1932

Abstract

Proteins are workhorses in the cell; they form stable and more often dynamic, transient protein–protein interactions, assemblies, and networks and have an intimate interplay with DNA and RNA. These network interactions underlie fundamental biological processes and play essential roles in cellular function. The proximity-dependent biotinylation labeling approach combined with mass spectrometry (PL-MS) has recently emerged as a powerful technique to dissect the complex cellular network at the molecular level. In PL-MS, by fusing a genetically encoded proximity-labeling (PL) enzyme to a protein or a localization signal peptide, the enzyme is targeted to a protein complex of interest or to an organelle, allowing labeling of proximity proteins within a zoom radius. These biotinylated proteins can then be captured by streptavidin beads and identified and quantified by mass spectrometry. Recently engineered PL enzymes such as TurboID have a much-improved enzymatic activity, enabling spatiotemporal mapping with a dramatically increased signal-to-noise ratio. PL-MS has revolutionized the way we perform proteomics by overcoming several hurdles imposed by traditional technology, such as biochemical fractionation and affinity purification mass spectrometry. In this review, we focus on biotin ligase–based PL-MS applications that have been, or are likely to be, adopted by the plant field. We discuss the experimental designs and review the different choices for engineered biotin ligases, enrichment, and quantification strategies. Lastly, we review the validation and discuss future perspectives.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070522-052132
2023-05-22
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-070522-052132.html?itemId=/content/journals/10.1146/annurev-arplant-070522-052132&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M et al. 2011. Plant organelle proteomics: collaborating for optimal cell function. Mass Spectrom. Rev. 30:772–853
    [Google Scholar]
  2. 2.
    Arabidopsis Interactome Mapp. Consort 2011. Evidence for network evolution in an Arabidopsis interactome map. Science 333:601–7
    [Google Scholar]
  3. 3.
    Arora D, Abel NB, Liu C, Van Damme P, Yperman K et al. 2020. Establishment of proximity-dependent biotinylation approaches in different plant model systems. Plant Cell 32:3388–407
    [Google Scholar]
  4. 4.
    Bagchi P, Torres M, Qi L, Tsai B. 2020. Selective EMC subunits act as molecular tethers of intracellular organelles exploited during viral entry. Nat. Commun. 11:1127
    [Google Scholar]
  5. 5.
    Barkla BJ, Vera-Estrella R, Raymond C 2016. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins. BMC Plant Biol. 16:110
    [Google Scholar]
  6. 6.
    Bauer N, Škiljaica A, Malenica N, Razdorov G, Klasić M et al. 2019. The MATH-BTB protein TaMAB2 accumulates in ubiquitin-containing foci and interacts with the translation initiation machinery in Arabidopsis. Front. Plant Sci. 10:1469
    [Google Scholar]
  7. 7.
    Bhattacharya O, Ortiz I, Walling LL. 2020. Methodology: an optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins. Plant Methods 16:131
    [Google Scholar]
  8. 8.
    Bi Y, Deng Z, Ni W, Shrestha R, Savage D et al. 2021. Arabidopsis ACINUS is O-glycosylated and regulates transcription and alternative splicing of regulators of reproductive transitions. Nat. Commun. 12:945
    [Google Scholar]
  9. 9.
    Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA et al. 2005. Cell type–specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat. Methods 2:615–19
    [Google Scholar]
  10. 10.
    Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T et al. 2018. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36:880–87Describes the engineering of high-activity TurboID.
    [Google Scholar]
  11. 11.
    Callegari S, Müller T, Schulz C, Lenz C, Jans DC et al. 2019. A MICOS–TIM22 association promotes carrier import into human mitochondria. J. Mol. Biol. 431:2835–51
    [Google Scholar]
  12. 12.
    Chae K, Lord EM 2011. Pollen tube growth and guidance: roles of small, secreted proteins. Ann. Bot. 108:627–36
    [Google Scholar]
  13. 13.
