1932

Abstract

The establishment, maintenance, and removal of epigenetic modifications provide an additional layer of regulation, beyond genetically encoded factors, by which plants can control developmental processes and adapt to the environment. Epigenetic inheritance, while historically referring to information not encoded in the DNA sequence that is inherited between generations, can also refer to epigenetic modifications that are maintained within an individual but are reset between generations. Both types of epigenetic inheritance occur in plants, and the functions and mechanisms distinguishing the two are of great interest to the field. Here, we discuss examples of epigenetic dynamics and maintenance during selected stages of growth and development and their functional consequences. Epigenetic states are also dynamic in response to stress, with consequences for transposable element regulation. How epigenetic resetting between generations occurs during normal development and in response to stress is an emerging area of research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070122-025047
2023-05-22
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-070122-025047.html?itemId=/content/journals/10.1146/annurev-arplant-070122-025047&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    An Y-QC, Goettel W, Han Q, Bartels A, Liu Z, Xiao W 2017. Dynamic changes of genome-wide DNA methylation during soybean seed development. Sci. Rep. 7:112263
    [Google Scholar]
  2. 2.
    Angel A, Song J, Dean C, Howard M. 2011. A Polycomb-based switch underlying quantitative epigenetic memory. Nature 476:7358105–8
    [Google Scholar]
  3. 3.
    Araki S, Le NT, Koizumi K, Villar-Briones A, Nonomura K-I et al. 2020. miR2118-dependent U-rich phasiRNA production in rice anther wall development. Nat. Commun. 11:13115
    [Google Scholar]
  4. 4.
    Batista RA, Moreno-Romero J, Qiu Y, van Boven J, Santos-González J et al. 2019. The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to domesticated transposons. eLife 8:e50541
    [Google Scholar]
  5. 5.
    Baubec T, Finke A, Mittelsten Scheid O, Pecinka A 2014. Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Rep. 15:4446–52
    [Google Scholar]
  6. 6.
    Becker C, Hagmann J, Müller J, Koenig D, Stegle O et al. 2011. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:7376245–49
    [Google Scholar]
  7. 7.
    Berry S, Hartley M, Olsson TSG, Dean C, Howard M 2015. Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. eLife 4:e07205
    [Google Scholar]
  8. 8.
    Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D et al. 2020. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat. Cell Biol. 22:6621–29Shows that H3K27me3 is reduced in sperm through a combination of active demethylation, reduced expression of Polycomb subunits, and deposition of sperm-specific variant H3.10 that is not effectively methylated.
    [Google Scholar]
  9. 9.
    Borg M, Papareddy RK, Dombey R, Axelsson E, Nodine MD et al. 2021. Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis. eLife 10:e61984
    [Google Scholar]
  10. 10.
    Borges F, Gomes G, Gardner R, Moreno N, McCormick S et al. 2008. Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol. 148:21168–81
    [Google Scholar]
  11. 11.
    Bouyer D, Kramdi A, Kassam M, Heese M, Schnittger A et al. 2017. DNA methylation dynamics during early plant life. Genome Biol. 18:1179
    [Google Scholar]
  12. 12.
    Bouyer D, Roudier F, Heese M, Andersen ED, Gey D et al. 2011. Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLOS Genet. 7:3e1002014
    [Google Scholar]
  13. 13.
    Brzezinka K, Altmann S, Czesnick H, Nicolas P, Gorka M et al. 2016. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. eLife 5:e17061
    [Google Scholar]
  14. 14.
    Burgess D, Li H, Zhao M, Kim SY, Lisch D. 2020. Silencing of Mutator elements in maize involves distinct populations of small RNAs and distinct patterns of DNA methylation. Genetics 215:2379–91
    [Google Scholar]
  15. 15.
    Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE et al. 2012. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:1194–205
    [Google Scholar]
  16. 16.
    Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten Scheid O 2014. How a retrotransposon exploits the plant's heat stress response for its activation. PLOS Genet. 10:1e1004115
    [Google Scholar]
  17. 17.
    Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y-H et al. 2004. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131:215263–76
    [Google Scholar]
  18. 18.
    Cheng K, Xu Y, Yang C, Ouellette L, Niu L et al. 2020. Histone tales: lysine methylation, a protagonist in Arabidopsis development. J. Exp. Bot. 71:3793–807
    [Google Scholar]
  19. 19.
    Cheng X, Pan M, Zhiguo E, Zhou Y, Niu B, Chen C. 2021. The maternally expressed polycomb group gene OsEMF2a is essential for endosperm cellularization and imprinting in rice. Plant Comm 2:1100092
    [Google Scholar]
  20. 20.
