1932

Abstract

Plant cells accumulate small RNA molecules that regulate plant development, genome stability, and environmental responses. These small RNAs fall into three major classes based on their function and mechanisms of biogenesis—microRNAs, heterochromatic small interfering RNAs, and secondary small interfering RNAs—plus several other less well-characterized categories. Biogenesis of each small RNA class requires a pathway of factors, some specific to each pathway and others involved in multiple pathways. Diverse sequenced plant genomes, along with rapid developments in sequencing, imaging, and genetic transformation techniques, have enabled significant progress in understanding the biogenesis, functions, and evolution of plant small RNAs, including those that had been poorly characterized because they were absent or had low representation in (). Here, we review recent findings about plant small RNAs and discuss our current understanding of their biogenesis mechanisms, targets, modes of action, mobility, and functions in and other plant species, including economically important crops.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070122-035226
2023-05-22
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-070122-035226.html?itemId=/content/journals/10.1146/annurev-arplant-070122-035226&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouche N et al. 2006. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr. Biol. 16:9927–32
    [Google Scholar]
  2. 2.
    Allen E, Xie Z, Gustafson AM, Carrington JC. 2005. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:2207–21
    [Google Scholar]
  3. 3.
    Alves CS, Vicentini R, Duarte GT, Pinoti VF, Vincentz M, Nogueira FTS. 2017. Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants. Plant Mol. Biol. 93:1–235–48
    [Google Scholar]
  4. 4.
    Araki S, Le NT, Koizumi K, Villar-Briones A, Nonomura K-I et al. 2020. miR2118-dependent U-rich phasiRNA production in rice anther wall development. Nat. Commun. 11:13115
    [Google Scholar]
  5. 5.
    Asha S, Soniya EV 2016. Transfer RNA derived small RNAs targeting defense responsive genes are induced during Phytophthora capsici infection in black pepper (Piper nigrum L.). Front. Plant Sci. 7:767
    [Google Scholar]
  6. 6.
    Axtell MJ. 2013. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 64:137–59
    [Google Scholar]
  7. 7.
    Axtell MJ, Jan C, Rajagopalan R, Bartel DP. 2006. A two-hit trigger for siRNA biogenesis in plants. Cell 127:3565–77
    [Google Scholar]
  8. 8.
    Axtell MJ, Meyers BC. 2018. Revisiting criteria for plant microRNA annotation in the era of big data. Plant Cell 30:2272–84
    [Google Scholar]
  9. 9.
    Baldrich P, Rutter BD, Zand Karimi H, Podicheti R, Meyers BC, Innes RW 2019. Plant extracellular vesicles contain diverse small RNA species and are enriched in 10- to 17-nucleotide “tiny” RNAs. Plant Cell 31:2315–24
    [Google Scholar]
  10. 10.
    Bao N, Lye K-W, Barton MK. 2004. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell 7:5653–62
    [Google Scholar]
  11. 11.
    Baranauskė S, Mickutė M, Plotnikova A, Finke A, Venclovas Č et al. 2015. Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Res. 43:52802–12
    [Google Scholar]
  12. 12.
    Baumberger N, Baulcombe DC. 2005. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. PNAS 102:3311928–33
    [Google Scholar]
  13. 13.
    Ben Chaabane S, Liu R, Chinnusamy V, Kwon Y, Park J-H et al. 2013. STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res. 41:31984–97
    [Google Scholar]
  14. 14.
    Betti F, Ladera-Carmona MJ, Weits DA, Ferri G, Iacopino S et al. 2021. Exogenous miRNAs induce post-transcriptional gene silencing in plants. Nat. Plants 7:101379–88
    [Google Scholar]
  15. 15.
    Bhat SS, Bielewicz D, Gulanicz T, Bodi Z, Yu X et al. 2020. mRNA adenosine methylase (MTA) deposits m6A on pri-miRNAs to modulate miRNA biogenesis in Arabidopsis thaliana. PNAS 117:3521785–95
    [Google Scholar]
  16. 16.
    Blevins T, Podicheti R, Mishra V, Marasco M, Wang J et al. 2015. Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. eLife 4:e09591
    [Google Scholar]
  17. 17.
    Bologna NG, Iselin R, Abriata LA, Sarazin A, Pumplin N et al. 2018. Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Mol. Cell 69:4709–19.e5
    [Google Scholar]
  18. 18.
    Bologna NG, Schapire AL, Zhai J, Chorostecki U, Boisbouvier J et al. 2013. Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Res. 23:101675–89
    [Google Scholar]
  19. 19.
    Borges F, Parent JS, van Ex F, Wolff P, Martinez G et al. 2018. Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis. Nat. Genet. 50:2186–92
    [Google Scholar]
  20. 20.
    Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu J-K. 2005. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:71279–91
    [Google Scholar]
  21. 21.
    Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY et al. 2008. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:58801185–90
    [Google Scholar]
  22. 22.
    Brosnan CA, Sarazin A, Lim P, Bologna NG, Hirsch-Hoffmann M, Voinnet O. 2019. Genome-scale, single-cell-type resolution of microRNA activities within a whole plant organ. EMBO J. 38:13e100754
    [Google Scholar]
  23. 23.
    Buhtz A, Pieritz J, Springer F, Kehr J. 2010. Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol. 10:64
    [Google Scholar]
  24. 24.
    Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J. 2008. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 53:5739–49
    [Google Scholar]
  25. 25.
    Burgess D, Chow HT, Grover JW, Freeling M, Mosher RA. 2022. Ovule siRNAs methylate protein-coding genes in trans. Plant Cell 34:103647–64
    [Google Scholar]
  26. 26.
    Cai Q, He B, Kogel K-H, Jin H 2018. Cross-kingdom RNA trafficking and environmental RNAi—nature's blueprint for modern crop protection strategies. Curr. Opin. Microbiol. 46:58–64
    [Google Scholar]
  27. 27.
    Cai Q, Qiao L, Wang M, He B, Lin F-M et al. 2018. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:63931126–29Shows that Arabidopsis secretes extracellular vesicles to deliver sRNAs to a fungal pathogen and silence virulence genes.
    [Google Scholar]
  28. 28.
    Cambiagno DA, Giudicatti AJ, Arce AL, Gagliardi D, Li L et al. 2021. HASTY modulates miRNA biogenesis by linking pri-miRNA transcription and processing. Mol. Plant 14:3426–39
    [Google Scholar]
  29. 29.
    Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA et al. 2012. Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24:93613–29
    [Google Scholar]
  30. 30.
    Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S et al. 2010. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:7296316–21
    [Google Scholar]
  31. 31.
    Chakraborty T, Trujillo JT, Kendall T, Mosher RA 2022. A null allele of the pol IV second subunit impacts stature and reproductive development in Oryza sativa. Plant J. 111:3748–55
    [Google Scholar]
  32. 32.
    Chávez Montes RA, de Fátima Rosas-Cárdenas F, De Paoli E, Accerbi M, Rymarquis LA et al. 2014. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat. Commun. 5:13722
    [Google Scholar]
  33. 33.
    Chen H-M, Chen L-T, Patel K, Li Y-H, Baulcombe DC, Wu S-H. 2010. 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. PNAS 107:3415269–74
    [Google Scholar]
  34. 34.
    Chen S, Liu W, Naganuma M, Tomari Y, Iwakawa H-O. 2022. Functional specialization of monocot DCL3 and DCL5 proteins through the evolution of the PAZ domain. Nucleic Acids Res. 50:84669–84
    [Google Scholar]
  35. 35.
    Chen T, Cui P, Xiong L. 2015. The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis. Nucleic Acids Res. 43:178283–98
    [Google Scholar]
  36. 36.
    Chitwood DH, Nogueira FT, Howell MD, Montgomery TA, Carrington JC, Timmermans MC. 2009. Pattern formation via small RNA mobility. Genes Dev. 23:5549–54
    [Google Scholar]
  37. 37.
    Creasey KM, Zhai J, Borges F, Van Ex F, Regulski M et al. 2014. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508:7496411–15
    [Google Scholar]
  38. 38.
    Cuerda-Gil D, Slotkin RK 2016. Non-canonical RNA-directed DNA methylation. Nat. Plants 2:1116163
    [Google Scholar]
  39. 39.
    Cui Y, Fang X, Qi Y. 2016. TRANSPORTIN1 promotes the association of MicroRNA with ARGONAUTE1 in Arabidopsis. Plant Cell 28:102576–85
    [Google Scholar]
  40. 40.
    D'Ario M, Griffiths-Jones S, Kim M. 2017. Small RNAs: big impact on plant development. Trends Plant Sci. 22:121056–68
    [Google Scholar]
  41. 41.
    Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP 2020. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci. Adv. 6:26eaaz0495
    [Google Scholar]
  42. 42.
    Deng P, Muhammad S, Cao M, Wu L. 2018. Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants. Plant Biotechnol. J. 16:5965–75
    [Google Scholar]
  43. 43.
    Devers EA, Brosnan CA, Sarazin A, Albertini D, Amsler AC et al. 2020. Movement and differential consumption of short interfering RNA duplexes underlie mobile RNA interference. Nat. Plants 6:7789–99
    [Google Scholar]
  44. 44.
    Dong Z, Han M-H, Fedoroff N. 2008. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. PNAS 105:299970–75
    [Google Scholar]
  45. 45.
    Dubin MJ, Mittelsten Scheid O, Becker C 2018. Transposons: a blessing curse. Curr. Opin. Plant Biol. 42:23–29
    [Google Scholar]
  46. 46.
    Eamens AL, Smith NA, Curtin SJ, Wang M-B, Waterhouse PM. 2009. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15:122219–35
    [Google Scholar]
  47. 47.
    Endo Y, Iwakawa H-O, Tomari Y. 2013. Arabidopsis ARGONAUTE7 selects miR390 through multiple checkpoints during RISC assembly. EMBO Rep. 14:7652–58
    [Google Scholar]
  48. 48.
    Erdmann RM, Satyaki PRV, Klosinska M, Gehring M. 2017. A small RNA pathway mediates allelic dosage in endosperm. Cell Rep. 21:123364–72
    [Google Scholar]
  49. 49.
    Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK et al. 2006. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol. 16:9939–44
    [Google Scholar]
  50. 50.
    Fang X, Cui Y, Li Y, Qi Y. 2015. Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis. Nat. Plants 1:15075
    [Google Scholar]
  51. 51.
    Fang X, Shi Y, Lu X, Chen Z, Qi Y 2015. CMA33/XCT regulates small RNA production through modulating the transcription of Dicer-like genes in Arabidopsis. Mol. Plant 8:81227–36
    [Google Scholar]
  52. 52.
    Fang Y, Spector DL. 2007. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17:9818–23
    [Google Scholar]
  53. 53.
    Fei Q, Xia R, Meyers BC. 2013. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:72400–15
    [Google Scholar]
  54. 54.
    Fei Q, Yu Y, Liu L, Zhang Y, Baldrich P et al. 2018. Biogenesis of a 22-nt microRNA in Phaseoleae species by precursor-programmed uridylation. PNAS 115:318037–42
    [Google Scholar]
  55. 55.
    Fei Q, Zhang Y, Xia R, Meyers BC. 2016. Small RNAs add zing to the zig-zag-zig model of plant defenses. Mol. Plant Microbe Interact. 29:3165–69
    [Google Scholar]
  56. 56.
    Feschotte C, Jiang N, Wessler SR. 2002. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3:5329–41
    [Google Scholar]
  57. 57.
    Frank F, Hauver J, Sonenberg N, Nagar B. 2012. Arabidopsis Argonaute MID domains use their nucleotide specificity loop to sort small RNAs. EMBO J. 31:173588–95
    [Google Scholar]
  58. 58.
    Frye M, Harada BT, Behm M, He C. 2018. RNA modifications modulate gene expression during development. Science 361:64091346–49
    [Google Scholar]
  59. 59.
    Fukudome A, Singh J, Mishra V, Reddem E, Martinez-Marquez F et al. 2021. Structure and RNA template requirements of Arabidopsis RNA-DEPENDENT RNA POLYMERASE 2. PNAS 118:51e2115899118
    [Google Scholar]
  60. 60.
    Gasciolli V, Mallory AC, Bartel DP, Vaucheret H. 2005. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr. Biol. 15:161494–500
    [Google Scholar]
  61. 61.
    Gonzalo L, Tossolini I, Gulanicz T, Cambiagno DA, Kasprowicz-Maluski A et al. 2022. R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRNAs in plants. Nat. Plants 8:4402–18Demonstrates that R loops form at MIR loci to promote cotranscriptional processing of pri-miRNAs by D-bodies.