    Chan CJ, Le R, Burns K, Ahmed K, Coyaud E et al. 2019. BioID performed on Golgi enriched fractions identify C10orf76 as a GBF1 binding protein essential for Golgi maintenance and secretion. Mol. Cell. Proteom. 18:2285–97
    [Google Scholar]
  14. 14.
    Chawade A, Alexandersson E, Levander F 2014. Normalyzer: a tool for rapid evaluation of normalization methods for omics data sets. J. Proteome Res. 13:3114–20
    [Google Scholar]
  15. 15.
    Che P, Weaver LM, Wurtele ES, Nikolau BJ. 2003. The role of biotin in regulating 3-methylcrotonyl-coenzyme A carboxylase expression in Arabidopsis. Plant Physiol. 131:1479–86
    [Google Scholar]
  16. 16.
    Chen Z, Lei C, Wang C, Li N, Srivastava M et al. 2019. Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that regulates mitochondrial dynamics. Nat. Commun. 10:104
    [Google Scholar]
  17. 17.
    Cho KF, Branon TC, Rajeev S, Svinkina T, Udeshi ND et al. 2020. Split-TurboID enables contact-dependent proximity labeling in cells. PNAS 117:12143–54Describes the engineering of split-TurboID.
    [Google Scholar]
  18. 18.
    Cho KF, Branon TC, Udeshi ND, Myers SA, Carr SA, Ting AY. 2020. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. 15:3971–99
    [Google Scholar]
  19. 19.
    Choi-Rhee E, Schulman H, Cronan JE. 2008. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Sci. 13:3043–50
    [Google Scholar]
  20. 20.
    Chojnowski A, Ong PF, Wong ESM, Lim JSY, Mutalif RA et al. 2015. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria. eLife 4:e07759
    [Google Scholar]
  21. 21.
    Christopher JA, Geladaki A, Dawson CS, Vennard OL, Lilley KS. 2022. Subcellular transcriptomics and proteomics: a comparative methods review. Mol. Cell. Proteom. 21:100186
    [Google Scholar]
  22. 22.
    Chua XY, Aballo T, Elnemer W, Tran M, Salomon A 2021. Quantitative interactomics of Lck-TurboID in living human T cells unveils T cell receptor stimulation-induced proximal Lck interactors. J. Proteome Res. 20:715–26
    [Google Scholar]
  23. 23.
    Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 13:2513–26
    [Google Scholar]
  24. 24.
    Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26:1367–72
    [Google Scholar]
  25. 25.
    Dai S, Chen S 2012. Single-cell-type proteomics: toward a holistic understanding of plant function. Mol. Cell. Proteom. 11:1622–30
    [Google Scholar]
  26. 26.
    Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S 2015. Laser capture microdissection: big data from small samples. Histol. Histopathol. 30:1255–69
    [Google Scholar]
  27. 27.
    De Munter S, Görnemann J, Derua R, Lesage B, Qian J et al. 2017. Split-BioID: a proximity biotinylation assay for dimerization-dependent protein interactions. FEBS Lett. 591:415–24
    [Google Scholar]
  28. 28.
    Déjardin J, Kingston RE. 2009. Purification of proteins associated with specific genomic loci. Cell 136:175–86
    [Google Scholar]
  29. 29.
    Dionne U, Gingras A-C. 2022. Proximity-dependent biotinylation approaches to explore the dynamic compartmentalized proteome. Front. Mol. Biosci. 9:852911
    [Google Scholar]
  30. 30.
    Döring F, Streubel M, Bräutigam A, Gowik U. 2016. Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor. J. Exp. Bot. 67:3053–64
    [Google Scholar]
  31. 31.
    Dowell JA, Wright LJ, Armstrong EA, Denu JM 2021. Benchmarking quantitative performance in label-free proteomics. ACS Omega 6:2494–504
    [Google Scholar]
  32. 32.
