1932

Abstract

Chloroplasts are the defining plant organelles with responsibility for photosynthesis and other vital functions. To deliver these functions, they possess a complex proteome comprising thousands of largely nucleus-encoded proteins. Composition of the proteome is controlled by diverse processes affecting protein translocation and degradation—our focus here. Most chloroplast proteins are imported from the cytosol via multiprotein translocons in the outer and inner envelope membranes (the TOC and TIC complexes, respectively), or via one of several noncanonical pathways, and then sorted by different systems to organellar subcompartments. Chloroplast proteolysis is equally complex, involving the concerted action of internal proteases of prokaryotic origin and the nucleocytosolic ubiquitin–proteasome system (UPS). The UPS degrades unimported proteins in the cytosol and chloroplast-resident proteins via chloroplast-associated protein degradation (CHLORAD). The latter targets the TOC apparatus to regulate protein import, as well as numerous internal proteins directly, to reconfigure chloroplast functions in response to developmental and environmental signals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070122-032532
2023-05-22
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-070122-032532.html?itemId=/content/journals/10.1146/annurev-arplant-070122-032532&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Accossato S, Kessler F, Shanmugabalaji V 2020. SUMOylation contributes to proteostasis of the chloroplast protein import receptor TOC159 during early development. eLife 9:e60968
    [Google Scholar]
  2. 2.
    Adam Z, Aviv-Sharon E, Keren-Paz A, Naveh L, Rozenberg M et al. 2019. The chloroplast envelope protease FTSH11—interaction with CPN60 and identification of potential substrates. Front. Plant Sci. 10:428
    [Google Scholar]
  3. 3.
    Agne B, Andres C, Montandon C, Christ B, Ertan A et al. 2010. The acidic A-domain of Arabidopsis Toc159 occurs as a hyperphosphorylated protein. Plant Physiol 153:1016–30
    [Google Scholar]
  4. 4.
    Agne B, Infanger S, Wang F, Hofstetter V, Rahim G et al. 2009. A Toc159 import receptor mutant, defective in hydrolysis of GTP, supports preprotein import into chloroplasts. J. Biol. Chem. 284:8670–79
    [Google Scholar]
  5. 5.
    Albiniak AM, Baglieri J, Robinson C. 2012. Targeting of lumenal proteins across the thylakoid membrane. J. Exp. Bot. 63:1689–98
    [Google Scholar]
  6. 6.
    Anderson SA, Satyanarayan MB, Wessendorf RL, Lu Y, Fernandez DE. 2021. A homolog of Guided Entry of Tail-anchored proteins3 functions in membrane-specific protein targeting in chloroplasts of Arabidopsis. Plant Cell 33:2812–33
    [Google Scholar]
  7. 7.
    Armbruster U, Hertle A, Makarenko E, Zuhlke J, Pribil M et al. 2009. Chloroplast proteins without cleavable transit peptides: rare exceptions or a major constituent of the chloroplast proteome?. Mol. Plant 2:1325–35
    [Google Scholar]
  8. 8.
    Aronsson H, Boij P, Patel R, Wardle A, Töpel M, Jarvis P 2007. Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts in Arabidopsis thaliana. Plant J 52:53–68
    [Google Scholar]
  9. 9.
    Aronsson H, Combe J, Patel R, Agne B, Martin M et al. 2010. Nucleotide binding and dimerization at the chloroplast pre-protein import receptor, atToc33, are not essential in vivo but do increase import efficiency. Plant J 63:297–311
    [Google Scholar]
  10. 10.
    Asher AH, Theg SM. 2021. Electrochromic shift supports the membrane destabilization model of Tat-mediated transport and shows ion leakage during Sec transport. PNAS 118:e2018122118
    [Google Scholar]
  11. 11.
    Bae W, Lee YJ, Kim DH, Lee J, Kim S et al. 2008. AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis. Nat. Cell Biol. 10:220–27
    [Google Scholar]
  12. 12.
    Baek S, Imamura S, Higa T, Nakai Y, Tanaka K, Nakai M. 2022. A distinct class of GTP-binding proteins mediates chloroplast protein import in Rhodophyta. PNAS 119:e2208277119
    [Google Scholar]
  13. 13.
    Bauer J, Chen K, Hiltbrunner A, Wehrli E, Eugster M et al. 2000. The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature 403:203–7
    [Google Scholar]
  14. 14.
    Bedard J, Trosch R, Wu F, Ling Q, Flores-Perez U et al. 2017. Suppressors of the chloroplast protein import mutant tic40 reveal a genetic link between protein import and thylakoid biogenesis. Plant Cell 29:1726–47
    [Google Scholar]
  15. 15.
