1932

Abstract

Regulatory elements encode the genomic blueprints that ensure the proper spatiotemporal patterning of gene expression necessary for appropriate development and responses to the environment. Accumulating evidence implicates changes to gene expression as a major source of phenotypic novelty in eukaryotes, including acute phenotypes such as disease and cancer in mammals. Moreover, genetic and epigenetic variation affecting regulatory sequences over longer evolutionary timescales has become a recurring theme in studies of morphological divergence and local adaptation. Here, we discuss the functions of and methods used to identify various classes of regulatory elements, as well as their role in plant development and response to the environment. We highlight opportunities to exploit regulatory variants underlying plant development and environmental responses for crop improvement efforts. Although a comprehensive understanding of regulatory mechanisms in plants has lagged behind that in animals, we showcase several breakthrough findings that have profoundly influenced plant biology and shaped the overall understanding of transcriptional regulation in eukaryotes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070122-030236
2023-05-22
2024-07-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-070122-030236.html?itemId=/content/journals/10.1146/annurev-arplant-070122-030236&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F. 2010. cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22:1425–40
    [Google Scholar]
  2. 2.
    Alvarez JM, Schinke A-L, Brooks MD, Pasquino A, Leonelli L et al. 2020. Transient genome-wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen-response cascade. Nat. Commun. 11:1157
    [Google Scholar]
  3. 3.
    Anderson SN, Stitzer MC, Brohammer AB, Zhou P, Noshay JM et al. 2019. Transposable elements contribute to dynamic genome content in maize. Plant J. 100:1052–65
    [Google Scholar]
  4. 4.
    Anderson SN, Stitzer MC, Zhou P, Ross-Ibarra J, Hirsch CD, Springer NM. 2019. Dynamic patterns of transcript abundance of transposable element families in maize. G3 9:3673–82
    [Google Scholar]
  5. 5.
    Arnold CD, Gerlach D, Stelzer C, Boryn LM, Rath M, Stark A. 2013. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339:1074–77
    [Google Scholar]
  6. 6.
    Azodi CB, Lloyd JP, Shiu SH. 2020. The cis-regulatory codes of response to combined heat and drought stress in Arabidopsis thaliana. NAR Genom. Bioinform. 2:lqaa049
    [Google Scholar]
  7. 7.
    Bai X, Huang Y, Hu Y, Liu H, Zhang B et al. 2017. Duplication of an upstream silencer of FZP increases grain yield in rice. Nat Plants 3:885–93
    [Google Scholar]
  8. 8.
    Bartman CR, Hsu SC, Hsiung CC, Raj A, Blobel GA 2016. Enhancer regulation of transcriptional bursting parameters revealed by forced chromatin looping. Mol. Cell 62:237–47
    [Google Scholar]
  9. 9.
    Bewick AJ, Schmitz RJ. 2017. Gene body DNA methylation in plants. Curr. Opin. Plant Biol. 36:103–10
    [Google Scholar]
  10. 10.
    Bolduc N, Yilmaz A, Mejia-Guerra MK, Morohashi K, O'Connor D et al. 2012. Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev. 26:1685–90
    [Google Scholar]
  11. 11.
    Borg M, Papareddy RK, Dombey R, Axelsson E, Nodine MD et al. 2021. Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis. eLife 10:e61894
    [Google Scholar]
  12. 12.
    Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH et al. 2008. High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–22
    [Google Scholar]
  13. 13.
    Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML et al. 2015. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486–90
    [Google Scholar]
  14. 14.
    Cai YC, Zhang Y, Loh YP, Tng JQ, Lim MC et al. 2021. H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions. Nat. Commun. 12:719
    [Google Scholar]
  15. 15.
    Chen DJ, Yan WH, Fu L-Y, Kaufmann K. 2018. Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana. Nat. Commun. 9:4534
    [Google Scholar]
  16. 16.
    Chubb JR, Trcek T, Shenoy SM, Singer RH. 2006. Transcriptional pulsing of a developmental gene. Curr. Biol. 16:1018–25
    [Google Scholar]
  17. 17.
    Chuck GS, Brown PJ, Meeley R, Hake S. 2014. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. PNAS 111:18775–80
    [Google Scholar]
  18. 18.