    Fazal FM, Han S, Parker KR, Kaewsapsak P, Xu J et al. 2019. Atlas of subcellular RNA localization revealed by APEX-seq. Cell 178:473–90.e26
    [Google Scholar]
  33. 33.
    Fernandez-Calvino L, Faulkner C, Walshaw J, Saalbach G, Bayer E et al. 2011. Arabidopsis plasmodesmal proteome. PLOS ONE 6:e18880
    [Google Scholar]
  34. 34.
    Fridy PC, Li Y, Keegan S, Thompson MK, Nudelman I et al. 2014. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods 11:1253–60
    [Google Scholar]
  35. 35.
    Furey TS. 2012. ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat. Rev. Genet. 13:840–52
    [Google Scholar]
  36. 36.
    Gallardo VE, Behra M. 2013. Fluorescent activated cell sorting (FACS) combined with gene expression microarrays for transcription enrichment profiling of zebrafish lateral line cells. Methods 62:226–31
    [Google Scholar]
  37. 37.
    Gao XD, Tu L-C, Mir A, Rodriguez T, Ding Y et al. 2018. C-BERST: defining subnuclear proteomic landscapes at genomic elements with dCas9–APEX2. Nat. Methods 15:433–36
    [Google Scholar]
  38. 38.
    Geladaki A, Kočevar Britovšek N, Breckels LM, Smith TS, Vennard OL et al. 2019. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics. Nat. Commun. 10:331
    [Google Scholar]
  39. 39.
    Gingras A-C, Abe KT, Raught B. 2019. Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr. Opin. Chem. Biol. 48:44–54
    [Google Scholar]
  40. 40.
    Go CD, Knight JDR, Rajasekharan A, Rathod B, Hesketh GG et al. 2021. A proximity-dependent biotinylation map of a human cell. Nature 595:120–24Assigns large-scale intercellular proteins using BioID.
    [Google Scholar]
  41. 41.
    Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH. 2007. SUBA: the Arabidopsis Subcellular Database. Nucleic Acids Res. 35:D213–18
    [Google Scholar]
  42. 42.
    Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N et al. 2015. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163:712–23
    [Google Scholar]
  43. 43.
    Hooper CM, Castleden IR, Tanz SK, Aryamanesh N, Millar AH. 2017. SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res. 45:D1064–74
    [Google Scholar]
  44. 44.
    Huang A, Tang Y, Shi X, Jia M, Zhu J et al. 2020. Proximity labeling proteomics reveals critical regulators for inner nuclear membrane protein degradation in plants. Nat. Commun. 11:3284
    [Google Scholar]
  45. 45.
    Huang M-S, Lin W-C, Chang J-H, Cheng C-H, Wang HY, Mou KY. 2019. The cysteine-free single mutant C32S of APEX2 is a highly expressed and active fusion tag for proximity labeling applications. Protein Sci. 28:1703–12
    [Google Scholar]
  46. 46.
    Huberts DH, van der Klei IJ. 2010. Moonlighting proteins: an intriguing mode of multitasking. Biochim. Biophys. Acta Mol. Cell Res. 1803:520–25
    [Google Scholar]
  47. 47.
    Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP et al. 2015. The BioPlex network: a systematic exploration of the human interactome. Cell 162:425–40
    [Google Scholar]
  48. 48.
    Ip P-L, Birnbaum KD. 2015. Tissue-specific gene expression profiling by cell sorting. Methods Mol. Biol. 1284:175–83
    [Google Scholar]
  49. 49.
    Johnson BS, Chafin L, Farkas D, Adair J, Elhance A et al. 2022. MicroID2: a novel biotin ligase enables rapid proximity-dependent proteomics. Mol. Cell Proteom. 21:100256
    [Google Scholar]
  50. 50.
    Kaewsapsak P, Shechner DM, Mallard W, Rinn JL, Ting AY. 2017. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. eLife 6:e29224
    [Google Scholar]
  51. 51.
    Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S et al. 2001. Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–41
    [Google Scholar]
  52. 52.