    [Google Scholar]
  62. 62.
    Gouil Q, Baulcombe DC. 2016. DNA methylation signatures of the plant chromomethyltransferases. PLOS Genet. 12:12e1006526
    [Google Scholar]
  63. 63.
    Grover JW, Burgess D, Kendall T, Baten A, Pokhrel S et al. 2020. Abundant expression of maternal siRNAs is a conserved feature of seed development. PNAS 117:2615305–15
    [Google Scholar]
  64. 64.
    Grover JW, Kendall T, Baten A, Burgess D, Freeling M et al. 2018. Maternal components of RNA-directed DNA methylation are required for seed development in Brassica rapa. Plant J. 94:4575–82
    [Google Scholar]
  65. 65.
    Gu H, Lian B, Yuan Y, Kong C, Li Y et al. 2022. A 5′ tRNA-Ala-derived small RNA regulates anti-fungal defense in plants. Sci. China Life Sci. 65:11–15
    [Google Scholar]
  66. 66.
    Guan X, Pang M, Nah G, Shi X, Ye W et al. 2014. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat. Commun. 5:3050
    [Google Scholar]
  67. 67.
    Haag JR, Ream TS, Marasco M, Nicora CD, Norbeck AD et al. 2012. In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol. Cell 48:5811–18
    [Google Scholar]
  68. 68.
    Han M-H, Goud S, Song L, Fedoroff N. 2004. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. PNAS 101:41093–98
    [Google Scholar]
  69. 69.
    Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA et al. 2010. The Arabidopsis RNA-directed DNA methylation Argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22:2321–34
    [Google Scholar]
  70. 70.
    Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC et al. 2006. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat. Genet. 38:6721–25
    [Google Scholar]
  71. 71.
    Henz SR, Cumbie JS, Kasschau KD, Lohmann JU, Carrington JC et al. 2007. Distinct expression patterns of natural antisense transcripts in Arabidopsis. Plant Physiol. 144:31247–55
    [Google Scholar]
  72. 72.
    Herr AJ, Jensen MB, Dalmay T, Baulcombe DC. 2005. RNA polymerase IV directs silencing of endogenous DNA. Science 308:5718118–20
    [Google Scholar]
  73. 73.
    Hou Y, Zhai Y, Feng L, Karimi HZ, Rutter BD et al. 2019. A Phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe 25:1153–65.e5
    [Google Scholar]
  74. 74.
    Huang K, Wu X-X, Fang C-L, Xu Z-G, Zhang H-W et al. 2021. Pol IV and RDR2: A two-RNA-polymerase machine that produces double-stranded RNA. Science 374:65751579–86Reports the structure of Pol IV and RDR2, which form a two-polymerase complex that produces dsRNA precursors of hc-siRNAs.
    [Google Scholar]
  75. 75.
    Iki T, Yoshikawa M, Meshi T, Ishikawa M. 2012. Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J. 31:2267–78
    [Google Scholar]
  76. 76.
    Iki T, Yoshikawa M, Nishikiori M, Jaudal MC, Matsumoto-Yokoyama E et al. 2010. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol. Cell 39:2282–91
    [Google Scholar]
  77. 77.
    Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J. 2011. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:7341115–19
    [Google Scholar]
  78. 78.
    Iwakawa HO, Tomari Y 2013. Molecular insights into microRNA-mediated translational repression in plants. Mol. Cell 52:4591–601
    [Google Scholar]
  79. 79.
    Jain RG, Fletcher SJ, Manzie N, Robinson KE, Li P et al. 2022. Foliar application of clay-delivered RNA interference for whitefly control. Nat. Plants 8:5535–48
    [Google Scholar]
  80. 80.
    Ji L, Liu X, Yan J, Wang W, Yumul RE et al. 2011. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLOS Genet. 7:3e1001358
    [Google Scholar]
  81. 81.
    Jia J, Ji R, Li Z, Yu Y, Nakano M et al. 2020. Soybean DICER-LIKE2 regulates seed coat color via production of primary 22-nucleotide small interfering RNAs from long inverted repeats. Plant Cell 32:123662–73
    [Google Scholar]
  82. 82.
    Jiang P, Lian B, Liu C, Fu Z, Shen Y et al. 2020. 21-nt phasiRNAs direct target mRNA cleavage in rice male germ cells. Nat. Commun. 11:15191
    [Google Scholar]
  83. 83.
    Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan GL et al. 2009. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res. 19:81429–40
    [Google Scholar]
  84. 84.
    Johnson NR, dePamphilis CW, Axtell MJ 2019. Compensatory sequence variation between trans-species small RNAs and their target sites. eLife 8:e49750
    [Google Scholar]
  85. 85.
    Kakrana A, Mathioni SM, Huang K, Hammond R, Vandivier L et al. 2018. Plant 24-nt reproductive phasiRNAs from intramolecular duplex mRNAs in diverse monocots. Genome Res. 28:91333–44
    [Google Scholar]
  86. 86.
    Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS et al. 2007. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLOS Biol. 5:3e57
    [Google Scholar]
  87. 87.
    Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr. et al. 2006. A pathogen-inducible endogenous siRNA in plant immunity. PNAS 103:4718002–7
    [Google Scholar]
  88. 88.
    Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe WJJ et al. 2007. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J. 49:138–45
    [Google Scholar]
  89. 89.
    Kirchner S, Ignatova Z. 2015. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat. Rev. Genet. 16:298–112
    [Google Scholar]
  90. 90.
    Knop K, Stepien A, Barciszewska-Pacak M, Taube M, Bielewicz D et al. 2016. Active 5′ splice sites regulate the biogenesis efficiency of Arabidopsis microRNAs derived from intron-containing genes. Nucleic Acids Res. 45:52757–75
    [Google Scholar]
  91. 91.
    Koch A, Wassenegger M. 2021. Host-induced gene silencing—mechanisms and applications. New Phytol. 231:154–59
    [Google Scholar]
  92. 92.
    Komiya R, Ohyanagi H, Niihama M, Watanabe T, Nakano M et al. 2014. Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Plant J. 78:3385–97
    [Google Scholar]
  93. 93.
    Köster T, Meyer K, Weinholdt C, Smith LM, Lummer M et al. 2014. Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis. Nucleic Acids Res. 42:159925–36
    [Google Scholar]
  94. 94.