    Choi J, Lyons DB, Zilberman D 2021. Histone H1 prevents non-CG methylation-mediated small RNA biogenesis in Arabidopsis heterochromatin. eLife 10:e72676
    [Google Scholar]
  21. 21.
    Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ et al. 2002. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:133–42
    [Google Scholar]
  22. 22.
    Conrad LJ, Khanday I, Johnson C, Guiderdoni E, An G et al. 2014. The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice. Plant J. 80:5883–94
    [Google Scholar]
  23. 23.
    Costa S, Dean C. 2019. Storing memories: the distinct phases of Polycomb-mediated silencing of Arabidopsis FLC. Biochem. Soc. Trans. 47:41187–96
    [Google Scholar]
  24. 24.
    Crevillén P, Yang H, Cui X, Greeff C, Trick M et al. 2014. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature 515:7528587–90
    [Google Scholar]
  25. 25.
    Cuerda-Gil D, Slotkin RK 2016. Non-canonical RNA-directed DNA methylation. Nat. Plants 2:1116163
    [Google Scholar]
  26. 26.
    Danilevskaya ON, Hermon P, Hantke S, Muszynski MG, Kollipara K, Ananiev EV. 2003. Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. Plant Cell 15:2425–38
    [Google Scholar]
  27. 27.
    Deal RB, Henikoff S. 2011. Histone variants and modifications in plant gene regulation. Curr. Opin. Plant Biol. 14:2116–22
    [Google Scholar]
  28. 28.
    Denkena J, Johannes F, Colomé-Tatché M. 2021. Region-level epimutation rates in Arabidopsis thaliana. Heredity 127:2190–202
    [Google Scholar]
  29. 29.
    Du J, Johnson LM, Groth M, Feng S, Hale CJ et al. 2014. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. Mol. Cell 55:3495–504
    [Google Scholar]
  30. 30.
    Du J, Zhong X, Bernatavichute YV, Stroud H, Feng S et al. 2012. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151:1167–80
    [Google Scholar]
  31. 31.
    Erdmann RM, Hoffmann A, Walter H-K, Wagenknecht H-A, Groß-Hardt R, Gehring M 2017. Molecular movement in the Arabidopsis thaliana female gametophyte.. Plant Reprod 30:3141–46
    [Google Scholar]
  32. 32.
    Erdmann RM, Picard CL. 2020. RNA-directed DNA methylation. PLOS Genet. 16:10e1009034
    [Google Scholar]
  33. 33.
    Eshed Williams L 2021. Genetics of shoot meristem and shoot regeneration. Annu. Rev. Genet. 55:661–81
    [Google Scholar]
  34. 34.
    Fan Y, Yang J, Mathioni SM, Yu J, Shen J et al. 2016. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. PNAS 113:5215144–49
    [Google Scholar]
  35. 35.
    Fehér A. 2019. Callus, dedifferentiation, totipotency, somatic embryogenesis: what these terms mean in the era of molecular plant biology?. Front. Plant Sci. 10:536
    [Google Scholar]
  36. 36.
    Finnegan EJ, Peacock WJ, Dennis ES. 1996. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. PNAS 93:168449–54
    [Google Scholar]
  37. 37.
    Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K et al. 2021. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat. Commun. 12:13426
    [Google Scholar]
  38. 38.
    Frost JM, Kim MY, Park GT, Hsieh P-H, Nakamura M et al. 2018. FACT complex is required for DNA demethylation at heterochromatin during reproduction in Arabidopsis. PNAS 115:20E4720–29
    [Google Scholar]
  39. 39.
    Gaubert H, Sanchez DH, Drost H-G, Paszkowski J. 2017. Developmental restriction of retrotransposition activated in Arabidopsis by environmental stress. Genetics 207:2813–21
    [Google Scholar]
  40. 40.
    Gehring M. 2019. Epigenetic dynamics during flowering plant reproduction: evidence for reprogramming?. New Phytol. 224:191–96
    [Google Scholar]
  41. 41.
    Gehring M, Huh JH, Hsieh T-F, Penterman J, Choi Y et al. 2006. DEMETER DNA glycosylase establishes MEDEA Polycomb gene self-imprinting by allele-specific demethylation. Cell 124:3495–506
    [Google Scholar]
  42. 42.