    Keilhauer EC, Hein MY, Mann M. 2015. Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Mol. Cell. Proteom. 14:120–35
    [Google Scholar]
  53. 53.
    Kennedy-Darling J, Guillen-Ahlers H, Shortreed MR, Scalf M, Frey BL et al. 2014. Discovery of chromatin-associated proteins via sequence-specific capture and mass spectrometric protein identification in Saccharomyces cerevisiae. J. Proteome Res. 13:3810–25
    [Google Scholar]
  54. 54.
    Kido K, Yamanaka S, Nakano S, Motani K, Shinohara S et al. 2020. AirID, a novel proximity biotinylation enzyme, for analysis of protein–protein interactions. eLife 9:e54983
    [Google Scholar]
  55. 55.
    Kim DI, Birendra KC, Zhu W, Motamedchaboki K, Doye V, Roux KJ. 2014. Probing nuclear pore complex architecture with proximity-dependent biotinylation. PNAS 111:E2453–61
    [Google Scholar]
  56. 56.
    Kim DI, Cutler JA, Na CH, Reckel S, Renuse S et al. 2018. BioSITe: a method for direct detection and quantitation of site-specific biotinylation. J. Proteome Res. 17:759–69
    [Google Scholar]
  57. 57.
    Kim DI, Jensen SC, Noble KA, Kc B, Roux KH et al. 2016. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell 27:1188–96
    [Google Scholar]
  58. 58.
    Kim T-W, Park CH, Hsu C-C, Kim Y-W, Ko Y-W et al. 2023. Mapping the signaling network of BIN2 kinase using TurboID-mediated biotin labeling and phosphoproteomics. Plant Cell 35:3975–93
    [Google Scholar]
  59. 59.
    Krämer U. 2015. Planting molecular functions in an ecological context with Arabidopsis thaliana. eLife 4:e06100
    [Google Scholar]
  60. 60.
    Kubitz L, Bitsch S, Zhao X, Schmitt K, Deweid L et al. 2022. Engineering of ultraID, a compact and hyperactive enzyme for proximity-dependent biotinylation in living cells. Commun. Biol. 5:657
    [Google Scholar]
  61. 61.
    Kwak C, Shin S, Park J-S, Jung M, Nhung TTM et al. 2020. Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation. PNAS 117:12109–20
    [Google Scholar]
  62. 62.
    Kwon K, Beckett D. 2000. Function of a conserved sequence motif in biotin holoenzyme synthetases. Protein Sci. 9:1530–39
    [Google Scholar]
  63. 63.
    Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH et al. 2015. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12:51–54
    [Google Scholar]
  64. 64.
    Lambert J-P, Tucholska M, Go C, Knight JDR, Gingras A-C. 2015. Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J. Proteom. 118:81–94
    [Google Scholar]
  65. 65.
    Leijon F, Melzer M, Zhou Q, Srivastava V, Bulone V. 2018. Proteomic analysis of plasmodesmata from Populus cell suspension cultures in relation with callose biosynthesis. Front. Plant Sci. 9:1681
    [Google Scholar]
  66. 66.
    Li D, Fu Y, Sun R, Ling CX, Wei Y et al. 2005. pFind: a novel database-searching software system for automated peptide and protein identification via tandem mass spectrometry. Bioinformatics 21:3049–50
    [Google Scholar]
  67. 67.
    Li H, Frankenfield AM, Houston R, Sekine S, Hao L. 2021. Thiol-cleavable biotin for chemical and enzymatic biotinylation and its application to mitochondrial TurboID proteomics. J. Am. Soc. Mass Spectrom. 32:2358–65
    [Google Scholar]
  68. 68.
    Li J, Cai Z, Bomgarden RD, Pike I, Kuhn K et al. 2021. TMTpro-18plex: the expanded and complete set of TMTpro reagents for sample multiplexing. J. Proteome Res. 20:2964–72
    [Google Scholar]
  69. 69.