    Celedon JM, Cline K. 2013. Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition. Biochim. Biophys. Acta Mol. Cell Res. 1833:341–51
    [Google Scholar]
  16. 16.
    Chen Y-L, Chen L-J, Chu C-C, Huang P-K, Wen J-R, Li H-M. 2018. TIC236 links the outer and inner membrane translocons of the chloroplast. Nature 564:125–29Discovered a TIC component that spans the intermembrane space to aid assembly of TOC-TIC supercomplexes.
    [Google Scholar]
  17. 17.
    Chou M-L, Chu C-C, Chen L-J, Akita M, Li H-M. 2006. Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts. J. Cell Biol. 175:893–900
    [Google Scholar]
  18. 18.
    Chu C-C, Li H-M. 2018. Developmental regulation of protein import into plastids. Photosynth. Res. 138:327–34
    [Google Scholar]
  19. 19.
    Chu C-C, Swamy K, Li H-M. 2020. Tissue-specific regulation of plastid protein import via transit-peptide motifs. Plant Cell 32:1204–17
    [Google Scholar]
  20. 20.
    Das S, Vera M, Gandin V, Singer RH, Tutucci E. 2021. Intracellular mRNA transport and localized translation. Nat. Rev. Mol. Cell Biol. 22:483–504
    [Google Scholar]
  21. 21.
    Day PM, Inoue K, Theg SM. 2019. Chloroplast outer membrane β-barrel proteins use components of the general import apparatus. Plant Cell 31:1845–55
    [Google Scholar]
  22. 22.
    Day PM, Theg SM. 2018. Evolution of protein transport to the chloroplast envelope membranes. Photosynth. Res. 138:315–26
    [Google Scholar]
  23. 23.
    de Vries J, Sousa FL, Bölter B, Soll J, Gould SB. 2015. YCF1: a green TIC?. Plant Cell 27:1827–33
    [Google Scholar]
  24. 24.
    Demarsy E, Lakshmanan AM, Kessler F. 2014. Border control: selectivity of chloroplast protein import and regulation at the TOC-complex. Front. Plant Sci. 5:483
    [Google Scholar]
  25. 25.
    Deruyffelaere C, Purkrtova Z, Bouchez I, Collet B, Cacas J-L et al. 2018. PUX10 is a CDC48A adaptor protein that regulates the extraction of ubiquitinated oleosins from seed lipid droplets in Arabidopsis. Plant Cell 30:2116–36
    [Google Scholar]
  26. 26.
    Endow JK, Singhal R, Fernandez DE, Inoue K. 2015. Chaperone-assisted post-translational transport of plastidic type I signal peptidase 1. J. Biol. Chem. 290:28778–91
    [Google Scholar]
  27. 27.
    Fang J, Li B, Chen L-J, Dogra V, Luo S et al. 2022. TIC236 gain-of-function mutations unveil the link between plastid division and plastid protein import. PNAS 119:e2123353119
    [Google Scholar]
  28. 28.
    Fellerer C, Schweiger R, Schöngruber K, Soll J, Schwenkert S. 2011. Cytosolic HSP90 cochaperones HOP and FKBP interact with freshly synthesized chloroplast preproteins of Arabidopsis. Mol. Plant 4:1133–45
    [Google Scholar]
  29. 29.
    Fernandez DE. 2018. Two paths diverged in the stroma: targeting to dual SEC translocase systems in chloroplasts. Photosynth. Res. 138:277–87
    [Google Scholar]
  30. 30.
    Flores-Pérez U, Bédard J, Tanabe N, Lymperopoulos P, Clarke AK, Jarvis P 2016. Functional analysis of the Hsp93/ClpC chaperone at the chloroplast envelope. Plant Physiol 170:147–62
    [Google Scholar]
  31. 31.
    Ganesan I, Shi LX, Labs M, Theg SM. 2018. Evaluating the functional pore size of chloroplast TOC and TIC protein translocons: import of folded proteins. Plant Cell 30:2161–73
    [Google Scholar]
  32. 32.
    Ganesan I, Theg SM. 2019. Structural considerations of folded protein import through the chloroplast TOC/TIC translocons. FEBS Lett 593:565–72
    [Google Scholar]
  33. 33.
    Gentil J, Hempel F, Moog D, Zauner S, Maier UG. 2017. Review: origin of complex algae by secondary endosymbiosis: a journey through time. Protoplasma 254:1835–43
    [Google Scholar]
  34. 34.
    Grimmer J, Helm S, Dobritzsch D, Hause G, Shema G et al. 2020. Mild proteasomal stress improves photosynthetic performance in Arabidopsis chloroplasts. Nat. Commun. 11:1662
    [Google Scholar]
  35. 35.