    Gent JI, Higgins KM, Swentowsky KW, Fu F-F, Zeng Y et al. 2022. The maize gene maternal derepression of r1 encodes a DNA glycosylase that demethylates DNA and reduces siRNA expression in the endosperm. Plant Cell 34:103685–701Characterizes the Mdr1 DNA demethylase gene in maize, which redundantly contributes to male and female fertility with homolog DNG102.
    [Google Scholar]
  43. 43.
    Gouil Q, Baulcombe DC. 2016. DNA methylation signatures of the plant chromomethyltransferases. PLOS Genet. 12:12e1006526
    [Google Scholar]
  44. 44.
    Guo W, Wang D, Lisch D. 2021. RNA-directed DNA methylation prevents rapid and heritable reversal of transposon silencing under heat stress in Zea mays. PLOS Genet. 17:6e1009326Shows that the RdDM pathway antagonizes MuDR element activation in response to heat stress.
    [Google Scholar]
  45. 45.
    Gutzat R, Rembart K, Nussbaumer T, Hofmann F, Pisupati R et al. 2020. Arabidopsis shoot stem cells display dynamic transcription and DNA methylation patterns. EMBO J. 39:20e103667
    [Google Scholar]
  46. 46.
    Han Z, Crisp PA, Stelpflug S, Kaeppler SM, Li Q, Springer NM. 2018. Heritable epigenomic changes to the maize methylome resulting from tissue culture. Genetics 209:4983–95
    [Google Scholar]
  47. 47.
    Hazarika RR, Serra M, Zhang Z, Zhang Y, Schmitz RJ, Johannes F 2022. Molecular properties of epimutation hotspots. Nat. Plants 8:2146–56Characterizes the chromatin structure and genomic features of regions with high rates of epimutation in Arabidopsis.
    [Google Scholar]
  48. 48.
    He C, Chen X, Huang H, Xu L. 2012. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLOS Genet. 8:8e1002911
    [Google Scholar]
  49. 49.
    He L, Huang H, Bradai M, Zhao C, You Y et al. 2022. DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nat. Commun. 13:11335
    [Google Scholar]
  50. 50.
    Higo A, Saihara N, Miura F, Higashi Y, Yamada M et al. 2020. DNA methylation is reconfigured at the onset of reproduction in rice shoot apical meristem. Nat. Commun. 11:14079
    [Google Scholar]
  51. 51.
    Hinsch V, Adkins S, Manuela D, Xu M 2021. Post-embryonic phase transitions mediated by Polycomb repressive complexes in plants. Int. J. Mol. Sci. 22:147533
    [Google Scholar]
  52. 52.
    Hsieh P-H, He S, Buttress T, Gao H, Couchman M et al. 2016. Arabidopsis male sexual lineage exhibits more robust maintenance of CG methylation than somatic tissues. PNAS 113:5215132–37
    [Google Scholar]
  53. 53.
    Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R et al. 2012. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:61001360–64
    [Google Scholar]
  54. 54.
    Ikeda Y, Kinoshita Y, Susaki D, Ikeda Y, Iwano M et al. 2011. HMG domain containing SSRP1 is required for DNA demethylation and genomic imprinting in Arabidopsis. Dev. Cell 21:3589–96
    [Google Scholar]
  55. 55.
    Ikeuchi M, Rymen B, Sugimoto K. 2020. How do plants transduce wound signals to induce tissue repair and organ regeneration?. Curr. Opin. Plant Biol. 57:72–77
    [Google Scholar]
  56. 56.
    Ingouff M, Selles B, Michaud C, Vu TM, Berger F et al. 2017. Live-cell analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and sex-specific dynamics controlled by noncanonical RdDM. Genes Dev. 31:172–83
    [Google Scholar]
  57. 57.
    Ishihara H, Sugimoto K, Tarr PT, Temman H, Kadokura S et al. 2019. Primed histone demethylation regulates shoot regenerative competency. Nat. Commun. 10:11786
    [Google Scholar]
  58. 58.
    Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J. 2011. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:7341115–19
    [Google Scholar]
  59. 59.
    Iwasaki M, Paszkowski J. 2014. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. PNAS 111:238547–52
    [Google Scholar]
  60. 60.
    Iwasaki M, Penfield S, Lopez-Molina L. 2022. Parental and environmental control of seed dormancy in Arabidopsis thaliana. Annu. Rev. Plant Biol. 73:355–78
    [Google Scholar]
  61. 61.
    Jacobs AL, Schär P. 2012. DNA glycosylases: in DNA repair and beyond. Chromosoma 121:11–20
    [Google Scholar]
  62. 62.