    Liu L, Doray B, Kornfeld S. 2018. Recycling of Golgi glycosyltransferases requires direct binding to coatomer. PNAS 115:8984–89
    [Google Scholar]
  70. 70.
    Liu Y, Nelson ZM, Reda A, Fehl C 2022. Spatiotemporal proximity labeling tools to track GlcNAc sugar-modified functional protein hubs during cellular signaling. ACS Chem. Biol. 17:2153–64
    [Google Scholar]
  71. 71.
    Mair A, Bergmann DC. 2022. Advances in enzyme-mediated proximity labeling and its potential for plant research. Plant Physiol. 188:756–68
    [Google Scholar]
  72. 72.
    Mair A, Xu S-L, Branon TC, Ting AY, Bergmann DC. 2019. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. eLife 8:e47864Investigates TurboID applications in plants.
    [Google Scholar]
  73. 73.
    Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK et al. 2012. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol. 30:1143–48
    [Google Scholar]
  74. 74.
    McWhite CD, Papoulas O, Drew K, Cox RM, June V et al. 2020. A pan-plant protein complex map reveals deep conservation and novel assemblies. Cell 181:460–74.e14
    [Google Scholar]
  75. 75.
    Mergner J, Frejno M, List M, Papacek M, Chen X et al. 2020. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579:409–14
    [Google Scholar]
  76. 76.
    Motani K, Kosako H. 2020. BioID screening of biotinylation sites using the avidin-like protein Tamavidin 2-REV identifies global interactors of stimulator of interferon genes (STING). J. Biol. Chem. 295:11174–83
    [Google Scholar]
  77. 77.
    Mukherjee J, Hermesh O, Eliscovich C, Nalpas N, Franz-Wachtel M et al. 2019. β-Actin mRNA interactome mapping by proximity biotinylation. PNAS 116:12863–72
    [Google Scholar]
  78. 78.
    Myers SA, Wright J, Peckner R, Kalish BT, Zhang F, Carr SA. 2018. Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling. Nat. Methods 15:437–39
    [Google Scholar]
  79. 79.
    Nelson BK, Cai X, Nebenführ A. 2007. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51:1126–36
    [Google Scholar]
  80. 80.
    Nelson T, Gandotra N, Tausta SL. 2008. Plant cell types: reporting and sampling with new technologies. Curr. Opin. Plant Biol. 11:567–73
    [Google Scholar]
  81. 81.
    Ni W, Xu S-L, González-Grandío E, Chalkley RJ, Huhmer AFR et al. 2017. PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. Nat. Commun. 8:15236
    [Google Scholar]
  82. 82.
    Ni W, Xu S-L, Tepperman JM, Stanley DJ, Maltby DA et al. 2014. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344:1160–64
    [Google Scholar]
  83. 83.
    Niu L, Zhang H, Wu Z, Wang Y, Liu H et al. 2018. Modified TCA/acetone precipitation of plant proteins for proteomic analysis. PLOS ONE 13:e0202238
    [Google Scholar]
  84. 84.
    Ohtsu K, Takahashi H, Schnable PS, Nakazono M. 2006. Cell type-specific gene expression profiling in plants by using a combination of laser microdissection and high-throughput technologies. Plant Cell Physiol. 48:3–7
    [Google Scholar]
  85. 85.
    Okekeogbu IO, Pattathil S, González Fernández-Niño SM, Aryal UK, Penning BW et al. 2019. Glycome and proteome components of Golgi membranes are common between two angiosperms with distinct cell-wall structures. Plant Cell 31:1094–112
    [Google Scholar]
  86. 86.
    Pan R, Liu J, Wang S, Hu J 2020. Peroxisomes: versatile organelles with diverse roles in plants. New Phytol. 225:1410–27
    [Google Scholar]
  87. 87.
    Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW et al. 2005. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol. Biol. Cell 16:260–69
    [Google Scholar]
  88. 88.