    Herrmann JM. 2018. A force-generating machine in the plant's powerhouse: a pulling AAA-ATPase motor drives protein translocation into chloroplasts. Plant Cell 30:2646–47
    [Google Scholar]
  36. 36.
    Hofmann NR, Theg SM. 2005. Toc64 is not required for import of proteins into chloroplasts in the moss Physcomitrella patens. Plant J 43:675–87
    [Google Scholar]
  37. 37.
    Inaba T, Li M, Alvarez-Huerta M, Kessler F, Schnell DJ. 2003. atTic110 functions as a scaffold for coordinating the stromal events of protein import into chloroplasts. J. Biol. Chem. 278:38617–27
    [Google Scholar]
  38. 38.
    Inoue H, Li M, Schnell DJ. 2013. An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts. PNAS 110:3173–78
    [Google Scholar]
  39. 39.
    Inoue H, Rounds C, Schnell DJ. 2010. The molecular basis for distinct pathways for protein import into Arabidopsis chloroplasts. Plant Cell 22:1947–60
    [Google Scholar]
  40. 40.
    Inoue K, Keegstra K. 2003. A polyglycine stretch is necessary for proper targeting of the protein translocation channel precursor to the outer envelope membrane of chloroplasts. Plant J 34:661–69
    [Google Scholar]
  41. 41.
    Ishida H, Izumi M, Wada S, Makino A. 2014. Roles of autophagy in chloroplast recycling. Biochim. Biophys. Acta Bioenerg. 1837:512–21
    [Google Scholar]
  42. 42.
    Jarvis P. 2008. Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol 179:257–85
    [Google Scholar]
  43. 43.
    Jarvis P, Chen LJ, Li H, Peto CA, Fankhauser C, Chory J. 1998. An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 282:100–3
    [Google Scholar]
  44. 44.
    Jarvis P, López-Juez E. 2013. Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol. 14:787–802
    [Google Scholar]
  45. 45.
    Ji S, Siegel A, Shan SO, Grimm B, Wang P. 2021. Chloroplast SRP43 autonomously protects chlorophyll biosynthesis proteins against heat shock. Nat. Plants 7:1420–32
    [Google Scholar]
  46. 46.
    Jin Z, Wan L, Zhang Y, Li X, Cao Y et al. 2022. Structure of a TOC-TIC supercomplex spanning two chloroplast envelope membranes. Cell 185:4788–800.e13Reported a cryo-electron microscopy structure of a TOC-TIC supercomplex from Chlamydomonas.
    [Google Scholar]
  47. 47.
    Joo S, Kariyawasam T, Kim M, Jin E, Goodenough U, Lee J-H 2022. Sex-linked deubiquitinase establishes uniparental transmission of chloroplast DNA. Nat. Commun. 13:1133
    [Google Scholar]
  48. 48.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–89
    [Google Scholar]
  49. 49.
    Kakizaki T, Matsumura H, Nakayama K, Che FS, Terauchi R, Inaba T. 2009. Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling. Plant Physiol 151:1339–53
    [Google Scholar]
  50. 50.
    Kalanon M, McFadden GI. 2008. The chloroplast protein translocation complexes of Chlamydomonas reinhardtii: a bioinformatic comparison of Toc and Tic components in plants, green algae and red algae. Genetics 179:95–112
    [Google Scholar]
  51. 51.
    Kato Y, Sakamoto W. 2018. FtsH protease in the thylakoid membrane: physiological functions and the regulation of protease activity. Front. Plant Sci. 9:855
    [Google Scholar]
  52. 52.
    Kessler F, Blobel G, Patel HA, Schnell DJ. 1994. Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science 266:1035–39
    [Google Scholar]
  53. 53.
    Kikuchi S, Asakura Y, Imai M, Nakahira Y, Kotani Y et al. 2018. A Ycf2-FtsHi heteromeric AAA-ATPase complex is required for chloroplast protein import. Plant Cell 30:2677–703
    [Google Scholar]
  54. 54.
    Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M et al. 2013. Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 339:571–74Described a 1-MDa TIC complex in Arabidopsis.
    [Google Scholar]
  55. 55.
    Kikuchi S, Hirohashi T, Nakai M. 2006. Characterization of the preprotein translocon at the outer envelope membrane of chloroplasts by blue native PAGE. Plant Cell Physiol 47:363–71
    [Google Scholar]
  56. 56.
    Kim DH, Xu ZY, Na YJ, Yoo YJ, Lee J et al. 2011. Small heat shock protein Hsp17.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis. Plant Physiol 157:132–46
    [Google Scholar]
  57. 57.
    Kim J, Na YJ, Park SJ, Baek SH, Kim DH. 2019. Biogenesis of chloroplast outer envelope membrane proteins. Plant Cell Rep 38:783–92
    [Google Scholar]
  58. 58.