    Ji L, Mathioni SM, Johnson S, Tucker D, Bewick AJ et al. 2019. Genome-wide reinforcement of DNA methylation occurs during somatic embryogenesis in soybean. Plant Cell 31:102315–31
    [Google Scholar]
  63. 63.
    Jia Y, Lisch DR, Ohtsu K, Scanlon MJ, Nettleton D, Schnable PS. 2009. Loss of RNA-dependent RNA polymerase 2 (RDR2) function causes widespread and unexpected changes in the expression of transposons, genes, and 24-nt small RNAs. PLOS Genet. 5:11e1000737
    [Google Scholar]
  64. 64.
    Jin R, Klasfeld S, Zhu Y, Fernandez Garcia M, Xiao J et al. 2021. LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate. Nat. Commun. 12:1626Shows that LEAFY binds DNA within a nucleosome as a pioneer transcription factor and promotes proper floral patterning by permitting the expression of AP1.
    [Google Scholar]
  65. 65.
    Jullien PE, Susaki D, Yelagandula R, Higashiyama T, Berger F. 2012. DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana. Curr. Biol. 22:191825–30
    [Google Scholar]
  66. 66.
    Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR et al. 2003. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:31109–22
    [Google Scholar]
  67. 67.
    Kawakatsu T, Nery JR, Castanon R, Ecker JR. 2017. Dynamic DNA methylation reconfiguration during seed development and germination. Genome Biol. 18:1171
    [Google Scholar]
  68. 68.
    Kawakatsu T, Stuart T, Valdes M, Breakfield N, Schmitz RJ et al. 2016. Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat. Plants 2:516058
    [Google Scholar]
  69. 69.
    Kennedy A, Geuten K. 2020. The role of FLOWERING LOCUS C relatives in cereals. Front. Plant Sci. 11:2108
    [Google Scholar]
  70. 70.
    Khouider S, Borges F, LeBlanc C, Ungru A, Schnittger A et al. 2021. Male fertility in Arabidopsis requires active DNA demethylation of genes that control pollen tube function. Nat. Commun. 12:1410
    [Google Scholar]
  71. 71.
    Kim J, Kim JH, Richards EJ, Chung KM, Woo HR. 2014. Arabidopsis VIM proteins regulate epigenetic silencing by modulating DNA methylation and histone modification in cooperation with MET1. Mol. Plant 7:91470–85
    [Google Scholar]
  72. 72.
    Kim MY, Ono A, Scholten S, Kinoshita T, Zilberman D et al. 2019. DNA demethylation by ROS1a in rice vegetative cells promotes methylation in sperm. PNAS 116:199652–57
    [Google Scholar]
  73. 73.
    Kim S, Park J-S, Lee J, Lee KK, Park O-S et al. 2021. The DME demethylase regulates sporophyte gene expression, cell proliferation, differentiation, and meristem resurrection. PNAS 118:292026806118
    [Google Scholar]
  74. 74.
    Kinoshita T, Harada JJ, Goldberg RB, Fischer RL. 2001. Polycomb repression of flowering during early plant development. PNAS 98:2414156–61
    [Google Scholar]
  75. 75.
    Klosinska M, Picard CL, Gehring M. 2016. Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. Nat. Plants 2:1016145
    [Google Scholar]
  76. 76.
    Lämke J, Bäurle I. 2017. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 18:1124
    [Google Scholar]
  77. 77.
    Lämke J, Brzezinka K, Altmann S, Bäurle I. 2016. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J. 35:2162–75
    [Google Scholar]
  78. 78.
    Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B et al. 2010. Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol. Plant 3:3594–602
    [Google Scholar]
  79. 79.
    Lee K, Park O-S, Seo PJ. 2018. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis. Plant J. 95:6961–75
    [Google Scholar]
  80. 80.
    Lee YS, Maple R, Dürr J, Dawson A, Tamim S et al. 2021. A transposon surveillance mechanism that safeguards plant male fertility during stress. Nat. Plants 7:134–41
    [Google Scholar]
  81. 81.
    Lei M, Zhang H, Julian R, Tang K, Xie S, Zhu JK. 2015. Regulatory link between DNA methylation and active demethylation in Arabidopsis. PNAS 112:113553–57
    [Google Scholar]
  82. 82.
    Li W, Liu H, Cheng ZJ, Su YH, Han HN et al. 2011. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLOS Genet. 7:8e1002243
    [Google Scholar]
  83. 83.