    Perkel JM. 2021. Single-cell proteomics takes centre stage. Nature 597:580–82
    [Google Scholar]
  89. 89.
    Petelski AA, Emmott E, Leduc A, Huffman RG, Specht H et al. 2021. Multiplexed single-cell proteomics using SCoPE2. Nat. Protoc. 16:5398–425
    [Google Scholar]
  90. 90.
    Petricka JJ, Schauer MA, Megraw M, Breakfield NW, Thompson JW et al. 2012. The protein expression landscape of the Arabidopsis root. PNAS 109:6811–18
    [Google Scholar]
  91. 91.
    Petrovská B, Jeřábková H, Chamrád I, Vrána J, Lenobel R et al. 2014. Proteomic analysis of barley cell nuclei purified by flow sorting. Cytogenet. Genome Res. 143:78–86
    [Google Scholar]
  92. 92.
    Ramanathan M, Majzoub K, Rao DS, Neela PH, Zarnegar BJ et al. 2018. RNA–protein interaction detection in living cells. Nat. Methods 15:207–12Investigates protein–RNA interactions using proximity labeling.
    [Google Scholar]
  93. 93.
    Rauniyar N, Yates JR 3rd. 2014. Isobaric labeling-based relative quantification in shotgun proteomics. J. Proteome Res. 13:5293–309
    [Google Scholar]
  94. 94.
    Rayaprolu S, Bitarafan S, Santiago JV, Betarbet R, Sunna S et al. 2022. Cell type-specific biotin labeling in vivo resolves regional neuronal and astrocyte proteomic differences in mouse brain. Nat. Commun. 13:2927
    [Google Scholar]
  95. 95.
    Rees JS, Li X-W, Perrett S, Lilley KS, Jackson AP. 2015. Protein neighbors and proximity proteomics. Mol. Cell. Proteom. 14:2848–56
    [Google Scholar]
  96. 96.
    Rhee H-W, Zou P, Udeshi ND, Martell JD, Mootha VK et al. 2013. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339:1328–31
    [Google Scholar]
  97. 97.
    Rhee SY, Birnbaum KD, Ehrhardt DW. 2019. Towards building a Plant Cell Atlas. Trends Plant Sci. 24:303–10
    [Google Scholar]
  98. 98.
    Rhee SY, Mutwil M. 2014. Towards revealing the functions of all genes in plants. Trends Plant Sci. 19:212–21
    [Google Scholar]
  99. 99.
    Roux KJ, Kim DI, Raida M, Burke B. 2012. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196:801–10
    [Google Scholar]
  100. 100.
    Rugen N, Schaarschmidt F, Eirich J, Finkemeier I, Braun H-P, Eubel H. 2021. Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light. Biochim. Biophys. Acta Bioenerg. 1862:148443
    [Google Scholar]
  101. 101.
    Samavarchi-Tehrani P, Samson R, Gingras A-C. 2020. Proximity dependent biotinylation: key enzymes and adaptation to proteomics approaches. Mol. Cell. Proteom. 19:757–73
    [Google Scholar]
  102. 102.
    Schiapparelli LM, McClatchy DB, Liu H-H, Sharma P, Yates JR, Cline HT 3rd. 2014. Direct detection of biotinylated proteins by mass spectrometry. J. Proteome Res. 13:3966–78
    [Google Scholar]
  103. 103.
    Schmidtmann E, Anton T, Rombaut P, Herzog F, Leonhardt H 2016. Determination of local chromatin composition by CasID. Nucleus 7:476–84Investigates protein–DNA interactions using proximity labeling.
    [Google Scholar]
  104. 104.
    Schopp IM, Amaya Ramirez CC, Debeljak J, Kreibich E, Skribbe M et al. 2017. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nat. Commun. 8:15690
    [Google Scholar]
  105. 105.
    Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O. 2012. Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. Plant J. 69:529–41
    [Google Scholar]
  106. 106.