    Chuong EB, Elde NC, Feschotte C. 2017. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18:71–86
    [Google Scholar]
  19. 19.
    Clark RM, Wagler TN, Quijada P, Doebley J. 2006. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat. Genet. 38:594–97
    [Google Scholar]
  20. 20.
    Concia L, Veluchamy A, Ramirez-Prado JS, Martin-Ramirez A, Huang Y et al. 2020. Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biol. 21:104
    [Google Scholar]
  21. 21.
    Crawford GE, Holt IE, Mullikin JC, Tai D, Green ED et al. 2004. Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. PNAS 101:992–97
    [Google Scholar]
  22. 22.
    Crawford GE, Holt IE, Whittle J, Webb BD, Tai D et al. 2006. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 16:123–31
    [Google Scholar]
  23. 23.
    Crisp PA, Marand AP, Noshay JM, Zhou P, Lu ZF et al. 2020. Stable unmethylated DNA demarcates expressed genes and their cis-regulatory space in plant genomes. PNAS 117:23991–4000Demonstrated that stable unmethylated regions capture potentially comprehensive catalogs of cis-regulatory elements in plant genomes.
    [Google Scholar]
  24. 24.
    Cuperus JT. 2022. Single-cell genomics in plants: current state, future directions, and hurdles to overcome. Plant Physiol. 188:749–55
    [Google Scholar]
  25. 25.
    Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L et al. 2015. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348:910–14
    [Google Scholar]
  26. 26.
    Ding Y, Yang S 2022. Surviving and thriving: how plants perceive and respond to temperature stress. Dev. Cell 57:947–58
    [Google Scholar]
  27. 27.
    Dong Q, Li N, Li X, Yuan Z, Xie D et al. 2018. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. Plant J. 94:1141–56
    [Google Scholar]
  28. 28.
    Dorrity MW, Alexandre CM, Hamm MO, Vigil A-L, Fields S et al. 2021. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat. Commun. 12:3334
    [Google Scholar]
  29. 29.
    Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis C et al. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74
    [Google Scholar]
  30. 30.
    Farmer A, Thibivilliers S, Ryu KH, Schiefelbein J, Libault M. 2021. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Mol. Plant 14:372–83
    [Google Scholar]
  31. 31.
    Feng Y, Zhang Y, Ebright RH. 2016. Structural basis of transcription activation. Science 352:1330–33
    [Google Scholar]
  32. 32.
    Feschotte C. 2008. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9:397–405
    [Google Scholar]
  33. 33.
    Freeling M, Subramaniam S. 2009. Conserved noncoding sequences (CNSs) in higher plants. Curr. Opin. Plant Biol. 12:126–32
    [Google Scholar]
  34. 34.
    Galli M, Khakhar A, Lu Z, Chen Z, Sen S et al. 2018. The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nat. Commun. 9:4526
    [Google Scholar]
  35. 35.
    Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y et al. 2013. CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res. 23:628–37
    [Google Scholar]
  36. 36.
    Gent JI, Madzima TF, Bader R, Kent MR, Zhang XY et al. 2014. Accessible DNA and relative depletion of H3K9me2 at maize loci undergoing RNA-directed DNA methylation. Plant Cell 26:4903–17
    [Google Scholar]
  37. 37.
    Gilmour DS, Lis JT. 1984. Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. PNAS 81:4275–79
    [Google Scholar]
  38. 38.
    Gómez-Zambrano A, Merini W, Calonje M. 2019. The repressive role of Arabidopsis H2A.Z in transcriptional regulation depends on AtBMI1 activity. Nat. Commun. 10:2828
    [Google Scholar]
  39. 39.
    Gutzat R, Rembart K, Nussbaumer T, Hofmann F, Pisupati R et al. 2020. Arabidopsis shoot stem cells display dynamic transcription and DNA methylation patterns. EMBO J. 39:e103667
    [Google Scholar]
  40. 40.
    Haberle V, Stark A. 2018. Eukaryotic core promoters and the functional basis of transcription initiation. Nat. Rev. Mol. Cell Biol. 19:621–37
    [Google Scholar]
  41. 41.
    Hampsey M. 1998. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol. Mol. Biol. Rev. 62:465–503
    [Google Scholar]
  42. 42.
    Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M et al. 2013. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat. Genet. 45:891–98
    [Google Scholar]
  43. 43.
    Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A et al. 2009. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–12
    [Google Scholar]
  44. 44.
    Hendelman A, Zebell S, Rodriguez-Leal D, Dukler N, Robitaille G et al. 2021. Conserved pleiotropy of an ancient plant homeobox gene uncovered by cis-regulatory dissection. Cell 184:1724–39.e16
    [Google Scholar]
  45. 45.
    Heyndrickx KS, Van de Velde J, Wang CM, Weigei D, Vandepoele K. 2014. A functional and evolutionary perspective on transcription factor binding in Arabidopsis thaliana. Plant Cell 26:3894–910
    [Google Scholar]
  46. 46.
    Hirsch CD, Springer NM. 2017. Transposable element influences on gene expression in plants. Biochim. Biophys. Acta Gene Regul. Mech. 1860:157–65
    [Google Scholar]
  47. 47.
    Huang Y, Zhao S, Fu Y, Sun H, Ma X et al. 2018. Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication. Plant J. 96:716–33
    [Google Scholar]
  48. 48.
    Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S et al. 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373:655–62
    [Google Scholar]
  49. 49.
    Inada DC, Bashir A, Lee C, Thomas BC, Ko C et al. 2003. Conserved noncoding sequences in the grasses. Genome Res. 13:2030–41
    [Google Scholar]
  50. 50.
    Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh PT et al. 2013. OsLG1 regulates a closed panicle trait in domesticated rice. Nat. Genet. 45:462–65
    [Google Scholar]
  51. 51.
    Jackson D, Veit B, Hake S. 1994. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–13
    [Google Scholar]
  52. 52.
    Jiao Y, Wang Y, Xue D, Wang J, Yan M et al. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42:541–44
    [Google Scholar]
  53. 53.
    Jin WF, Tang QS, Wan MM, Cui KR, Zhang Y et al. 2015. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature 528:142–46
    [Google Scholar]
  54. 54.
    Johnson DS, Mortazavi A, Myers RM, Wold B. 2007. Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–502
    [Google Scholar]
  55. 55.
    Joly-Lopez Z, Platts AE, Gulko B, Choi JY, Groen SC et al. 2020. An inferred fitness consequence map of the rice genome. Nat. Plants 6:119–30
    [Google Scholar]
  56. 56.
    Jores T, Tonnies J, Dorrity MW, Cuperus JT, Fields S, Queitsch C. 2020. Identification of plant enhancers and their constituent elements by STARR-seq in tobacco leaves. Plant Cell 32:2120–31Described a plant-optimized version of self-transcribing active regulatory region sequencing (STARR-seq) to dissect functional elements in the 35S enhancer.
    [Google Scholar]
  57. 57.
    Kaplinsky NJ, Braun DM, Penterman J, Goff SA, Freeling M. 2002. Utility and distribution of conserved noncoding sequences in the grasses. PNAS 99:6147–51
    [Google Scholar]
  58. 58.
    Kaufmann K, Muino JM, Osteras M, Farinelli L, Krajewski P, Angenent GC. 2010. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nat. Protoc. 5:457–72
    [Google Scholar]
  59. 59.
    Kim DH, Doyle MR, Sung S, Amasino RM 2009. Vernalization: winter and the timing of flowering in plants. Annu. Rev. Cell Dev. Biol. 25:277–99
    [Google Scholar]
  60. 60.
    Kitagawa M, Jackson D 2019. Control of meristem size. Annu. Rev. Plant Biol. 70:269–91
    [Google Scholar]
  61. 61.
    Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. 2003. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–50
    [Google Scholar]
  62. 62.
    Kremling KAG, Chen SY, Su MH, Lepak NK, Romay MC et al. 2018. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature 555:520–23
    [Google Scholar]
  63. 63.
    Krishnan J, Seidel CW, Zhang N, Singh NP, VanCampen J et al. 2022. Genome-wide analysis of cis-regulatory changes underlying metabolic adaptation of cavefish. Nat. Genet. 54:684–93
    [Google Scholar]
  64. 64.