    Kitajima A, Asatsuma S, Okada H, Hamada Y, Kaneko K et al. 2009. The rice α-amylase glycoprotein is targeted from the Golgi apparatus through the secretory pathway to the plastids. Plant Cell 21:2844–58
    [Google Scholar]
  59. 59.
    Klasek L, Inoue K, Theg SM. 2020. Chloroplast chaperonin-mediated targeting of a thylakoid membrane protein. Plant Cell 32:3884–901
    [Google Scholar]
  60. 60.
    Kleine T, Leister D. 2016. Retrograde signaling: Organelles go networking. Biochim. Biophys. Acta Bioenerg. 1857:1313–25
    [Google Scholar]
  61. 61.
    Klinger A, Gosch V, Bodensohn U, Ladig R, Schleiff E. 2019. The signal distinguishing between targeting of outer membrane β-barrel protein to plastids and mitochondria in plants. Biochim. Biophys. Acta Mol. Cell. Res. 1866:663–72
    [Google Scholar]
  62. 62.
    Koenig P, Mirus O, Haarmann R, Sommer MS, Sinning I et al. 2010. Conserved properties of polypeptide transport-associated (POTRA) domains derived from cyanobacterial Omp85. J. Biol. Chem. 285:18016–24
    [Google Scholar]
  63. 63.
    Koenig P, Oreb M, Hofle A, Kaltofen S, Rippe K et al. 2008. The GTPase cycle of the chloroplast import receptors Toc33/Toc34: implications from monomeric and dimeric structures. Structure 16:585–96
    [Google Scholar]
  64. 64.
    Kovacheva S, Bédard J, Patel R, Dudley P, Twell D et al. 2005. In vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import. Plant J 41:412–28
    [Google Scholar]
  65. 65.
    Kovács-Bogdán E, Benz JP, Soll J, Bölter B. 2011. Tic20 forms a channel independent of Tic110 in chloroplasts. BMC Plant Biol 11:133
    [Google Scholar]
  66. 66.
    Lee DW, Hwang I. 2018. Evolution and design principles of the diverse chloroplast transit peptides. Mol. Cells 41:161–67
    [Google Scholar]
  67. 67.
    Lee DW, Hwang I. 2019. Protein import into chloroplasts via the Tic40-dependent and -independent pathways depends on the amino acid composition of the transit peptide. Biochem. Biophys. Res. Commun. 518:66–71
    [Google Scholar]
  68. 68.
    Lee DW, Kim SJ, Oh YJ, Choi B, Lee J, Hwang I. 2016. Arabidopsis BAG1 functions as a cofactor in Hsc70-mediated proteasomal degradation of unimported plastid proteins. Mol. Plant 9:1428–31
    [Google Scholar]
  69. 69.
    Lee S, Lee DW, Lee Y, Mayer U, Stierhof Y-D et al. 2009. Heat shock protein cognate 70–4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 21:3984–4001
    [Google Scholar]
  70. 70.
    Li HM, Schnell D, Theg SM. 2020. Protein import motors in chloroplasts: on the role of chaperones. Plant Cell 32:536–42Debates the role of the 2-MDa complex and stromal chaperone systems in driving protein import.
    [Google Scholar]
  71. 71.
    Li HM, Teng YS. 2013. Transit peptide design and plastid import regulation. Trends Plant Sci 18:360–66
    [Google Scholar]
  72. 72.
    Li J, Yuan J, Li Y, Sun H, Ma T et al. 2022. The CDC48 complex mediates ubiquitin-dependent degradation of intra-chloroplast proteins in plants. Cell Rep 39:110664
    [Google Scholar]
  73. 73.
    Li K, Yu R, Fan L-M, Wei N, Chen H, Deng XW. 2016. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat. Commun. 7:11868
    [Google Scholar]
  74. 74.
    Li Y, Martin JR, Aldama GA, Fernandez DE, Cline K. 2017. Identification of putative substrates of SEC2, a chloroplast inner envelope translocase. Plant Physiol 173:2121–37
    [Google Scholar]
  75. 75.
    Li Y, Singhal R, Taylor IW, McMinn PH, Chua XY et al. 2015. The Sec2 translocase of the chloroplast inner envelope contains a unique and dedicated SECE2 component. Plant J 84:647–58
    [Google Scholar]
  76. 76.
    Ling Q, Broad W, Trosch R, Topel M, Demiral Sert T et al. 2019. Ubiquitin-dependent chloroplast-associated protein degradation in plants. Science 363:eaav4467Discovered CHLORAD, a novel proteolytic pathway for chloroplast protein degradation.
    [Google Scholar]
  77. 77.
    Ling Q, Huang W, Baldwin A, Jarvis P. 2012. Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system. Science 338:655–59Identified a chloroplast ubiquitin E3 ligase and revealed that the ubiquitin–proteasome system acts directly on chloroplast-resident proteins.