    Lin J-Y, Le BH, Chen M, Henry KF, Hur J et al. 2017. Similarity between soybean and Arabidopsis seed methylomes and loss of non-CG methylation does not affect seed development. PNAS 114:45E9730–39
    [Google Scholar]
  84. 84.
    Lisch D. 2015. Mutator and MULE transposons. Microbiol. Spectr. 3:2MDNA3–00322014
    [Google Scholar]
  85. 85.
    Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC et al. 2008. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:3523–36
    [Google Scholar]
  86. 86.
    Liu J, Feng L, Gu X, Deng X, Qiu Q et al. 2019. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res. 29:5379–90
    [Google Scholar]
  87. 87.
    Liu X, Zhou S, Wang W, Ye Y, Zhao Y et al. 2015. Regulation of histone methylation and reprogramming of gene expression in the rice inflorescence meristem. Plant Cell 27:51428–44
    [Google Scholar]
  88. 88.
    Lloyd JPB, Lister R. 2022. Epigenome plasticity in plants. Nat. Rev. Genet. 23:155–68
    [Google Scholar]
  89. 89.
    Long J, Walker J, She W, Aldridge B, Gao H et al. 2021. Nurse cell–derived small RNAs define paternal epigenetic inheritance in Arabidopsis. Science 373:6550eabh0556
    [Google Scholar]
  90. 90.
    Lu F, Cui X, Zhang S, Jenuwein T, Cao X. 2011. Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat. Genet. 43:7715–19
    [Google Scholar]
  91. 91.
    Lyons DB, Briffa A, He S, Choi J, Hollwey E et al. 2023. Extensive de novo activity stabilizes epigenetic inheritance of CG methylation in Arabidopsis transposons. Cell Rep 423112132
    [Google Scholar]
  92. 92.
    Ma Y, Min L, Wang M, Wang C, Zhao Y et al. 2018. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence. Plant Cell 30:71387–403
    [Google Scholar]
  93. 93.
    Makarevich G, Villar CBR, Erilova A, Köhler C. 2008. Mechanism of PHERES1 imprinting in Arabidopsis. J. Cell Sci. 121:Part 6906–12
    [Google Scholar]
  94. 94.
    Martínez G, Slotkin RK. 2012. Developmental relaxation of transposable element silencing in plants: functional or byproduct?. Curr. Opin. Plant Biol. 15:5496–502
    [Google Scholar]
  95. 95.
    Matzke MA, Mosher RA. 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15:6394–408
    [Google Scholar]
  96. 96.
    Menon G, Schulten A, Dean C, Howard M. 2021. Digital paradigm for Polycomb epigenetic switching and memory. Curr. Opin. Plant Biol. 61:102012
    [Google Scholar]
  97. 97.
    Mikulski P, Wolff P, Lu T, Nielsen M, Echevarria EF et al. 2022. VAL1 acts as an assembly platform co-ordinating co-transcriptional repression and chromatin regulation at Arabidopsis FLC. Nat. Commun. 13:15542
    [Google Scholar]
  98. 98.
    Mirouze M, Paszkowski J. 2011. Epigenetic contribution to stress adaptation in plants. Curr. Opin. Plant Biol. 14:3267–74
    [Google Scholar]
  99. 99.
    Moreno-Romero J, del Toro-De León G, Yadav VK, Santos-González J, Köhler C. 2019. Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm. Genome Biol. 20:141
    [Google Scholar]
  100. 100.
    Ning Y-Q, Liu N, Lan K-K, Su Y-N, Li L et al. 2020. DREAM complex suppresses DNA methylation maintenance genes and precludes DNA hypermethylation. Nat. Plants 6:8942–56
    [Google Scholar]
  101. 101.
    Nozawa K, Chen J, Jiang J, Leichter SM, Yamada M et al. 2021. DNA methyltransferase CHROMOMETHYLASE3 prevents ONSEN transposon silencing under heat stress. PLOS Genet. 17:8e1009710Shows that CMT3 promotes ONSEN expression in response to heat stress.
    [Google Scholar]
  102. 102.
    Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 22:153–65
    [Google Scholar]
  103. 103.
    Ohtsu K, Smith MB, Emrich SJ, Borsuk LA, Zhou R et al. 2007. Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J. 52:3391–404
    [Google Scholar]
  104. 104.
    Ortega-Galisteo AP, Morales-Ruiz T, Ariza RR, Roldán-Arjona T. 2008. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Mol. Biol. 67:6671–81
    [Google Scholar]
  105. 105.