    Lai X, Behera S, Liang Z, Lu Y, Deogun JS, Schnable JC. 2017. STAG-CNS: an order-aware conserved noncoding sequences discovery tool for arbitrary numbers of species. Mol. Plant 10:990–99
    [Google Scholar]
  65. 65.
    Lai X, Blanc-Mathieu R, GrandVuillemin L, Huang Y, Stigliani A et al. 2021. The LEAFY floral regulator displays pioneer transcription factor properties. Mol. Plant 14:829–37
    [Google Scholar]
  66. 66.
    Larsson AJM, Johnsson P, Hagemann-Jensen M, Hartmanis L, Faridani OR et al. 2019. Genomic encoding of transcriptional burst kinetics. Nature 565:251–54
    [Google Scholar]
  67. 67.
    Law JA, Jacobsen SE. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11:204–20
    [Google Scholar]
  68. 68.
    Le NT, Harukawa Y, Miura S, Boer D, Kawabe A, Saze H. 2020. Epigenetic regulation of spurious transcription initiation in Arabidopsis. Nat. Commun. 11:3224
    [Google Scholar]
  69. 69.
    Li E, Liu H, Huang L, Zhang X, Dong X et al. 2019. Long-range interactions between proximal and distal regulatory regions in maize. Nat. Commun. 10:2633
    [Google Scholar]
  70. 70.
    Li M, Wrobel-Marek J, Heidmann I, Horstman A, Chen B et al. 2022. Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis. Plant Physiol. 188:1095–110
    [Google Scholar]
  71. 71.
    Li Q, Gent JI, Zynda G, Song JW, Makarevitch I et al. 2015. RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. PNAS 112:14728–33
    [Google Scholar]
  72. 72.
    Liang Z, Zhang Q, Ji C, Hu G, Zhang P et al. 2021. Reorganization of the 3D chromatin architecture of rice genomes during heat stress. BMC Biol. 19:53
    [Google Scholar]
  73. 73.
    Lin Y, Meng FL, Fang C, Zhu B, Jiang JM. 2019. Rapid validation of transcriptional enhancers using agrobacterium-mediated transient assay. Plant Methods 15:21
    [Google Scholar]
  74. 74.
    Lisch D. 2013. How important are transposons for plant evolution?. Nat. Rev. Genet. 14:49–61
    [Google Scholar]
  75. 75.
    Lisch D, Bennetzen JL. 2011. Transposable element origins of epigenetic gene regulation. Curr. Opin. Plant Biol. 14:156–61
    [Google Scholar]
  76. 76.
    Liu C, Cheng YJ, Wang JW, Weigel D. 2017. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat. Plants 3:742–48
    [Google Scholar]
  77. 77.
    Liu C, Wang C, Wang G, Becker C, Zaidem M, Weigel D. 2016. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res. 26:1057–68
    [Google Scholar]
  78. 78.
    Liu L, Du Y, Shen X, Li M, Sun W et al. 2015. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet 11:e1005670
    [Google Scholar]
  79. 79.
    Liu L, Gallagher J, Arevalo ED, Chen R, Skopelitis T et al. 2021. Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nat. Plants 7:287–94
    [Google Scholar]
  80. 80.
    Long HK, Prescott SL, Wysocka J. 2016. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167:1170–87
    [Google Scholar]
  81. 81.
    Lovell JT, Schwartz S, Lowry DB, Shakirov EV, Bonnette JE et al. 2016. Drought responsive gene expression regulatory divergence between upland and lowland ecotypes of a perennial C4 grass. Genome Res. 26:510–18
    [Google Scholar]
  82. 82.
    Lu Z, Hofmeister BT, Vollmers C, DuBois RM, Schmitz RJ. 2017. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucleic. Acids. Res. 45:e41
    [Google Scholar]
  83. 83.
    Lu ZF, Marand AP, Ricci WA, Ethridge CL, Zhang XY, Schmitz RJ. 2019. The prevalence, evolution and chromatin signatures of plant regulatory elements. Nat. Plants 5:1250–59
    [Google Scholar]
  84. 84.
    Maeso I, Acemel RD, Gómez-Skarmeta JL. 2017. Cis-regulatory landscapes in development and evolution. Curr. Opin. Genet. Dev. 43:17–22
    [Google Scholar]
  85. 85.