    Kurihara Y, Takashi Y, Watanabe Y. 2006. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:2206–12
    [Google Scholar]
  95. 95.
    Kurihara Y, Watanabe Y. 2004. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. PNAS 101:3412753–58
    [Google Scholar]
  96. 96.
    Lalande S, Merret R, Salinas-Giegé T, Drouard L. 2020. Arabidopsis tRNA-derived fragments as potential modulators of translation. RNA Biol. 17:81137–48
    [Google Scholar]
  97. 97.
    Law JA, Du J, Hale CJ, Feng S, Krajewski K et al. 2013. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498:7454385–89
    [Google Scholar]
  98. 98.
    Law JA, Vashisht AA, Wohlschlegel JA, Jacobsen SE. 2011. SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV. PLOS Genet. 7:7e1002195
    [Google Scholar]
  99. 99.
    Lee Y-S, Maple R, Dürr J, Dawson A, Tamim S et al. 2021. A transposon surveillance mechanism that safeguards plant male fertility during stress. Nat. Plants 7:134–41
    [Google Scholar]
  100. 100.
    Li C, Gent JI, Xu H, Fu H, Russell SD, Sundaresan V. 2022. Resetting of the 24-nt siRNA landscape in rice zygotes. Genome Res. 32:2309–23
    [Google Scholar]
  101. 101.
    Li J, Yang Z, Yu B, Liu J, Chen X 2005. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol. 15:161501–7
    [Google Scholar]
  102. 102.
    Li Q, Gent JI, Zynda G, Song J, Makarevitch I et al. 2015. RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. PNAS 112:4714728–33
    [Google Scholar]
  103. 103.
    Li S, Liu J, Liu Z, Li X, Wu F, He Y. 2014. HEAT-INDUCED TAS1 TARGET1 mediates thermotolerance via HEAT STRESS TRANSCRIPTION FACTOR A1a–directed pathways in Arabidopsis. Plant Cell 26:41764–80
    [Google Scholar]
  104. 104.
    Li S, Liu L, Zhuang X, Yu Y, Liu X et al. 2013. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153:3562–74
    [Google Scholar]
  105. 105.
    Li S, Wang X, Xu W, Liu T, Cai C et al. 2021. Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts. Nat. Plants 7:150–59
    [Google Scholar]
  106. 106.
    Li S, Xu R, Li A, Liu K, Gu L et al. 2018. SMA1, a homolog of the splicing factor Prp28, has a multifaceted role in miRNA biogenesis in Arabidopsis. Nucleic Acids Res. 46:179148–59
    [Google Scholar]
  107. 107.
    Li Y, Huang Y, Pan L, Zhao Y, Huang W, Jin W. 2021. Male sterile 28 encodes an ARGONAUTE family protein essential for male fertility in maize. Chromosome Res. 29:2189–201
    [Google Scholar]
  108. 108.
    Li Z, Wang S, Cheng J, Su C, Zhong S et al. 2016. Intron lariat RNA inhibits microRNA biogenesis by sequestering the dicing complex in Arabidopsis. PLOS Genet. 12:11e1006422
    [Google Scholar]
  109. 109.
    Lin S-I, Chiang S-F, Lin W-Y, Chen J-W, Tseng C-Y et al. 2008. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol. 147:2732–46
    [Google Scholar]
  110. 110.
    Liu Y, Teng C, Xia R, Meyers BC. 2020. PhasiRNAs in plants: their biogenesis, genic sources, and roles in stress responses, development, and reproduction. Plant Cell 32:103059–80
    [Google Scholar]
  111. 111.
    Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J 2006. SERRATE: a new player on the plant microRNA scene. EMBO Rep. 7:101052–58
    [Google Scholar]
  112. 112.
    Loffer A, Singh J, Fukudome A, Mishra V, Wang F, Pikaard CS 2022. A DCL3 dicing code within Pol IV-RDR2 transcripts diversifies the siRNA pool guiding RNA-directed DNA methylation. eLife 11:e73260Discovers patterns of P4R2 RNA dicing by DCL3 that diversify hc-siRNAs.
    [Google Scholar]
  113. 113.
    Long J, Walker J, She W, Aldridge B, Gao H et al. 2021. Nurse cell–derived small RNAs define paternal epigenetic inheritance in Arabidopsis. Science 373:6550eabh0556Demonstrates that tapetum-derived 24-nt siRNAs move to meiocytes to mediate DNA methylation.
    [Google Scholar]
  114. 114.
    Lu C, Jeong D-H, Kulkarni K, Pillay M, Nobuta K et al. 2008. Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). PNAS 105:124951–56
    [Google Scholar]
  115. 115.
    Lunardon A, Johnson NR, Hagerott E, Phifer T, Polydore S et al. 2020. Integrated annotations and analyses of small RNA–producing loci from 47 diverse plants. Genome Res. 30:3497–513
    [Google Scholar]
  116. 116.
    Luo Q-J, Mittal A, Jia F, Rock CD. 2012. An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Mol. Biol. 80:1117–29
    [Google Scholar]
  117. 117.
    Ma X, Liu C, Cao X. 2021. Plant transfer RNA-derived fragments: biogenesis and functions. J. Integr. Plant Biol. 63:81399–1409
    [Google Scholar]
  118. 118.
    Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M et al. 2012. Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151:4859–70
    [Google Scholar]
  119. 119.
    Manavella PA, Koenig D, Weigel D. 2012. Plant secondary siRNA production determined by microRNA-duplex structure. PNAS 109:72461–66
    [Google Scholar]
  120. 120.
    Marí-Ordóñez A, Marchais A, Etcheverry M, Martin A, Colot V, Voinnet O. 2013. Reconstructing de novo silencing of an active plant retrotransposon. Nat. Genet. 45:91029–39
    [Google Scholar]
  121. 121.
    Martinez G, Choudury SG, Slotkin RK. 2017. tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Res. 45:95142–52
    [Google Scholar]
  122. 122.
    Martínez G, Panda K, Köhler C, Slotkin RK. 2016. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat. Plants 2:16030
    [Google Scholar]
  123. 123.
    Martinez G, Wolff P, Wang Z, Moreno-Romero J, Santos-González J et al. 2018. Paternal easiRNAs regulate parental genome dosage in Arabidopsis. Nat. Genet. 50:2193–98
    [Google Scholar]
  124. 124.