    Panda K, McCue AD, Slotkin RK. 2020. Arabidopsis RNA Polymerase IV generates 21–22 nucleotide small RNAs that can participate in RNA-directed DNA methylation and may regulate genes. Philos. Trans. R. Soc. B 375:179520190417
    [Google Scholar]
  106. 106.
    Papareddy RK, Páldi K, Paulraj S, Kao P, Lutzmayer S, Nodine MD. 2020. Chromatin regulates expression of small RNAs to help maintain transposon methylome homeostasis in Arabidopsis. Genome Biol. 21:1251
    [Google Scholar]
  107. 107.
    Papareddy RK, Páldi K, Smolka AD, Hüther P, Becker C, Nodine MD 2021. Repression of CHROMOMETHYLASE 3 prevents epigenetic collateral damage in Arabidopsis. eLife 10:e69396
    [Google Scholar]
  108. 108.
    Park K, Kim MY, Vickers M, Park JS, Hyun Y et al. 2016. DNA demethylation is initiated in the central cells of Arabidopsis and rice. PNAS 113:5215138–43
    [Google Scholar]
  109. 109.
    Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Mittelsten Scheid O 2010. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:93118–29
    [Google Scholar]
  110. 110.
    Penterman J, Zilberman D, Huh JH, Ballinger T, Henikoff S, Fischer RL. 2007. DNA demethylation in the Arabidopsis genome. PNAS 104:166752–57
    [Google Scholar]
  111. 111.
    Perrella G, Bäurle I, van Zanten M. 2022. Epigenetic regulation of thermomorphogenesis and heat stress tolerance. New Phytol. 234:41144–60
    [Google Scholar]
  112. 112.
    Pfluger J, Wagner D. 2007. Histone modifications and dynamic regulation of genome accessibility in plants. Curr. Opin. Plant Biol. 10:6645–52
    [Google Scholar]
  113. 113.
    Picard CL, Gehring M. 2017. Proximal methylation features associated with nonrandom changes in gene body methylation. Genome Biol. 18:173
    [Google Scholar]
  114. 114.
    Picard CL, Povilus RA, Williams BP, Gehring M. 2021. Transcriptional and imprinting complexity in Arabidopsis seeds at single-nucleus resolution. Nat. Plants 7:6730–38
    [Google Scholar]
  115. 115.
    Pignatta D, Erdmann RM, Scheer E, Picard CL, Bell GW, Gehring M 2014. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife 3:e03198
    [Google Scholar]
  116. 116.
    Pignatta D, Novitzky K, Satyaki PRV, Gehring M. 2018. A variably imprinted epiallele impacts seed development. PLOS Genet. 14:11e1007469
    [Google Scholar]
  117. 117.
    Plotnikova A, Kellner MJ, Schon MA, Mosiolek M, Nodine MD. 2019. MicroRNA dynamics and functions during Arabidopsis embryogenesis. Plant Cell 31:122929–46
    [Google Scholar]
  118. 118.
    Qian W, Miki D, Zhang H, Liu Y, Zhang X et al. 2012. A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science 336:60871445–48
    [Google Scholar]
  119. 119.
    Qiu Q, Mei H, Deng X, He K, Wu B et al. 2019. DNA methylation repels targeting of Arabidopsis REF6. Nat. Commun. 10:12063Shows that REF6 binding to its target motif is inhibited by CHG methylation, and REF6 gains some target sites in a DNA-hypomethylated genetic background.
    [Google Scholar]
  120. 120.
    Qüesta JI, Song J, Geraldo N, An H, Dean C 2016. Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization. Science 353:6298485–88
    [Google Scholar]
  121. 121.
    Rajkumar MS, Gupta K, Khemka NK, Garg R, Jain M. 2020. DNA methylation reprogramming during seed development and its functional relevance in seed size/weight determination in chickpea. Commun. Biol. 3:1340
    [Google Scholar]
  122. 122.
    Rea M, Zheng W, Chen M, Braud C, Bhangu D et al. 2012. Histone H1 affects gene imprinting and DNA methylation in Arabidopsis. Plant J. 71:5776–86
    [Google Scholar]
  123. 123.
    Reinders J, Wulff BBH, Mirouze M, Marí-Ordóñez A, Dapp M et al. 2009. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23:8939–50
    [Google Scholar]
  124. 124.
    Rigal M, Kevei Z, Pélissier T, Mathieu O. 2012. DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns. EMBO J. 31:132981–93
    [Google Scholar]
  125. 125.