    Maher KA, Bajic M, Kajala K, Reynoso M, Pauluzzi G et al. 2018. Profiling of accessible chromatin regions across multiple plant species and cell types reveals common gene regulatory principles and new control modules. Plant Cell 30:15–36Uncovered features underlying chromatin accessibility variation in four species and two distinct root epidermal cell types in Arabidopsis.
    [Google Scholar]
  86. 86.
    Marand AP, Chen ZL, Gallavotti A, Schmitz RJ. 2021. A cis-regulatory atlas in maize at single-cell resolution. Cell 184:3041–55.e21Profiled ∼55,000 maize nuclei to reveal extensive chromatin accessibility and cis-regulatory usage variation among distinct maize cell types and states.
    [Google Scholar]
  87. 87.
    Marand AP, Schmitz RJ. 2022. Single-cell analysis of cis-regulatory elements. Curr. Opin. Plant Biol. 65:102094
    [Google Scholar]
  88. 88.
    Marand AP, Zhang X, Nelson J, Braga Dos Reis PA, Schmitz RJ. 2021. Profiling single-cell chromatin accessibility in plants. STAR Protoc. 2:100737
    [Google Scholar]
  89. 89.
    Mejía-Guerra MK, Li W, Galeano NF, Vidal M, Gray J et al. 2015. Core promoter plasticity between maize tissues and genotypes contrasts with predominance of sharp transcription initiation sites. Plant Cell 27:3309–20
    [Google Scholar]
  90. 90.
    Meng FL, Zhao HN, Zhu B, Zhang T, Yang MY et al. 2021. Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in Arabidopsis thaliana. Plant Cell 33:1997–2014
    [Google Scholar]
  91. 91.
    Minnoye L, Marinov GK, Krausgruber T, Pan L, Marand AP et al. 2021. Chromatin accessibility profiling methods. Nat. Rev. Methods Primers 1:10
    [Google Scholar]
  92. 92.
    Miura K, Ikeda M, Matsubara A, Song XJ, Ito M et al. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42:545–49
    [Google Scholar]
  93. 93.
    Morton T, Petricka J, Corcoran DL, Li S, Winter CM et al. 2014. Paired-end analysis of transcription start sites in Arabidopsis reveals plant-specific promoter signatures. Plant Cell 26:2746–60
    [Google Scholar]
  94. 94.
    Myers ZA, Wootan CM, Liang Z, Zhou P, Englehorn J et al. 2022. Conserved and variable responses of the HEAT SHOCK FACTOR transcription factor family in maize and Setaria viridis. bioRxiv 2022.05.19.492695. https://doi.org/10.1101/2022.05.19.492695
  95. 95.
    Neumayr C, Haberle V, Serebreni L, Karner K, Hendy O et al. 2022. Differential cofactor dependencies define distinct types of human enhancers. Nature 606:406–13
    [Google Scholar]
  96. 96.
    Ngan CY, Wong CH, Tjong H, Wang WB, Goldfeder RL et al. 2020. Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development. Nat. Genet. 52:264–72
    [Google Scholar]
  97. 97.
    Niederhuth CE, Schmitz RJ. 2017. Putting DNA methylation in context: from genomes to gene expression in plants. Biochim. Biophys. Acta Gene Regul. Mech. 1860:149–56
    [Google Scholar]
  98. 98.
    Noshay JM, Liang Z, Zhou P, Crisp PA, Marand AP et al. 2021. Stability of DNA methylation and chromatin accessibility in structurally diverse maize genomes. G3 11:jkab190
    [Google Scholar]
  99. 99.
    Noshay JM, Marand AP, Anderson SN, Zhou P, Guerra MKM et al. 2021. Assessing the regulatory potential of transposable elements using chromatin accessibility profiles of maize transposons. Genetics 217:1–13
    [Google Scholar]
  100. 100.
    Oka R, Bliek M, Hoefsloot HCJ, Stam M. 2020. In plants distal regulatory sequences overlap with unmethylated rather than low-methylated regions, in contrast to mammals. bioRxiv 2020.03.24.005678. https://doi.org/10.1101/2020.03.24.005678
  101. 101.
    Oka R, Zicola J, Weber B, Anderson SN, Hodgman C et al. 2017. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biol. 18:137
    [Google Scholar]
  102. 102.