    [Google Scholar]
  78. 78.
    Ling Q, Jarvis P. 2015. Functions of plastid protein import and the ubiquitin–proteasome system in plastid development. Biochim. Biophys. Acta Bioenerg. 1847:939–48
    [Google Scholar]
  79. 79.
    Ling Q, Jarvis P. 2015. Regulation of chloroplast protein import by the ubiquitin E3 ligase SP1 is important for stress tolerance in plants. Curr. Biol. 25:2527–34
    [Google Scholar]
  80. 80.
    Ling Q, Sadali NM, Soufi Z, Zhou Y, Huang B et al. 2021. The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato. Nat. Plants 7:655–66
    [Google Scholar]
  81. 81.
    Liu H, Li A, Rochaix J-D, Liu Z. 2023. Architecture of chloroplast TOC-TIC translocon supercomplex. Nature 615349–57
  82. 82.
    Liu L, McNeilage RT, Shi L-X, Theg SM. 2014. ATP requirement for chloroplast protein import is set by the Km for ATP hydrolysis of stromal Hsp70 in Physcomitrella patens. Plant Cell 26:1246–55
    [Google Scholar]
  83. 83.
    Liu Y, Li J. 2014. Endoplasmic reticulum-mediated protein quality control in Arabidopsis. Front. Plant Sci. 5:162
    [Google Scholar]
  84. 84.
    Llamas E, Koyuncu S, Lee HJ, Gutierrez-Garcia R, Dunken N et al. 2022. Chloroplast protein import determines plant proteostasis and retrograde signaling. bioRxiv 10.1101/2022.03.19.484971. https://doi.org/10.1101/2022.03.19.484971
  85. 85.
    Llamas E, Pulido P. 2022. A proteostasis network safeguards the chloroplast proteome. Essays Biochem 66:219–28
    [Google Scholar]
  86. 86.
    Loudya N, Maffei DPF, Bédard J, Ali SM, Devlin PF et al. 2022. Mutations in the chloroplast inner envelope protein TIC100 impair and repair chloroplast protein import and impact retrograde signalling. Plant Cell 34:3028–46
    [Google Scholar]
  87. 87.
    Loudya N, Okunola T, He J, Jarvis P, Lopez-Juez E. 2020. Retrograde signalling in a virescent mutant triggers an anterograde delay of chloroplast biogenesis that requires GUN1 and is essential for survival. Philos. Trans. R. Soc. B. 375:20190400
    [Google Scholar]
  88. 88.
    Lumme C, Altan-Martin H, Dastvan R, Sommer MS, Oreb M et al. 2014. Nucleotides and substrates trigger the dynamics of the Toc34 GTPase homodimer involved in chloroplast preprotein translocation. Structure 22:526–38
    [Google Scholar]
  89. 89.
    Ma Y, Kouranov A, LaSala SE, Schnell DJ. 1996. Two components of the chloroplast protein import apparatus, IAP86 and IAP75, interact with the transit sequence during the recognition and translocation of precursor proteins at the outer envelope. J. Cell Biol. 134:315–27
    [Google Scholar]
  90. 90.
    Martin G, Leivar P, Ludevid D, Tepperman JM, Quail PH, Monte E 2016. Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network. Nat. Commun. 7:11431
    [Google Scholar]
  91. 91.
    May T, Soll J. 2000. 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12:53–64
    [Google Scholar]
  92. 92.
    McClellan AJ, Laugesen SH, Ellgaard L. 2019. Cellular functions and molecular mechanisms of non-lysine ubiquitination. Open Biol 9:190147
    [Google Scholar]
  93. 93.
    Midorikawa T, Endow JK, Dufour J, Zhu J, Inoue K. 2014. Plastidic type I signal peptidase 1 is a redox-dependent thylakoidal processing peptidase. Plant J 80:592–603
    [Google Scholar]
  94. 94.
    Miras S, Salvi D, Piette L, Seigneurin-Berny D, Grunwald D et al. 2007. Toc159- and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts. J. Biol. Chem. 282:29482–92
    [Google Scholar]
  95. 95.
    Nada A, Soll J 2004. Inner envelope protein 32 is imported into chloroplasts by a novel pathway. J. Cell Sci. 117:3975–82
    [Google Scholar]
  96. 96.
    Nakai M. 2018. New perspectives on chloroplast protein import. Plant Cell Physiol 59:1111–19
    [Google Scholar]
  97. 97.
    Nakai M. 2020. Reply: the revised model for chloroplast protein import. Plant Cell 32:543–46
    [Google Scholar]
  98. 98.
