Petrášek J, Li N, Boeren S, Karlova R, et al. 2011.. Cell plate restricted association of DRP1A and PIN proteins is required for cell polarity establishment in Arabidopsis. . Curr. Biol. 21:(12):105560
    [Crossref] [Google Scholar]
  89. 89.
    Nagel MK, Kalinowska K, Vogel K, Reynolds GD, Wu Z, et al. 2017.. Arabidopsis SH3P2 is an ubiquitin-binding protein that functions together with ESCRT-I and the deubiquitylating enzyme AMSH3. . PNAS 114:(34):E7197204
    [Crossref] [Google Scholar]
  90. 90.
    Narasimhan M, Johnson A, Prizak R, Kaufmann WA, Tan S, et al. 2020.. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. . eLife 9::e52067 90. Elaborates on the independent evolution of plant clathrin-mediated endocytosis: delayed and sequential uncoating, actin-independence, and following a constant curvature model.
    [Crossref] [Google Scholar]
  91. 91.
    Naslavsky N, Caplan S. 2011.. EHD proteins: key conductors of endocytic transport. . Trends Cell Biol. 21:(2):12231
    [Crossref] [Google Scholar]
  92. 92.
    Naslavsky N, Rahajeng J, Chenavas S, Sorgen PL, Caplan S. 2007.. EHD1 and Eps15 interact with phosphatidylinositols via their Eps15 homology domains. . J. Biol. Chem. 282:(22):1661222
    [Crossref] [Google Scholar]
  93. 93.
    Owen DJ, Collins BM, Evans PR. 2004.. Adaptors for clathrin coats: structure and function. . Annu. Rev. Cell Dev. Biol. 20::15391
    [Crossref] [Google Scholar]
  94. 94.
    Owen DJ, Evans PR. 1998.. A structural explanation for the recognition of tyrosine-based endocytotic signals. . Science 282:(5392):132732
    [Crossref] [Google Scholar]
  95. 95.
    Partlow EA, Cannon KS, Hollopeter G, Baker RW. 2022.. Structural basis of an endocytic checkpoint that primes the AP2 clathrin adaptor for cargo internalization. . Nat. Struct. Mol. Biol. 29::33947
    [Crossref] [Google Scholar]
  96. 96.
    Pou A, Jeanguenin L, Milhiet T, Batoko H, Chaumont F, Hachez C. 2016.. Salinity-mediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7. . Plant Mol. Biol. 92:(6):73144
    [Crossref] [Google Scholar]
  97. 97.
    Praefcke GJK, Ford MGJ, Schmid EM, Olesen LE, Gallop JL, et al. 2004.. Evolving nature of the AP2 α-appendage hub during clathrin-coated vesicle endocytosis. . EMBO J. 23:(22):437183
    [Crossref] [Google Scholar]
  98. 98.
    Prichard KL, O'Brien NS, Murcia SR, Baker JR, McCluskey A. 2022.. Role of clathrin and dynamin in clathrin mediated endocytosis/synaptic vesicle recycling and implications in neurological diseases. . Front. Cell Neurosci. 15::754110
    [Crossref] [Google Scholar]
  99. 99.
    Purkanti R, Thattai M. 2015.. Ancient dynamin segments capture early stages of host-mitochondrial integration. . PNAS 112:(9):28005
    [Crossref] [Google Scholar]
  100. 100.
    Qualmann B, Koch D, Kessels MM. 2011.. Let's go bananas: revisiting the endocytic BAR code. . EMBO J. 30:(17):350115
    [Crossref] [Google Scholar]
  101. 101.
    Ramachandran R, Schmid SL. 2018.. The dynamin superfamily. . Curr. Biol. 28:(8):R41116
    [Crossref] [Google Scholar]
  102. 102.
    Randles L, Walters KJ. 2012.. Ubiquitin and its binding domains. . Front. Biosci. 17:(6):214057
    [Crossref] [Google Scholar]
  103. 103.
    Reider A, Barker SL, Mishra SK, Im YJ, Maldonado-Báez L, et al. 2009.. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. . EMBO J. 28:(20):310316
    [Crossref] [Google Scholar]
  104. 104.
    Ritter B, Murphy S, Dokainish H, Girard M, Gudheti MV, et al. 2013.. NECAP 1 regulates AP-2 interactions to control vesicle size, number, and cargo during clathrin-mediated endocytosis. . PLOS Biol. 11:(10):e1001670
    [Crossref] [Google Scholar]
  105. 105.