    O'Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A et al. 2016. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:1280–92Developed high-throughput DNA affinity purification sequencing to rapidly profile transcription factor–binding sites on naked genomic DNA.
    [Google Scholar]
  103. 103.
    Pajoro A, Madrigal P, Muiño JM, Matus JT, Jin J et al. 2014. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol. 15:R41
    [Google Scholar]
  104. 104.
    Park JS, Frost JM, Park K, Ohr H, Park GT et al. 2017. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana. PNAS 114:2078–83
    [Google Scholar]
  105. 105.
    Parvathaneni RK, Bertolini E, Shamimuzzaman M, Vera DL, Lung PY et al. 2020. The regulatory landscape of early maize inflorescence development. Genome Biol. 21:165
    [Google Scholar]
  106. 106.
    Parvathaneni RK, Kumar I, Braud M, Ozersky P, Mockler TC, Eveland AL. 2021. Regulatory signatures of drought response in stress resilient Sorghum bicolor. bioRxiv 2020.08.07.240580. https://doi.org/10.1101/2020.08.07.240580
  107. 107.
    Pelletier JM, Kwong RW, Park S, Le BH, Baden R et al. 2017. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. PNAS 114:E6710–19
    [Google Scholar]
  108. 108.
    Peng Y, Xiong D, Zhao L, Ouyang W, Wang S et al. 2019. Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nat. Commun. 10:2632
    [Google Scholar]
  109. 109.
    Raxwal VK, Ghosh S, Singh S, Katiyar-Agarwal S, Goel S et al. 2020. Abiotic stress-mediated modulation of the chromatin landscape in Arabidopsis thaliana. J. Exp. Bot. 71:5280–93Documented chromatin accessibility variation in Arabidopsis subjected to cold, heat, salt, and drought stress.
    [Google Scholar]
  110. 110.
    Reynoso MA, Borowsky AT, Pauluzzi GC, Yeung E, Zhang J et al. 2022. Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice. Dev. Cell 57:1177–92.e6
    [Google Scholar]
  111. 111.
    Ricci WA, Lu ZF, Ji LX, Marand AP, Ethridge CL et al. 2019. Widespread long-range cis-regulatory elements in the maize genome. Nat. Plants 5:1237–49Functionally demonstrated widespread enhancer–promoter three-dimensional interactions, enrichment for expression quantitative trait loci and genome-wide association study variants, and elevated transcription-activating capacity.
    [Google Scholar]
  112. 112.
    Rodgers-Melnick E, Vera DL, Bass HW, Buckler ES. 2016. Open chromatin reveals the functional maize genome. PNAS 113:E3177–84
    [Google Scholar]
  113. 113.
    Rodriguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. 2017. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–80.e8Engineered tomato fruit phenotypes via CRISPR-Cas9 editing of CLV3 cis-regulatory elements.
    [Google Scholar]
  114. 114.
    Ryan PT, Ó'Maoiléidigh DS, Drost HG, Kwaśniewska K, Gabel A et al. 2015. Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation. BMC Genom. 16:488
    [Google Scholar]
  115. 115.
    Salvi S, Sponza G, Morgante M, Tomes D, Niu X et al. 2007. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. PNAS 104:11376–81
    [Google Scholar]
  116. 116.
    Satpathy AT, Granja JM, Yost KE, Qi Y, Meschi F et al. 2019. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37:925–36
    [Google Scholar]
  117. 117.
    Savadel SD, Hartwig T, Turpin ZM, Vera DL, Lung P-Y et al. 2021. The native cistrome and sequence motif families of the maize ear. PLOS Genet. 17:e1009689
    [Google Scholar]
  118. 118.
    Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–15
    [Google Scholar]
  119. 119.
    Sieburth LE, Meyerowitz EM. 1997. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9:355–65
    [Google Scholar]
  120. 120.
    Sijacic P, Bajic M, McKinney EC, Meagher RB, Deal RB. 2018. Changes in chromatin accessibility between Arabidopsis stem cells and mesophyll cells illuminate cell type-specific transcription factor networks. Plant J. 94:215–31
    [Google Scholar]
  121. 121.
    Smaczniak C, Immink RGH, Muino JM, Blanvillain R, Busscher M et al. 2012. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. PNAS 109:1560–65
    [Google Scholar]
  122. 122.