    Nakrieko KA, Mould RM, Smith AG. 2004. Fidelity of targeting to chloroplasts is not affected by removal of the phosphorylation site from the transit peptide. Eur. J. Biochem. 271:509–16
    [Google Scholar]
  99. 99.
    Nanjo Y, Oka H, Ikarashi N, Kaneko K, Kitajima A et al. 2006. Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-Golgi to the chloroplast through the secretory pathway. Plant Cell 18:2582–92
    [Google Scholar]
  100. 100.
    New CP, Ma Q, Dabney-Smith C. 2018. Routing of thylakoid lumen proteins by the chloroplast twin arginine transport pathway. Photosynth. Res. 138:289–301
    [Google Scholar]
  101. 101.
    Nishimura K, Kato Y, Sakamoto W. 2016. Chloroplast proteases: updates on proteolysis within and across suborganellar compartments. Plant Physiol 171:2280–93
    [Google Scholar]
  102. 102.
    Oberleitner L, Perrar A, Macorano L, Huesgen PF, Nowack ECM. 2022. A bipartite chromatophore transit peptide and N-terminal protein processing in the Paulinella chromatophore. Plant Physiol 189:152–64
    [Google Scholar]
  103. 103.
    O'Neil PK, Richardson LGL, Paila YD, Piszczek G, Chakravarthy S et al. 2017. The POTRA domains of Toc75 exhibit chaperone-like function to facilitate import into chloroplasts. PNAS 114:E4868–76
    [Google Scholar]
  104. 104.
    Otegui MS. 2018. Vacuolar degradation of chloroplast components: autophagy and beyond. J. Exp. Bot. 69:741–50
    [Google Scholar]
  105. 105.
    Ouyang M, Li X, Ma J, Chi W, Xiao J et al. 2011. LTD is a protein required for sorting light-harvesting chlorophyll-binding proteins to the chloroplast SRP pathway. Nat. Commun. 2:277
    [Google Scholar]
  106. 106.
    Ouyang M, Li X, Zhang J, Feng P, Pu H et al. 2020. Liquid-liquid phase transition drives intra-chloroplast protein sorting. Cell 180:1144–59.e20Discovered that liquid–liquid phase transition acts as a novel mechanism of intra-chloroplast protein sorting.
    [Google Scholar]
  107. 107.
    Paila YD, Richardson LG, Inoue H, Parks ES, McMahon J et al. 2016. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import. eLife 5:e12631
    [Google Scholar]
  108. 108.
    Panigrahi R, Adina-Zada A, Whelan J, Vrielink A 2013. Ligand recognition by the TPR domain of the import factor Toc64 from Arabidopsis thaliana. PLOS ONE 8:e83461
    [Google Scholar]
  109. 109.
    Pulido P, Llamas E, Llorente B, Ventura S, Wright LP, Rodríguez-Concepción M. 2016. Specific Hsp100 chaperones determine the fate of the first enzyme of the plastidial isoprenoid pathway for either refolding or degradation by the stromal Clp protease in Arabidopsis. PLOS Genet 12:e1005824
    [Google Scholar]
  110. 110.
    Ramundo S, Asakura Y, Salome PA, Strenkert D, Boone M et al. 2020. Coexpressed subunits of dual genetic origin define a conserved supercomplex mediating essential protein import into chloroplasts. PNAS 117:32739–49
    [Google Scholar]
  111. 111.
    Richardson LGL, Schnell DJ. 2020. Origins, function, and regulation of the TOC–TIC general protein import machinery of plastids. J. Exp. Bot. 71:1226–38
    [Google Scholar]
  112. 112.
    Richardson LGL, Small EL, Inoue H, Schnell DJ. 2018. Molecular topology of the transit peptide during chloroplast protein import. Plant Cell 30:1789–806
    [Google Scholar]
  113. 113.
    Ries F, Herkt C, Willmund F 2020. Co-translational protein folding and sorting in chloroplasts. Plants 9:214
    [Google Scholar]
  114. 114.
    Rochaix J-D. 2022. Chloroplast protein import machinery and quality control. FEBS J 289:6908–18
    [Google Scholar]
  115. 115.
    Ruan L, Zhou C, Jin E, Kucharavy A, Zhang Y et al. 2017. Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543:443–46
    [Google Scholar]
  116. 116.
    Ruckle ME, DeMarco SM, Larkin RM. 2007. Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis. Plant Cell 19:3944–60
    [Google Scholar]
  117. 117.
    Schleiff E, Jelic M, Soll J. 2003. A GTP-driven motor moves proteins across the outer envelope of chloroplasts. PNAS 100:4604–9
    [Google Scholar]
  118. 118.
    Schleiff E, Soll J, Küchler M, Kuhlbrandt W, Harrer R. 2003. Characterization of the translocon of the outer envelope of chloroplasts. J. Cell Biol. 160:541–51
    [Google Scholar]
  119. 119.