    Rodrigues JA, Ruan R, Nishimura T, Sharma MK, Sharma R et al. 2013. Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm. PNAS 110:197934–39
    [Google Scholar]
  126. 126.
    Rymen B, Kawamura A, Lambolez A, Inagaki S, Takebayashi A et al. 2019. Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis. Commun. Biol. 2:1404Demonstrates that H3K9/14ac regulates wound-responsive gene expression in Arabidopsis roots, and histone acetyltransferase activity facilitates wound-induced callus formation.
    [Google Scholar]
  127. 127.
    Satterlee JW, Strable J, Scanlon MJ. 2020. Plant stem-cell organization and differentiation at single-cell resolution. PNAS 117:5233689–99Performs single-cell RNA-sequencing of the maize shoot apical meristem.
    [Google Scholar]
  128. 128.
    Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA et al. 2011. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:6054369–73
    [Google Scholar]
  129. 129.
    Schoft VK, Chumak N, Choi Y, Hannon M, Garcia-Aguilar M et al. 2011. Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte. PNAS 108:198042–47
    [Google Scholar]
  130. 130.
    Schumann U, Lee JM, Smith NA, Zhong C, Zhu J-K et al. 2019. DEMETER plays a role in DNA demethylation and disease response in somatic tissues of Arabidopsis. Epigenetics 14:111074–87
    [Google Scholar]
  131. 131.
    She W, Baroux C. 2015. Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis. Front. . Plant Sci. 6:294
    [Google Scholar]
  132. 132.
    She W, Grimanelli D, Rutowicz K, Whitehead MWJ, Puzio M et al. 2013. Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140:194008–19
    [Google Scholar]
  133. 133.
    Shemer O, Landau U, Candela H, Zemach A, Eshed Williams L 2015. Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation. Plant Sci. 238:251–61
    [Google Scholar]
  134. 134.
    Slotkin RK, Freeling M, Lisch D. 2005. Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat. Genet. 37:641–44
    [Google Scholar]
  135. 135.
    Stroud H, Ding B, Simon SA, Feng S, Bellizzi M et al. 2013. Plants regenerated from tissue culture contain stable epigenome changes in rice. eLife 2013:2e00354
    [Google Scholar]
  136. 136.
    Stroud H, Do T, Du J, Zhong X, Feng S et al. 2014. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21:164–72
    [Google Scholar]
  137. 137.
    Talbert PB, Henikoff S. 2017. Histone variants on the move: substrates for chromatin dynamics. Nat. Rev. Mol. Cell Biol. 18:2115–26
    [Google Scholar]
  138. 138.
    Tamaki S, Tsuji H, Matsumoto A, Fujita A, Shimatani Z et al. 2015. FT-like proteins induce transposon silencing in the shoot apex during floral induction in rice. PNAS 112:8E901–10
    [Google Scholar]
  139. 139.
    Tang K, Lang Z, Zhang H, Zhu J-K. 2016. The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications. Nat. Plants 2:1116169
    [Google Scholar]
  140. 140.
    Tao Z, Shen L, Gu X, Wang Y, Yu H, He Y. 2017. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature 551:7678124–28
    [Google Scholar]
  141. 141.
    Teixeira FK, Heredia F, Sarazin A, Roudier F, Boccara M et al. 2009. A role for RNAi in the selective correction of DNA methylation defects. Science 323:59211600–4
    [Google Scholar]
  142. 142.
    Teng C, Zhang H, Hammond R, Huang K, Meyers BC, Walbot V. 2020. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat. Commun. 11:12912
    [Google Scholar]
  143. 143.
    Tittel-Elmer M, Bucher E, Broger L, Mathieu O, Paszkowski J, Vaillant I. 2010. Stress-induced activation of heterochromatic transcription. PLOS Genet. 6:10e1001175
    [Google Scholar]
  144. 144.
    Uchida N, Torii KU. 2019. Stem cells within the shoot apical meristem: identity, arrangement and communication. Cell. Mol. Life Sci. 76:61067–80
    [Google Scholar]
  145. 145.
    van der Graaf A, Wardenaara R, Neumann DA, Taudt A, Shaw RG et al. 2015. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. PNAS 112:216676–81
    [Google Scholar]
  146. 146.
    Walker J, Gao H, Zhang J, Aldridge B, Vickers M et al. 2018. Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis. Nat. Genet. 50:1130–37
    [Google Scholar]
  147. 147.
    Wibowo A, Becker C, Durr J, Price J, Spaepen S et al. 2018. Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation. PNAS 115:39E9145–52
    [Google Scholar]
  148. 148.