    Matzke MA, Mosher RA. 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15:6394–408
    [Google Scholar]
  125. 125.
    McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:6838709–13
    [Google Scholar]
  126. 126.
    McCue AD, Nuthikattu S, Reeder SH, Slotkin RK. 2012. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLOS Genet. 8:2e1002474
    [Google Scholar]
  127. 127.
    McCue AD, Panda K, Nuthikattu S, Choudury SG, Thomas EN, Slotkin RK. 2015. ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation. EMBO J. 34:120–35
    [Google Scholar]
  128. 128.
    Megel C, Hummel G, Lalande S, Ubrig E, Cognat V et al. 2019. Plant RNases T2, but not Dicer-like proteins, are major players of tRNA-derived fragments biogenesis. Nucleic Acids Res. 47:2941–52
    [Google Scholar]
  129. 129.
    Melnyk CW, Molnar A, Baulcombe DC. 2011. Intercellular and systemic movement of RNA silencing signals. EMBO J. 30:173553–63
    [Google Scholar]
  130. 130.
    Mi S, Cai T, Hu Y, Chen Y, Hodges E et al. 2008. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:1116–27
    [Google Scholar]
  131. 131.
    Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K et al. 2009. Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:7262427–30
    [Google Scholar]
  132. 132.
    Mitter N, Worrall EA, Robinson KE, Li P, Jain RG et al. 2017. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3:16207
    [Google Scholar]
  133. 133.
    Moldovan D, Spriggs A, Dennis ES, Wilson IW. 2010. The hunt for hypoxia responsive natural antisense short interfering RNAs. Plant Signal. Behav. 5:247–51
    [Google Scholar]
  134. 134.
    Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC. 2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:5980872–75
    [Google Scholar]
  135. 135.
    Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE et al. 2008. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:1128–41
    [Google Scholar]
  136. 136.
    Mosher RA. 2021. Small RNAs on the move in male germ cells. Science 373:26–27
    [Google Scholar]
  137. 137.
    Mosher RA, Schwach F, Studholme D, Baulcombe DC. 2008. PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. PNAS 105:83145–50
    [Google Scholar]
  138. 138.
    Nan G-L, Teng C, Fernandes J, O'Connor L, Meyers BC, Walbot V 2022. A cascade of bHLH-regulated pathways programs maize anther development. Plant Cell 34:41207–25
    [Google Scholar]
  139. 139.
    Nogueira FT, Madi S, Chitwood DH, Juarez MT, Timmermans MC. 2007. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev. 21:7750–55
    [Google Scholar]
  140. 140.
    Nowara D, Gay A, Lacomme C, Shaw J, Ridout C et al. 2010. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:93130–41
    [Google Scholar]
  141. 141.
    Nuthikattu S, McCue AD, Panda K, Fultz D, DeFraia C et al. 2013. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. Plant Physiol. 162:1116–31
    [Google Scholar]
  142. 142.
    Onodera Y, Haag JR, Ream T, Nunes PC, Pontes O, Pikaard CS. 2005. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120:5613–22
    [Google Scholar]
  143. 143.
    Pant BD, Buhtz A, Kehr J, Scheible W-R. 2008. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 53:5731–38
    [Google Scholar]
  144. 144.
    Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS. 2005. Nuclear processing and export of microRNAs in Arabidopsis. PNAS 102:103691–96
    [Google Scholar]
  145. 145.
    Patel P, Mathioni SM, Hammond R, Harkess AE, Kakrana A et al. 2021. Reproductive phasiRNA loci and DICER-LIKE5, but not microRNA loci, diversified in monocotyledonous plants. Plant Physiol. 185:41764–82
    [Google Scholar]
  146. 146.
    Patel P, Mathioni SM, Kakrana A, Shatkay H, Meyers BC. 2018. Reproductive phasiRNAs in grasses are compositionally distinct from other classes of small RNAs. New Phytol. 220:3851–64
    [Google Scholar]
  147. 147.
    Phizicky EM, Hopper AK. 2015. tRNA processing, modification, and subcellular dynamics: past, present, and future. RNA 21:4483–85
    [Google Scholar]
  148. 148.
    Pokhrel S, Meyers BC. 2022. Heat-responsive microRNAs and phased small interfering RNAs in reproductive development of flax. Plant Direct 6:2e385
    [Google Scholar]
  149. 149.
    Qi Y, He X, Wang XJ, Kohany O, Jurka J, Hannon GJ. 2006. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443:71141008–12
    [Google Scholar]
  150. 150.
    Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. 2006. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 20:243407–25
    [Google Scholar]
  151. 151.
    Ramachandran V, Chen X. 2008. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321:58951490–92
    [Google Scholar]
  152. 152.
    Reis RS, Hart-Smith G, Eamens AL, Wilkins MR, Waterhouse PM. 2015. Gene regulation by translational inhibition is determined by Dicer partnering proteins. Nat. Plants 1:14027
    [Google Scholar]
  153. 153.
    Reis RS, Poirier Y. 2021. Making sense of the natural antisense transcript puzzle. Trends Plant Sci. 26:111104–15
    [Google Scholar]
  154. 154.
    Ren B, Wang X, Duan J, Ma J. 2019. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 365:6456919–22Shows that Rhizobium delivers tRFs to soybean to regulate nodulation.
    [Google Scholar]
  155. 155.
    Ren G, Chen X, Yu B 2012. Uridylation of miRNAs by HEN1 SUPPRESSOR1 in Arabidopsis. Curr. Biol. 22:8695–700
    [Google Scholar]
  156. 156.
    Ren G, Xie M, Zhang S, Vinovskis C, Chen X, Yu B 2014. Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage. PNAS 111:176365–70
    [Google Scholar]
  157. 157.
    Rodrigues JA, Ruan R, Nishimura T, Sharma MK, Sharma R et al. 2013. Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm. PNAS 110:197934–39
    [Google Scholar]
  158. 158.
    Ron M, Alandete Saez M, Eshed Williams L, Fletcher JC, McCormick S 2010. Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev. 24:101010–21
    [Google Scholar]
  159. 159.
    Rosas-Diaz T, Zhang D, Fan P, Wang L, Ding X et al. 2018. A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. PNAS 115:61388–93
    [Google Scholar]
  160. 160.