    Schnell DJ, Hebert DN. 2003. Protein translocons: multifunctional mediators of protein translocation across membranes. Cell 112:491–505
    [Google Scholar]
  120. 120.
    Schnell DJ, Kessler F, Blobel G. 1994. Isolation of components of the chloroplast protein import machinery. Science 266:1007–12
    [Google Scholar]
  121. 121.
    Schreier TB, Clery A, Schlafli M, Galbier F, Stadler M et al. 2018. Plastidial NAD-dependent malate dehydrogenase: a moonlighting protein involved in early chloroplast development through its interaction with an FtsH12-FtsHi protease complex. Plant Cell 30:1745–69
    [Google Scholar]
  122. 122.
    Schuhmann H, Adamska I. 2012. Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell. Physiol. Plant 145:224–34
    [Google Scholar]
  123. 123.
    Schünemann D. 2007. Mechanisms of protein import into thylakoids of chloroplasts. Biol. Chem. 388:907–15
    [Google Scholar]
  124. 124.
    Shanmugabalaji V, Chahtane H, Accossato S, Rahire M, Gouzerh G et al. 2018. Chloroplast biogenesis controlled by DELLA-TOC159 interaction in early plant development. Curr. Biol. 28:2616–23Revealed a molecular framework for hormonal control of proplastid-to-chloroplast transition during early development.
    [Google Scholar]
  125. 125.
    Shen G, Adam Z, Zhang H 2007. The E3 ligase AtCHIP ubiquitylates FtsH1, a component of the chloroplast FtsH protease, and affects protein degradation in chloroplasts. Plant J 52:309–21
    [Google Scholar]
  126. 126.
    Shen G, Yan J, Pasapula V, Luo J, He C et al. 2007. The chloroplast protease subunit ClpP4 is a substrate of the E3 ligase AtCHIP and plays an important role in chloroplast function. Plant J 49:228–37
    [Google Scholar]
  127. 127.
    Shi L-X, Theg SM. 2013. Energetic cost of protein import across the envelope membranes of chloroplasts. PNAS 110:930–35
    [Google Scholar]
  128. 128.
    Sjogren LLE, Tanabe N, Lymperopoulos P, Khan NZ, Rodermel SR et al. 2014. Quantitative analysis of the chloroplast molecular chaperone ClpC/Hsp93 in Arabidopsis reveals new insights into its localization, interaction with the Clp proteolytic core, and functional importance. J. Biol. Chem. 289:11318–30
    [Google Scholar]
  129. 129.
    Skalitzky CA, Martin JR, Harwood JH, Beirne JJ, Adamczyk BJ et al. 2011. Plastids contain a second Sec translocase system with essential functions. Plant Physiol 155:354–69
    [Google Scholar]
  130. 130.
    Su P-H, Li H-M. 2010. Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell 22:1516–31
    [Google Scholar]
  131. 131.
    Sun Y, Bakhtiari S, Valente-Paterno M, Wu Y, Law C et al. 2021. Chloroplast-localized translation for protein targeting in Chlamydomonas reinhardtii. bioRxiv 10.1101/2021.12.27.474283. https://doi.org/10.1101/2021.12.27.474283 Suggested a revision of the long-standing model that chloroplast proteins are imported posttranslationally.
  132. 132.
    Sun Y, Yao Z, Ye Y, Fang J, Chen H et al. 2022. Ubiquitin-based pathway acts inside chloroplasts to regulate photosynthesis. Sci. Adv. 8:eabq7352Discovered that photosynthesis proteins, including those encoded by chloroplast genes, are processed by the UPS-CHLORAD system.
    [Google Scholar]
  133. 133.
    Sun Y-J, Forouhar F, Li H-m, Tu S-L, Yeh Y-H et al. 2002. Crystal structure of pea Toc34, a novel GTPase of the chloroplast protein translocon. Nat. Struct. Biol. 9:95–100
    [Google Scholar]
  134. 134.
    Tadini L, Jeran N, Pesaresi P 2020. GUN1 and plastid RNA metabolism: learning from genetics. Cells 9:2307
    [Google Scholar]
  135. 135.
    Tang X, Miao M, Niu X, Zhang D, Cao X et al. 2016. Ubiquitin-conjugated degradation of golden 2-like transcription factor is mediated by CUL4-DDB1-based E3 ligase complex in tomato. New Phytol 209:1028–39
    [Google Scholar]
  136. 136.
    Teng Y-S, Su Y-S, Chen L-J, Lee YJ, Hwang I, Li H-M. 2006. Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane. Plant Cell 18:2247–57
    [Google Scholar]
  137. 137.