    Roach TG, Lång HKM, Xiong W, Ryhänen SJ, Capelluto DGS. 2021.. Protein trafficking or cell signaling: a dilemma for the adaptor protein TOM1. . Front. Cell Dev. Biol. 9::643769
    [Crossref] [Google Scholar]
  106. 106.
    Robinson MS, Sahlender DA, Foster SD. 2010.. Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. . Dev. Cell 18:(2):32431
    [Crossref] [Google Scholar]
  107. 107.
    Rout MP, Field MC. 2017.. The evolution of organellar coat complexes and organization of the eukaryotic cell. . Annu. Rev. Biochem. 86::63757
    [Crossref] [Google Scholar]
  108. 108.
    Sánchez-Rodríguez C, Shi Y, Kesten C, Zhang D, Sancho-Andrés G, et al. 2018.. The cellulose synthases are cargo of the TPLATE adaptor complex. . Mol. Plant 11:(2):34649
    [Crossref] [Google Scholar]
  109. 109.
    Smith SM, Larocque G, Wood KM, Morris KL, Roseman AM, et al. 2021.. Multi-modal adaptor-clathrin contacts drive coated vesicle assembly. . EMBO J. 40:(19):e108795
    [Crossref] [Google Scholar]
  110. 110.
    Snyder JT, Rossman KL, Baumeister MA, Pruitt WM, Siderovski DP, et al. 2001.. Quantitative analysis of the effect of phosphoinositide interactions on the function of Dbl family proteins. . J. Biol. Chem. 276:(49):4586875
    [Crossref] [Google Scholar]
  111. 111.
    Song J, Lee MH, Lee G-J, Yoo CM, Hwang I. 2006.. Arabidopsis EPSIN1 plays an important role in vacuolar trafficking of soluble cargo proteins in plant cells via interactions with clathrin, AP-1, VTI11, and VSR1. . Plant Cell 18:(9):225874
    [Crossref] [Google Scholar]
  112. 112.
    Song K, Jang M, Kim SY, Lee G, Lee GJ, et al. 2012.. An A/ENTH domain-containing protein functions as an adaptor for clathrin-coated vesicles on the growing cell plate in Arabidopsis root cells. . Plant Physiol. 159:(3):101325
    [Crossref] [Google Scholar]
  113. 113.
    Sousa R, Lafer EM. 2015.. The role of molecular chaperones in clathrin mediated vesicular trafficking. . Front. Mol. Biosci. 2::26
    [Crossref] [Google Scholar]
  114. 114.
    Stamenova SD, French ME, He Y, Francis SA, Kramer ZB, Hicke L. 2007.. Ubiquitin binds to and regulates a subset of SH3 domains. . Mol. Cell 25:(2):27384
    [Crossref] [Google Scholar]
  115. 115.
    Suzuki R, Toshima JY, Toshima J. 2012.. Regulation of clathrin coat assembly by Eps15 homology domain–mediated interactions during endocytosis. . Mol. Biol. Cell 23:(4):687700
    [Crossref] [Google Scholar]
  116. 116.
    Takano A, Suetsugu N, Wada M, Kohda D. 2010.. Crystallographic and functional analyses of J-domain of JAC1 essential for chloroplast photorelocation movement in Arabidopsis thaliana. . Plant Cell Physiol. 51:(8):137276
    [Crossref] [Google Scholar]
  117. 117.
    Tehran DA, López-Hernández T, Maritzen T. 2019.. Endocytic adaptor proteins in health and disease: lessons from model organisms and human mutations. . Cells 8:(11):1345
    [Crossref] [Google Scholar]
  118. 118.
    Ter Haar E, Harrison SC, Kirchhausen T. 2000.. Peptide-in-groove interactions link target proteins to the β-propeller of clathrin. . PNAS 97:(3):1096100
    [Crossref] [Google Scholar]
  119. 119.
    Truebestein L, Leonard TA. 2016.. Coiled-coils: the long and short of it. . BioEssays 38:(9):90316
    [Crossref] [Google Scholar]
  120. 120.
    Van Damme D, Coutuer S, De Rycke R, Bouget F-Y, Inzé D, Geelen D. 2006.. Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins. . Plant Cell 18:(12):350218
    [Crossref] [Google Scholar]
  121. 121.