    Scott JD, Pawson T. 2009. Cell signaling in space and time: where proteins come together and when they're apart. Science 326:1220–24
    [Google Scholar]
  107. 107.
    Senkler J, Senkler M, Eubel H, Hildebrandt T, Lengwenus C et al. 2017. The mitochondrial complexome of Arabidopsis thaliana. Plant J. 89:1079–92
    [Google Scholar]
  108. 108.
    Shellhammer J, Meinke D. 1990. Arrested embryos from the bio1 auxotroph of Arabidopsis thaliana contain reduced levels of biotin. Plant Physiol. 93:1162–67
    [Google Scholar]
  109. 109.
    Shrestha R, Reyes AV, Baker PR, Wang Z-Y, Chalkley RJ, Xu S-L. 2022. 15N metabolic labeling quantification workflow in Arabidopsis using Protein Prospector. Front. Plant Sci. 13:832562
    [Google Scholar]
  110. 110.
    Simm S, Papasotiriou DG, Ibrahim M, Leisegang MS, Müller B et al. 2013. Defining the core proteome of the chloroplast envelope membranes. Front. Plant Sci. 4:11
    [Google Scholar]
  111. 111.
    Subbotin RI, Chait BT. 2014. A pipeline for determining protein–protein interactions and proximities in the cellular milieu. Mol. Cell. Proteom. 13:2824–35
    [Google Scholar]
  112. 112.
    Sun X, Sun H, Han X, Chen P-C, Jiao Y et al. 2022. Deep single-cell-type proteome profiling of mouse brain by nonsurgical AAV-mediated proximity labeling. Anal. Chem. 94:5325–34
    [Google Scholar]
  113. 113.
    Sunna SN, Rayaprolu S, Bowen CA, Bagchi P, Seyfried NT, Rangaraju S. 2021. Cellular proteomic profiling using proximity labeling by TurboID in microglial and neuronal cell lines. Alzheimer's Dement. 17:e058534
    [Google Scholar]
  114. 114.
    Svozil J, Gruissem W, Baerenfaller K. 2015. Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues. Front. Plant Sci. 6:376
    [Google Scholar]
  115. 115.
    Takano T, Wallace JT, Baldwin KT, Purkey AM, Uezu A et al. 2020. Chemico-genetic discovery of astrocytic control of inhibition in vivo. Nature 588:296–302
    [Google Scholar]
  116. 116.
    Tang Y, Huang A, Gu Y. 2020. Global profiling of plant nuclear membrane proteome in Arabidopsis. Nat. Plants 6:838–47
    [Google Scholar]
  117. 117.
    Tanz SK, Castleden I, Hooper CM, Vacher M, Small I, Millar HA. 2013. SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res. 41:D1185–91
    [Google Scholar]
  118. 118.
    Ting L, Rad R, Gygi SP, Haas W. 2011. MS3 eliminates ratio distortion in isobaric labeling-based multiplexed quantitative proteomics. Nat. Methods 8:937–40
    [Google Scholar]
  119. 119.
    Trigg SA, Garza RM, MacWilliams A, Nery JR, Bartlett A et al. 2017. CrY2H-seq: a massively multiplexed assay for deep-coverage interactome mapping. Nat. Methods 14:819–25
    [Google Scholar]
  120. 120.
    Trinkle-Mulcahy L. 2019. Recent advances in proximity-based labeling methods for interactome mapping. F1000Res. 8:F1000 Faculty Rev.135
    [Google Scholar]
  121. 121.
    Tyanova S, Temu T, Cox J. 2016. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11:2301–19
    [Google Scholar]
  122. 122.
    Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY et al. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13:731–40
    [Google Scholar]
  123. 123.
    Udeshi ND, Pedram K, Svinkina T, Fereshetian S, Myers SA et al. 2017. Antibodies to biotin enable large-scale detection of biotinylation sites on proteins. Nat. Methods 14:1167–70
    [Google Scholar]
  124. 124.