    Thomson SM, Pulido P, Jarvis RP. 2020. Protein import into chloroplasts and its regulation by the ubiquitin-proteasome system. Biochem. Soc. Trans. 48:71–82
    [Google Scholar]
  138. 138.
    Tokumaru M, Adachi F, Toda M, Ito-Inaba Y, Yazu F et al. 2017. Ubiquitin-proteasome dependent regulation of the GOLDEN2-LIKE 1 transcription factor in response to plastid signals. Plant Physiol 173:524–35
    [Google Scholar]
  139. 139.
    Tripp J, Hahn A, Koenig P, Flinner N, Bublak D et al. 2012. Structure and conservation of the periplasmic targeting factor Tic22 protein from plants and cyanobacteria. J. Biol. Chem. 287:24164–73
    [Google Scholar]
  140. 140.
    Trösch R, Jarvis P. 2011. The stromal processing peptidase of chloroplasts is essential in Arabidopsis, with knockout mutations causing embryo arrest after the 16-cell stage. PLOS ONE 6:e23039
    [Google Scholar]
  141. 141.
    Tu SL, Chen LJ, Smith MD, Su YS, Schnell DJ, Li HM. 2004. Import pathways of chloroplast interior proteins and the outer-membrane protein OEP14 converge at Toc75. Plant Cell 16:2078–88
    [Google Scholar]
  142. 142.
    Uniacke J, Zerges W. 2009. Chloroplast protein targeting involves localized translation in Chlamydomonas. PNAS 106:1439–44
    [Google Scholar]
  143. 143.
    van Wijk KJ. 2015. Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes. Annu. Rev. Plant Biol. 66:75–111
    [Google Scholar]
  144. 144.
    Viana AA, Li M, Schnell DJ. 2010. Determinants for stop-transfer and post-import pathways for protein targeting to the chloroplast inner envelope membrane. J. Biol. Chem. 285:12948–60
    [Google Scholar]
  145. 145.
    Vierstra RD. 2009. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell Biol. 10:385–97
    [Google Scholar]
  146. 146.
    Villarejo A, Buren S, Larsson S, Dejardin A, Monne M et al. 2005. Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat. Cell Biol. 7:1124–31
    [Google Scholar]
  147. 147.
    Wang N, Wang Y, Zhao Q, Zhang X, Peng C et al. 2021. The cryo-EM structure of the chloroplast ClpP complex. Nat. Plants 7:1505–15
    [Google Scholar]
  148. 148.
    Watson SJ, Li N, Ye Y, Wu F, Ling Q, Jarvis RP 2021. Crosstalk between the chloroplast protein import and SUMO systems revealed through genetic and molecular investigation in Arabidopsis. eLife 10:e60960
    [Google Scholar]
  149. 149.
    Weis BL, Schleiff E, Zerges W. 2013. Protein targeting to subcellular organelles via mRNA localization. Biochim. Biophys. Acta Mol. Cell Res. 1833:260–73
    [Google Scholar]
  150. 150.
    Wiesemann K, Simm S, Mirus O, Ladig R, Schleiff E. 2019. Regulation of two GTPases Toc159 and Toc34 in the translocon of the outer envelope of chloroplasts. Biochim. Biophys. Acta Proteins Proteom. 1867:627–36
    [Google Scholar]
  151. 151.
    Wu GZ, Meyer EH, Richter AS, Schuster M, Ling Q et al. 2019. Control of retrograde signalling by protein import and cytosolic folding stress. Nat. Plants 5:525–38
    [Google Scholar]
  152. 152.
    Xing J, Pan J, Yi H, Lv K, Gan Q et al. 2022. The plastid-encoded protein Orf2971 is required for protein translocation and chloroplast quality control. Plant Cell 34:3383–99
    [Google Scholar]
  153. 153.
    Zhang H, Zhou JF, Kan Y, Shan JX, Ye WW et al. 2022. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science 376:1293–300
    [Google Scholar]
  154. 154.
    Zhang J, Wu S, Boehlein SK, McCarty DR, Song G et al. 2019. Maize defective kernel5 is a bacterial TamB homologue required for chloroplast envelope biogenesis. J. Cell Biol. 218:2638–58
    [Google Scholar]
  155. 155.
    Zhang N, Xu J, Liu X, Liang W, Xin M et al. 2019. Identification of HSP90C as a substrate of E3 ligase TaSAP5 through ubiquitylome profiling. Plant Sci 287:110170
    [Google Scholar]
  156. 156.
    Zhao X, Higa T, Nakai M. 2022. Tic12, a 12-kDa essential component of the translocon at the inner envelope membrane of chloroplasts in Arabidopsis. Plant Cell 34:4569–82
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-070122-032532
Loading
/content/journals/10.1146/annurev-arplant-070122-032532
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error