    Van Damme D, Gadeyne A, Vanstraelen M, Inzé D, Van Montagu MCE, et al. 2011.. Adaptin-like protein TPLATE and clathrin recruitment during plant somatic cytokinesis occurs via two distinct pathways. . PNAS 108:(2):61520
    [Crossref] [Google Scholar]
  122. 122.
    Wang C, Yan X, Chen Q, Jiang N, Fu W, et al. 2013.. Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. . Plant Cell 25:(2):499516
    [Crossref] [Google Scholar]
  123. 123.
    Wang C, Zhu M, Duan L, Yu H, Chang X, et al. 2015.. Lotus japonicus clathrin heavy chain1 is associated with Rho-Like GTPase ROP6 and involved in nodule formation. . Plant Physiol. 167:(4):1497510
    [Crossref] [Google Scholar]
  124. 124.
    Wang J, Mylle E, Johnson A, Besbrugge N, De Jaeger G, et al. 2020.. High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits. . Plant Physiol. 183:(3):98697
    [Crossref] [Google Scholar]
  125. 125.
    Wang J, Yperman K, Grones P, Jiang Q, Dragwidge J, et al. 2021.. Conditional destabilization of the TPLATE complex impairs endocytic internalization. . PNAS 118:(15):e2023456118
    [Crossref] [Google Scholar]
  126. 126.
    Wang P, Pleskot R, Zang J, Winkler J, Wang J, et al. 2019.. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. . Nat. Commun. 10::5132
    [Crossref] [Google Scholar]
  127. 127.
    Wang P, Siao W, Zhao X, Arora D, Wang R, et al. 2023.. Adaptor protein complex interaction map in Arabidopsis identifies P34 as a common stability regulator. . Nat. Plants 9:(2):35571 127. Combines multiple proteomics approaches to generate an adaptor complex interactome that converges on P34, a novel adaptor complex–stabilizing protein.
    [Crossref] [Google Scholar]
  128. 128.
    Wang Y, Liu W, Wang H, Du Q, Fu Z, et al. 2020.. ZmEHD1 is required for kernel development and vegetative growth through regulating auxin homeostasis. . Plant Physiol. 182:(3):146780
    [Crossref] [Google Scholar]
  129. 129.
    Siao W, Wang P, Zhao X, Vu LD, De Smet I, Russinova E. 2023.. Phosphorylation of ADAPTOR PROTEIN-2 μ-adaptin by ADAPTOR-ASSOCIATED KINASE1 regulates the tropic growth of Arabidopsis roots. . Plant Cell 35:(9):350421
    [Crossref] [Google Scholar]
  130. 130.
    Weinberg J, Drubin DG. 2012.. Clathrin-mediated endocytosis in budding yeast. . Trends Cell Biol. 22:(1):113
    [Crossref] [Google Scholar]
  131. 131.
    Wilfling F, Lee CW, Erdmann PS, Zheng Y, Sherpa D, et al. 2020.. A selective autophagy pathway for phase-separated endocytic protein deposits. . Mol. Cell 80:(5):76478.e7
    [Crossref] [Google Scholar]
  132. 132.
    Winkler J, De Meyer A, Mylle E, Storme V, Grones P, Van Damme D. 2021.. Nanobody-dependent delocalization of endocytic machinery in Arabidopsis root cells dampens their internalization capacity. . Front. Plant Sci. 12::538580
    [Crossref] [Google Scholar]
  133. 133.
    Xing Y, Böcking T, Wolf M, Grigorieff N, Kirchhausen T, Harrison SC. 2010.. Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly. . EMBO J. 29:(3):65565
    [Crossref] [Google Scholar]
  134. 134.
    Xu P, Hankins HM, MacDonald C, Erlinger SJ, Frazier MN, et al. 2017.. COPI mediates recycling of an exocytic SNARE by recognition of a ubiquitin sorting signal. . eLife 6::e28342
    [Crossref] [Google Scholar]
  135. 135.
    Yamaoka S, Shimono Y, Shirakawa M, Fukao Y, Kawase T, et al. 2013.. Identification and dynamics of Arabidopsis adaptor protein-2 complex and its involvement in floral organ development. . Plant Cell 25:(8):295869
    [Crossref] [Google Scholar]
  136. 136.