    Wibowo A, Becker C, Marconi G, Durr J, Price J et al. 2016. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 5:13546
    [Google Scholar]
  149. 149.
    Williams BP, Bechen LL, Pohlmann DA, Gehring M. 2022. Somatic DNA demethylation generates tissue-specific methylation states and impacts flowering time. Plant Cell 34:41189–206
    [Google Scholar]
  150. 150.
    Williams BP, Gehring M. 2020. Principles of epigenetic homeostasis shared between flowering plants and mammals. Trends Genet. 36:10751–63
    [Google Scholar]
  151. 151.
    Williams BP, Pignatta D, Henikoff S, Gehring M. 2015. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLOS Genet. 11:3e1005142
    [Google Scholar]
  152. 152.
    Wong CE, Bhalla PL, Ottenhof H, Singh MB. 2008. Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance. BMC Plant Biol. 8:73
    [Google Scholar]
  153. 153.
    Woo HR, Dittmer TA, Richards EJ. 2008. Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis. PLOS Genet. 4:8e1000156
    [Google Scholar]
  154. 154.
    Woodhouse MR, Freeling M, Lisch D. 2006. The mop1 (mediator of paramutation1) mutant progressively reactivates one of the two genes encoded by the MuDR transposon in maize. Genetics 172:1579–92
    [Google Scholar]
  155. 155.
    Wu M-F, Sang Y, Bezhani S, Yamaguchi N, Han S-K et al. 2012. SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. PNAS 109:93576–81
    [Google Scholar]
  156. 156.
    Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou J-P et al. 2008. Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol. Cell. Biol. 28:41348–60
    [Google Scholar]
  157. 157.
    Xu Q, Wu L, Luo Z, Zhang M, Lai J et al. 2022. DNA demethylation affects imprinted gene expression in maize endosperm. Genome Biol. 23:177
    [Google Scholar]
  158. 158.
    Yan A, Borg M, Berger F, Chen Z 2020. The atypical histone variant H3.15 promotes callus formation in Arabidopsis thaliana. Development 147:11dev184895
    [Google Scholar]
  159. 159.
    Yang H, Berry S, Olsson TSG, Hartley M, Howard M, Dean C. 2017. Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis. Science 357:63561142–45
    [Google Scholar]
  160. 160.
    Zemach A, Kim MY, Hsieh P-H, Coleman-Derr D, Eshed-Williams L et al. 2013. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:1193–205
    [Google Scholar]
  161. 161.
    Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE. 2009. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 10:6R62
    [Google Scholar]
  162. 162.
    Zhao Y, Antoniou-Kourounioti RL, Calder G, Dean C, Howard M. 2020. Temperature-dependent growth contributes to long-term cold sensing. Nature 583:7818825–29
    [Google Scholar]
  163. 163.
    Zhao Y, Zhu P, Hepworth J, Bloomer R, Antoniou-Kourounioti RL et al. 2021. Natural temperature fluctuations promote COOLAIR regulation of FLC. Genes Dev. 35:11–12888–98
    [Google Scholar]
  164. 164.
    Zhong X, Hale CJ, Law JA, Johnson LM, Feng S et al. 2012. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nat. Struct. Mol. Biol. 19:9870–75
    [Google Scholar]
  165. 165.
    Zhou H, Liu Q, Li J, Jiang D, Zhou L et al. 2012. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 22:4649–60
    [Google Scholar]
  166. 166.
    Zhou M, Coruh C, Xu G, Martins LM, Bourbousse C et al. 2022. The CLASSY family controls tissue-specific DNA methylation patterns in Arabidopsis. Nat. Commun. 13:1244
    [Google Scholar]
  167. 167.
    Zhou S, Li X, Liu Q, Zhao Y, Jiang W et al. 2021. DNA demethylases remodel DNA methylation in rice gametes and zygote and are required for reproduction. Mol Plant 14:91569–83
    [Google Scholar]
  168. 168.
    Zhou X, Huang K, Teng C, Abdelgawad A, Batish M et al. 2022. 24-nt phasiRNAs move from tapetal to meiotic cells in maize anthers. New Phytol. 235:2488–501Shows evidence that 24-nt phasiRNAs move from the tapetum, where precursor RNAs are transcribed, to meiocytes and somatic cells in maize anthers.
    [Google Scholar]
  169. 169.
    Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. 2007. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39:161–69
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-070122-025047
Loading
/content/journals/10.1146/annurev-arplant-070122-025047
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error