    Somssich M, Je BI, Simon R, Jackson D 2016. CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143:3238–48
    [Google Scholar]
  123. 123.
    Song B, Buckler ES, Wang H, Wu Y, Rees E et al. 2021. Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Res. 31:1245–57
    [Google Scholar]
  124. 124.
    Song X, Meng X, Guo H, Cheng Q, Jing Y et al. 2022. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol. 40:1403–11
    [Google Scholar]
  125. 125.
    Springer NM, Schmitz RJ. 2017. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet. 18:563–75
    [Google Scholar]
  126. 126.
    Stam M, Belele C, Ramakrishna W, Dorweiler JE, Bennetzen JL, Chandler VL. 2002. The regulatory regions required for Bʹ paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics 162:917–30
    [Google Scholar]
  127. 127.
    Studer A, Zhao Q, Ross-Ibarra J, Doebley J. 2011. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43:1160–63
    [Google Scholar]
  128. 128.
    Sullivan AM, Arsovski AA, Lempe J, Bubb KL, Weirauch MT et al. 2014. Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana. Cell Rep. 8:2015–30
    [Google Scholar]
  129. 129.
    Tantale K, Mueller F, Kozulic-Pirher A, Lesne A, Victor JM et al. 2016. A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat. Commun. 7:12248
    [Google Scholar]
  130. 130.
    Tao Z, Shen L, Gu X, Wang Y, Yu H, He Y. 2017. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature 551:124–28
    [Google Scholar]
  131. 131.
    Tikhonov AP, SanMiguel PJ, Nakajima Y, Gorenstein NM, Bennetzen JL, Avramova Z. 1999. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. PNAS 96:7409–14
    [Google Scholar]
  132. 132.
    Trevaskis B. 2018. Developmental pathways are blueprints for designing successful crops. Front. Plant Sci. 9:745
    [Google Scholar]
  133. 133.
    Tu X, Marand AP, Schmitz RJ, Zhong S. 2022. A combinatorial indexing strategy for low-cost epigenomic profiling of plant single cells. Plant Commun. 3:100308
    [Google Scholar]
  134. 134.
    Tu XY, Mejía-Guerra MK, Franco JAV, Tzeng D, Chu P-Y et al. 2020. Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. Nat. Commun. 11:5089
    [Google Scholar]
  135. 135.
    Van de Velde J, Van Bel M, Vaneechoutte D, Vandepoele K. 2016. A collection of conserved noncoding sequences to study gene regulation in flowering plants. Plant Physiol. 171:2586–98
    [Google Scholar]
  136. 136.
    Vollbrecht E, Veit B, Sinha N, Hake S. 1991. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–43
    [Google Scholar]
  137. 137.
    Wang F-X, Shang G-D, Wu L-Y, Xu Z-G, Zhao X-Y, Wang J-W. 2020. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Dev. Cell 54:742–57.e8
    [Google Scholar]
  138. 138.
    Wang X, Aguirre L, Rodríguez-Leal D, Hendelman A, Benoit M, Lippman ZB. 2021. Dissecting cis-regulatory control of quantitative trait variation in a plant stem cell circuit. Nat. Plants 7:419–27
    [Google Scholar]
  139. 139.
    Waters AJ, Makarevitch I, Noshay J, Burghardt LT, Hirsch CN et al. 2017. Natural variation for gene expression responses to abiotic stress in maize. Plant J. 89:706–17
    [Google Scholar]
  140. 140.
    Weintraub H, Groudine M. 1976. Chromosomal subunits in active genes have an altered conformation. Science 193:848–56
    [Google Scholar]
  141. 141.
    Whittaker C, Dean C. 2017. The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu. Rev. Cell Dev. Bi. 33:555–75
    [Google Scholar]
  142. 142.
    Williamson RJ, Josephs EB, Platts AE, Hazzouri KM, Haudry A et al. 2014. Evidence for widespread positive and negative selection in coding and conserved noncoding regions of Capsella grandiflora. PLOS Genet. 10:e1004622
    [Google Scholar]
  143. 143.
    Wu M-F, Sang Y, Bezhani S, Yamaguchi N, Han SK et al. 2012. SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. PNAS 109:3576–81
    [Google Scholar]
  144. 144.