    Yan X, Wang Y, Xu M, Dahhan DA, Liu C, et al. 2021.. Cross-talk between clathrin-dependent post-Golgi trafficking and clathrin-mediated endocytosis in Arabidopsis root cells. . Plant Cell 33:(9):305775
    [Crossref] [Google Scholar]
  137. 137.
    Yoshinari A, Fujimoto M, Ueda T, Inada N, Naito S, Takano J. 2016.. DRP1-dependent endocytosis is essential for polar localization and boron-induced degradation of the borate transporter BOR1 in Arabidopsis thaliana. . Plant Cell Physiol. 57:(9):19852000
    [Crossref] [Google Scholar]
  138. 138.
    Yoshinari A, Hosokawa T, Amano T, Beier MP, Kunied T, et al. 2019.. Polar localization of the borate exporter BOR1 requires AP2-dependent endocytosis. . Plant Physiol. 179:(4):156980
    [Crossref] [Google Scholar]
  139. 139.
    Yperman K, Papageorgiou AC, Merceron R, De Munck S, Bloch Y, et al. 2021.. Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding. . Nat. Commun. 12::3050 139. Structurally and functionally characterizes both EH domains of AtEH1/Pan1, showing that they possess differential lipid and cargo binding capacities.
    [Crossref] [Google Scholar]
  140. 140.
    Yperman K, Wang J, Eeckhout D, Winkler J, Vu LD, et al. 2021.. Molecular architecture of the endocytic TPLATE complex. . Sci. Adv. 7:(9):79998025 140. Reports on an integrative structural approach that generated the first structural model of the endocytic TPLATE complex.
    [Crossref] [Google Scholar]
  141. 141.
    Yu X, Feng B, He P, Shan L. 2017.. From chaos to harmony: responses and signaling upon microbial pattern recognition. . Annu. Rev. Phytopathol. 55::10937
    [Crossref] [Google Scholar]
  142. 142.
    Yuan F, Alimohamadi H, Bakka B, Trementozzi AN, Day KJ, et al. 2021.. Membrane bending by protein phase separation. . PNAS 118:(11):e2017435118
    [Crossref] [Google Scholar]
  143. 143.
    Zaccai NR, Kadlecova Z, Dickson VK, Korobchevskaya K, Kamenicky J, et al. 2022.. FCHO controls AP2’s initiating role in endocytosis through a PtdIns(4,5)P2-dependent switch. . Sci. Adv. 8:(17):eabn2018
    [Crossref] [Google Scholar]
  144. 144.
    Zarrinpar A, Bhattacharyya RP, Lim WA. 2003.. The structure and function of proline recognition domains. . Sci. STKE 2003:(179):RE8
    [Crossref] [Google Scholar]
  145. 145.
    Zeno WF, Baul U, Snead WT, DeGroot ACM, Wang L, et al. 2018.. Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. . Nat. Commun. 9::4152
    [Crossref] [Google Scholar]
  146. 146.
    Zhang L, Xing J, Lin J. 2019.. At the intersection of exocytosis and endocytosis in plants. . New Phytol. 224:(4):147989
    [Crossref] [Google Scholar]
  147. 147.
    Zhang L, Zhang H, Liu P, Hao H, Jin JB, Lin J. 2011.. Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. . PLOS ONE 6:(10):e26129
    [Crossref] [Google Scholar]
  148. 148.
    Zhang W, Shen Y, Xiong G, Guo Y, Deng L, et al. 2013.. Crystal structure of human Intersectin-2L C2 domain. . Biochem. Biophys. Res. Commun. 431:(1):7680
    [Crossref] [Google Scholar]
  149. 149.
    Zhang X, Dyachok J, Krishnakumar S, Smith LG, Oppenheimer DG. 2005.. IRREGULAR TRICHOME BRANCH1 in Arabidopsis encodes a plant homolog of the actin-related protein2/3 complex activator scar/WAVE that regulates actin and microtubule organization. . Plant Cell 17:(8):231426
    [Crossref] [Google Scholar]
  150. 150.
    Zhang Y, Persson S, Hirst J, Robinson MS, van Damme D, Sánchez-Rodríguez C. 2015.. Change your TPLATE, change your fate: plant CME and beyond. . Trends Plant Sci. 20:(1):4148
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070122-023455
Loading
/content/journals/10.1146/annurev-arplant-070122-023455
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error