    Satyaki PRV, Gehring M. 2019. Paternally acting canonical RNA-directed DNA methylation pathway genes sensitize Arabidopsis endosperm to paternal genome dosage. Plant Cell 31:71563–78
    [Google Scholar]
  161. 161.
    Shahid S, Kim G, Johnson NR, Wafula E, Wang F et al. 2018. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553:768682–85
    [Google Scholar]
  162. 162.
    Shi C, Zhang J, Wu B, Jouni R, Yu C et al. 2022. Temperature-sensitive male sterility in rice determined by the roles of AGO1d in reproductive phasiRNA biogenesis and function. New Phytol. 236:1529–1544
    [Google Scholar]
  163. 163.
    Shine MB, Zhang K, Liu H, Lim G-H, Xia F et al. 2022. Phased small RNA-mediated systemic signaling in plants. Sci. Adv. 8:eabm8791
    [Google Scholar]
  164. 164.
    Si F, Luo H, Yang C, Gong J, Yan B et al. 2023. Mobile ARGONAUTE 1d binds 22-nt miRNAs to generate phasiRNAs important for low-temperature male fertility in rice. Sci. China Life Sci. 66:197–208 https://doi.org/10.1007/s11427-022-2204-y
    [Google Scholar]
  165. 165.
    Singh J, Mishra V, Wang F, Huang H-Y, Pikaard CS. 2019. Reaction mechanisms of Pol IV, RDR2, and DCL3 drive RNA channeling in the siRNA-directed DNA methylation pathway. Mol. Cell 75:3576–89.e5
    [Google Scholar]
  166. 166.
    Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD et al. 2009. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:3461–72
    [Google Scholar]
  167. 167.
    Smith LM, Pontes O, Searle I, Yelina N, Yousafzai FK et al. 2007. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19:51507–21
    [Google Scholar]
  168. 168.
    Song J, Wang X, Song B, Gao L, Mo X et al. 2019. Prevalent cytidylation and uridylation of precursor miRNAs in Arabidopsis. Nat. Plants 5:121260–72
    [Google Scholar]
  169. 169.
    Song X, Li Y, Cao X, Qi Y. 2019. MicroRNAs and their regulatory roles in plant–environment interactions. Annu. Rev. Plant Biol. 70:489–525
    [Google Scholar]
  170. 170.
    Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T et al. 2000. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell 6:4791–802
    [Google Scholar]
  171. 171.
    Souret FF, Kastenmayer JP, Green PJ. 2004. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol. Cell 15:2173–83
    [Google Scholar]
  172. 172.
    Su Z, Wang N, Hou Z, Li B, Li D et al. 2020. Regulation of female germline specification via small RNA mobility in Arabidopsis. Plant Cell 32:92842–54
    [Google Scholar]
  173. 173.
    Su Z, Wilson B, Kumar P, Dutta A. 2020. Noncanonical roles of tRNAs: tRNA fragments and beyond. Annu. Rev. Genet. 54:47–69
    [Google Scholar]
  174. 174.
    Su Z, Zhao L, Zhao Y, Li S, Won S et al. 2017. The THO complex non-cell-autonomously represses female germline specification through the TAS3-ARF3 module. Curr. Biol. 27:111597–609.e2
    [Google Scholar]
  175. 175.
    Sun Z, Hu Y, Zhou Y, Jiang N, Hu S et al. 2022. tRNA-derived fragments from wheat are potentially involved in susceptibility to Fusarium head blight. BMC Plant Biol. 22:13
    [Google Scholar]
  176. 176.
    Sun Z, Li M, Zhou Y, Guo T, Liu Y et al. 2018. Coordinated regulation of Arabidopsis microRNA biogenesis and red light signaling through Dicer-like 1 and phytochrome-interacting factor 4. PLOS Genet. 14:3e1007247
    [Google Scholar]
  177. 177.
    Swiezewski S, Crevillen P, Liu F, Ecker JR, Jerzmanowski A, Dean C 2007. Small RNA-mediated chromatin silencing directed to the 3′ region of the Arabidopsis gene encoding the developmental regulator, FLC. PNAS 104:3633–38
    [Google Scholar]
  178. 178.
    Szarzynska B, Sobkowiak L, Pant BD, Balazadeh S, Scheible W-R et al. 2009. Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs. Nucleic Acids Res. 37:93083–93
    [Google Scholar]
  179. 179.
    Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y. 2008. The mechanism selecting the guide strand from small RNA duplexes is different among Argonaute proteins. Plant Cell Physiol. 49:4493–500
    [Google Scholar]
  180. 180.
    Tamim S, Cai Z, Mathioni SM, Zhai J, Teng C et al. 2018. Cis-directed cleavage and nonstoichiometric abundances of 21-nucleotide reproductive phased small interfering RNAs in grasses. New Phytol. 220:865–877
    [Google Scholar]
  181. 181.
    Tang J, Chu C. 2017. MicroRNAs in crop improvement: fine-tuners for complex traits. Nat. Plants 3:17077
    [Google Scholar]
  182. 182.
    Teng C, Zhang H, Hammond R, Huang K, Meyers BC, Walbot V. 2020. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat. Commun. 11:12912
    [Google Scholar]
  183. 183.
    Tian R, Wang F, Zheng Q, Niza VMAGE, Downie AB, Perry SE. 2020. Direct and indirect targets of the arabidopsis seed transcription factor ABSCISIC ACID INSENSITIVE3. Plant J. 103:51679–94
    [Google Scholar]
  184. 184.
    Treiber T, Treiber N, Meister G. 2019. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 20:15–20
    [Google Scholar]
  185. 185.
    Tsikou D, Yan Z, Holt DB, Abel NB, Reid DE et al. 2018. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362:6411233–36Demonstrates that the Lotus japonicus miR2111 travels from shoot to root to silence an endogenous symbiosis repressor gene and facilitate rhizobial infection.
    [Google Scholar]
  186. 186.
    Tu B, Liu L, Xu C, Zhai J, Li S et al. 2015. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLOS Genet. 11:4e1005119
    [Google Scholar]
  187. 187.
    Uslu VV, Dalakouras A, Steffens VA, Krczal G, Wassenegger M. 2022. High-pressure sprayed siRNAs influence the efficiency but not the profile of transitive silencing. Plant J. 109:51199–1212
    [Google Scholar]
  188. 188.
    Vazquez F, Gasciolli V, Crete P, Vaucheret H. 2004. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr. Biol. 14:4346–51
    [Google Scholar]
  189. 189.