    Xiao J, Jin R, Yu X, Shen M, Wagner JD et al. 2017. Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nat. Genet. 49:1546–52Identified polycomb response elements that enable targeted deposition of H3K27me3 via Polycomb repressive complex 2.
    [Google Scholar]
  145. 145.
    Yamamoto YY, Ichida H, Abe T, Suzuki Y, Sugano S, Obokata J. 2007. Differentiation of core promoter architecture between plants and mammals revealed by LDSS analysis. Nucleic Acids Res. 35:6219–26
    [Google Scholar]
  146. 146.
    Yan W, Chen D, Schumacher J, Durantini D, Engelhorn J et al. 2019. Dynamic control of enhancer activity drives stage-specific gene expression during flower morphogenesis. Nat. Commun. 10:1705Identification of floral distal enhancer elements with increased transcription factor density contributing to floral specific gene expression.
    [Google Scholar]
  147. 147.
    Yasuoka Y. 2020. Enhancer evolution in chordates: lessons from functional analyses of cephalochordate cis-regulatory modules. Dev. Growth Differ. 62:279–300
    [Google Scholar]
  148. 148.
    Yocca AE, Lu Z, Schmitz RJ, Freeling M, Edger PP. 2021. Evolution of conserved noncoding sequences in Arabidopsis thaliana. Mol. Biol. Evol. 38:2692–703
    [Google Scholar]
  149. 149.
    You Y, Sawikowska A, Neumann M, Posé D, Capovilla G et al. 2017. Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering. Nat. Commun. 8:15120
    [Google Scholar]
  150. 150.
    Zemach A, Kim MY, Hsieh P-H, Coleman-Derr D, Eshed-Williams L et al. 2013. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205
    [Google Scholar]
  151. 151.
    Zeng Z, Zhang W, Marand AP, Zhu B, Buell CR, Jiang J. 2019. Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato. Genome Biol. 20:123
    [Google Scholar]
  152. 152.
    Zhang H, Zhu J, Gong Z, Zhu JK. 2022. Abiotic stress responses in plants. Nat. Rev. Genet. 23:104–19
    [Google Scholar]
  153. 153.
    Zhang L, Yu H, Ma B, Liu G, Wang J et al. 2017. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat. Commun. 8:14789
    [Google Scholar]
  154. 154.
    Zhang WL, Wu YF, Schnable JC, Zeng ZX, Freeling M et al. 2012. High-resolution mapping of open chromatin in the rice genome. Genome Res. 22:151–62
    [Google Scholar]
  155. 155.
    Zhang WL, Zhang T, Wu YF, Jiang JM. 2012. Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell 24:2719–31
    [Google Scholar]
  156. 156.
    Zhao H, Zhang W, Chen LF, Wang L, Marand AP et al. 2018. Proliferation of regulatory DNA elements derived from transposable elements in the maize genome. Plant Physiol. 176:2789–803
    [Google Scholar]
  157. 157.
    Zhao H, Zhang W, Zhang T, Lin Y, Hu Y et al. 2020. Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana. Genome Biol. 21:24
    [Google Scholar]
  158. 158.
    Zhou P, Enders TA, Myers ZA, Magnusson E, Crisp PA et al. 2022. Prediction of conserved and variable heat and cold stress response in maize using cis-regulatory information. Plant Cell 34:514–34
    [Google Scholar]
  159. 159.
    Zhu B, Zhang WL, Zhang T, Liu B, Jiang JM. 2015. Genome-wide prediction and validation of intergenic enhancers in Arabidopsis using open chromatin signatures. Plant Cell 27:2415–26
    [Google Scholar]
  160. 160.
    Zhu Z, Tan L, Fu Y, Liu F, Cai H et al. 2013. Genetic control of inflorescence architecture during rice domestication. Nat. Commun. 4:2200
    [Google Scholar]
  161. 161.
    Zicola J, Liu L, Tänzler P, Turck F. 2019. Targeted DNA methylation represses two enhancers of FLOWERING LOCUS T in Arabidopsis thaliana. Nat Plants 5:300–7
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-070122-030236
Loading
/content/journals/10.1146/annurev-arplant-070122-030236
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error