    Vivek AT, Kumar S. 2021. Computational methods for annotation of plant regulatory non-coding RNAs using RNA-seq. Brief. Bioinform. 22:4bbaa322
    [Google Scholar]
  190. 190.
    Voinnet O, Baulcombe DC. 1997. Systemic signalling in gene silencing. Nature 389:6651553
    [Google Scholar]
  191. 191.
    Vu TM, Nakamura M, Calarco JP, Susaki D, Lim PQ et al. 2013. RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis. Development 140:142953–60
    [Google Scholar]
  192. 192.
    Wan Q, Guan X, Yang N, Wu H, Pan M et al. 2016. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. New Phytol. 210:41298–310
    [Google Scholar]
  193. 193.
    Wang FF, Perry SE. 2013. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiol. 161:31251–64
    [Google Scholar]
  194. 194.
    Wang L, Song X, Gu L, Li X, Cao S et al. 2013. NOT2 proteins promote polymerase II-dependent transcription and interact with multiple microRNA biogenesis factors in Arabidopsis. Plant Cell 25:2715–27
    [Google Scholar]
  195. 195.
    Wang M, Weiberg A, Lin F-M, Thomma BPHJ, Huang H-D, Jin H 2016. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2:16151
    [Google Scholar]
  196. 196.
    Wang Q, Xue Y, Zhang L, Zhong Z, Feng S et al. 2021. Mechanism of siRNA production by a plant Dicer-RNA complex in dicing-competent conformation. Science 374:65711152–57Uncovers a molecular mechanism of P4R2 RNA dicing by DCL3.
    [Google Scholar]
  197. 197.
    Wang S, Quan L, Li S, You C, Zhang Y et al. 2019. The PROTEIN PHOSPHATASE4 complex promotes transcription and processing of primary microRNAs in Arabidopsis. Plant Cell 31:2486–501
    [Google Scholar]
  198. 198.
    Wang W, Ye R, Xin Y, Fang X, Li C et al. 2011. An importin β protein negatively regulates microRNA activity in Arabidopsis. Plant Cell 23:103565–76
    [Google Scholar]
  199. 199.
    Wang X, Zhang S, Dou Y, Zhang C, Chen X et al. 2015. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3′ tailing of small RNAs in Arabidopsis. PLOS Genet. 11:4e1005091
    [Google Scholar]
  200. 200.
    Wang Z, Butel N, Santos-González J, Borges F, Yi J et al. 2020. Polymerase IV plays a crucial role in pollen development in Capsella. Plant Cell 32:4950–66
    [Google Scholar]
  201. 201.
    Wang Z, Ma Z, Castillo-González C, Sun D, Li Y et al. 2018. SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production. Nature 557:7706516–21
    [Google Scholar]
  202. 202.
    Wei L, Gu L, Song X, Cui X, Lu Z et al. 2014. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. PNAS 111:103877–82
    [Google Scholar]
  203. 203.
    Wei W, Ba Z, Gao M, Wu Y, Ma Y et al. 2012. A role for small RNAs in DNA double-strand break repair. Cell 149:1101–12
    [Google Scholar]
  204. 204.
    Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:4750–59
    [Google Scholar]
  205. 205.
    Wu H, Li B, Iwakawa H-O, Pan Y, Tang X et al. 2020. Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature 581:780689–93Elucidates the roles of endogenous, DCL2-generated 22-nt siRNAs in Arabidopsis.
    [Google Scholar]
  206. 206.
    Wu L, Zhou H, Zhang Q, Zhang J, Ni F et al. 2010. DNA methylation mediated by a microRNA pathway. Mol. Cell 38:3465–75
    [Google Scholar]
  207. 207.
    Xia R, Chen C, Pokhrel S, Ma W, Huang K et al. 2019. 24-nt reproductive phasiRNAs are broadly present in angiosperms. Nat. Commun. 10:1627
    [Google Scholar]
  208. 208.
    Xia R, Meyers BC, Liu Z, Beers EP, Ye S. 2013. MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA biogenesis in eudicots. Plant Cell 25:51555–72
    [Google Scholar]
  209. 209.
    Xia R, Xu J, Meyers BC. 2017. The emergence, evolution, and diversification of the miR390-TAS3-ARF pathway in land plants. Plant Cell 29:61232–47
    [Google Scholar]
  210. 210.
    Xiao Y, MacRae IJ. 2022. The molecular mechanism of microRNA duplex selectivity of Arabidopsis ARGONAUTE10. Nucleic Acids Res. 50:1710041–52
    [Google Scholar]
  211. 211.
    Xie D, Chen M, Niu J, Wang L, Li Y et al. 2021. Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nat. Cell Biol. 23:132–39Demonstrates that phase separation of SE mediates D-body assembly and promotes pri-miRNA processing.
    [Google Scholar]
  212. 212.
    Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC 2005. Expression of Arabidopsis MIRNA genes. Plant Physiol. 138:42145–54
    [Google Scholar]
  213. 213.
    Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD et al. 2004. Genetic and functional diversification of small RNA pathways in plants. PLOS Biol. 2:5E104
    [Google Scholar]
  214. 214.
    Xie Z, Kasschau KD, Carrington JC. 2003. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol. 13:9784–89
    [Google Scholar]
  215. 215.
    Xu L, Yuan K, Yuan M, Meng X, Chen M et al. 2020. Regulation of rice tillering by RNA-directed DNA methylation at miniature inverted-repeat transposable elements. Mol. Plant 13:6851–63
    [Google Scholar]
  216. 216.
    Xu M, Hu T, Smith MR, Poethig RS. 2016. Epigenetic regulation of vegetative phase change in Arabidopsis. Plant Cell 28:128–41
    [Google Scholar]
  217. 217.
    Yadava P, Tamim S, Zhang H, Teng C, Zhou X et al. 2021. Transgenerational conditioned male fertility of HD-ZIP IV transcription factor mutant ocl4: impact on 21-nt phasiRNA accumulation in pre-meiotic maize anthers. Plant Reprod. 34:2117–29
    [Google Scholar]
  218. 218.
    Yan K, Liu P, Wu C-A, Yang G-D, Xu R et al. 2012. Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol. Cell 48:4521–31
    [Google Scholar]
  219. 219.
    Yang GD, Yan K, Wu BJ, Wang YH, Gao YX, Zheng CC. 2012. Genomewide analysis of intronic microRNAs in rice and Arabidopsis. J. Genet. 91:3313–24
    [Google Scholar]
  220. 220.
    Yang L, Liu Z, Lu F, Dong A, Huang H 2006. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J. 47:6841–50
    [Google Scholar]
  221. 221.
    Yang L, Wu G, Poethig RS. 2012. Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. PNAS 109:1315–20
    [Google Scholar]
  222. 222.
    Yang Z, Ebright YW, Yu B, Chen X 2006. HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res. 34:2667–75
    [Google Scholar]
  223. 223.
    Ye R, Wang W, Iki T, Liu C, Wu Y et al. 2012. Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes. Mol. Cell 46:6859–70
    [Google Scholar]
  224. 224.
    You C, He W, Hang R, Zhang C, Cao X et al. 2019. FIERY1 promotes microRNA accumulation by suppressing rRNA-derived small interfering RNAs in Arabidopsis. Nat. Commun. 10:14424
    [Google Scholar]
  225. 225.
    Yu B, Yang Z, Li J, Minakhina S, Yang M et al. 2005. Methylation as a crucial step in plant microRNA biogenesis. Science 307:5711932–35
    [Google Scholar]
  226. 226.
    Yu Y, Ji L, Le BH, Zhai J, Chen J et al. 2017. ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis. PLOS Biol. 15:2e2001272
    [Google Scholar]
  227. 227.
    Zand Karimi H, Baldrich P, Rutter BD, Borniego L, Zajt KK et al. 2022. Arabidopsis apoplastic fluid contains sRNA- and circular RNA–protein complexes that are located outside extracellular vesicles. Plant Cell 34:51863–81
    [Google Scholar]
  228. 228.
    Zhai J, Bischof S, Wang H, Feng S, Lee T-F et al. 2015. A one precursor one siRNA model for Pol IV-dependent siRNA biogenesis. Cell 163:2445–55
    [Google Scholar]
  229. 229.
    Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD et al. 2011. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 25:232540–53
    [Google Scholar]
  230. 230.
    Zhai J, Zhang H, Arikit S, Huang K, Nan G-L et al. 2015. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. PNAS 112:103146–51
    [Google Scholar]
  231. 231.
    Zhai J, Zhao Y, Simon SA, Huang S, Petsch K et al. 2013. Plant microRNAs display differential 3′ truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species. Plant Cell 25:72417–28
    [Google Scholar]
  232. 232.
    Zhang B, You C, Zhang Y, Zeng L, Hu J et al. 2020. Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis. Nat. Plants 6:8957–69
    [Google Scholar]
  233. 233.
    Zhang H, Demirer GS, Zhang H, Ye T, Goh NS et al. 2019. DNA nanostructures coordinate gene silencing in mature plants. PNAS 116:157543–48
    [Google Scholar]
  234. 234.
    Zhang H, Xia R, Meyers BC, Walbot V. 2015. Evolution, functions, and mysteries of plant ARGONAUTE proteins. Curr. Opin. Plant Biol. 27:84–90
    [Google Scholar]
  235. 235.
    Zhang M, Ma X, Wang C, Li Q, Meyers BC et al. 2021. CHH DNA methylation increases at 24-PHAS loci depend on 24-nt phased small interfering RNAs in maize meiotic anthers. New Phytol. 229:52984–97
    [Google Scholar]
  236. 236.
    Zhang S, Sun L, Kragler F. 2009. The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol. 150:1378–87
    [Google Scholar]
  237. 237.
    Zhang X, Henderson IR, Lu C, Green PJ, Jacobsen SE. 2007. Role of RNA polymerase IV in plant small RNA metabolism. PNAS 104:114536–41
    [Google Scholar]
  238. 238.
    Zhang X, Niu D, Carbonell A, Wang A, Lee A et al. 2014. ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nat. Commun. 5:5468
    [Google Scholar]
  239. 239.
    Zhang X, Xia J, Lii YE, Barrera-Figueroa BE, Zhou X et al. 2012. Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol. 13:3R20
    [Google Scholar]
  240. 240.
    Zhang YC, Lei MQ, Zhou YF, Yang YW, Lian JP et al. 2020. Reproductive phasiRNAs regulate reprogramming of gene expression and meiotic progression in rice. Nat. Commun. 11:16031
    [Google Scholar]
  241. 241.
    Zhang Z, Hu F, Sung MW, Shu C, Castillo-González C. 2017. RISC-interacting clearing 3′-5′ exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana. eLife 6:e24466
    [Google Scholar]
  242. 242.
    Zhao Y, Yu Y, Zhai J, Ramachandran V, Dinh TT et al. 2012. The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation. Curr. Biol. 22:8689–94
    [Google Scholar]
  243. 243.
    Zheng K, Wang L, Zeng L, Xu D, Guo Z et al. 2021. The effect of RNA polymerase V on 24-nt siRNA accumulation depends on DNA methylation contexts and histone modifications in rice. PNAS 118:30e2100709118
    [Google Scholar]
  244. 244.
    Zhou M, Coruh C, Xu G, Martins LM, Bourbousse C et al. 2022. The CLASSY family controls tissue-specific DNA methylation patterns in Arabidopsis. Nat. Commun. 13:1244
    [Google Scholar]
  245. 245.
    Zhou M, Palanca AMS, Law JA. 2018. Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family. Nat. Genet. 50:6865–73
    [Google Scholar]
  246. 246.
    Zhou X, Huang K, Teng C, Abdelgawad A, Batish M et al. 2022. 24-nt phasiRNAs move from tapetal to meiotic cells in maize anthers. New Phytol. 235:2488–501
    [Google Scholar]
  247. 247.
    Zhu H, Hu F, Wang R, Zhou X, Sze SH et al. 2011. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:2242–56
    [Google Scholar]
  248. 248.
    Zhu H, Zhou Y, Castillo-González C, Lu A, Ge C et al. 2013. Bidirectional processing of pri-miRNAs with branched terminal loops by Arabidopsis Dicer-like1. Nat. Struct. Mol. Biol. 20:91106–15
    [Google Scholar]
  249. 249.
    Zilberman D, Cao X, Jacobsen SE. 2003. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:5607716–19
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-070122-035226
Loading
/content/journals/10.1146/annurev-arplant-070122-035226
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error