    Uezu A, Kanak DJ, Bradshaw TWA, Soderblom EJ, Catavero CM et al. 2016. Identification of an elaborate complex mediating postsynaptic inhibition. Science 353:1123–29
    [Google Scholar]
  125. 125.
    Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ. 1997. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–71
    [Google Scholar]
  126. 126.
    Van Buskirk EK, Decker PV, Chen M. 2012. Photobodies in light signaling. Plant Physiol. 158:52–60
    [Google Scholar]
  127. 127.
    Wang W, Yuan J, Jiang C. 2021. Applications of nanobodies in plant science and biotechnology. Plant Mol. Biol. 105:43–53
    [Google Scholar]
  128. 128.
    Wyrich R, Dressen U, Brockmann S, Streubel M, Chang C et al. 1998. The molecular basis of C4 photosynthesis in sorghum: isolation, characterization and RFLP mapping of mesophyll- and bundle-sheath-specific cDNAs obtained by differential screening. Plant Mol. Biol. 37:319–35
    [Google Scholar]
  129. 129.
    Xiong Z, Lo HP, McMahon K-A, Martel N, Jones A et al. 2021. In vivo proteomic mapping through GFP-directed proximity-dependent biotin labelling in zebrafish. eLife 10:e64631Describes a modular system to increase the versatility of proximity labeling.
    [Google Scholar]
  130. 130.
    Yadeta KA, Elmore JM, Coaker G. 2013. Advancements in the analysis of the Arabidopsis plasma membrane proteome. Front. Plant Sci. 4:86
    [Google Scholar]
  131. 131.
    Yamanaka S, Horiuchi Y, Matsuoka S, Kido K, Nishino K et al. 2022. A proximity biotinylation-based approach to identify protein-E3 ligase interactions induced by PROTACs and molecular glues. Nat. Commun. 13:183
    [Google Scholar]
  132. 132.
    Yang X, Qian K. 2017. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18:452–65
    [Google Scholar]
  133. 133.
    Yi W, Li J, Zhu X, Wang X, Fan L et al. 2020. CRISPR-assisted detection of RNA–protein interactions in living cells. Nat. Methods 17:685–88
    [Google Scholar]
  134. 134.
    Yoshinaka T, Kosako H, Yoshizumi T, Furukawa R, Hirano Y et al. 2019. Structural basis of mitochondrial scaffolds by prohibitin complexes: insight into a role of the coiled-coil region. iScience 19:1065–78
    [Google Scholar]
  135. 135.
    Youn J-Y, Dunham WH, Hong SJ, Knight JDR, Bashkurov M et al. 2018. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69:517–32.e11
    [Google Scholar]
  136. 136.
    Yu C, Huang L. 2018. Cross-linking mass spectrometry: an emerging technology for interactomics and structural biology. Anal. Chem. 90:144–65
    [Google Scholar]
  137. 137.
    Yu C, Yang Y, Wang X, Guan S, Fang L et al. 2016. Characterization of dynamic UbR-proteasome subcomplexes by in vivo cross-linking (X) assisted bimolecular tandem affinity purification (XBAP) and label-free quantitation. Mol. Cell. Proteom. 15:2279–92
    [Google Scholar]
  138. 138.
    Zhang Y, Li Y, Yang X, Wen Z, Nagalakshmi U, Dinesh-Kumar SP. 2020. TurboID-based proximity labeling for in planta identification of protein-protein interaction networks. J. Vis. Exp. 159:e60728
    [Google Scholar]
  139. 139.
    Zhang Y, Song G, Lal NK, Nagalakshmi U, Li Y et al. 2019. TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated immunity. Nat. Commun. 10:3252
    [Google Scholar]
  140. 140.
    Zhang Z, Hu M, Feng X, Gong A, Cheng L, Yuan H. 2017. Proteomes and phosphoproteomes of anther and pollen: availability and progress. Proteomics 17:1600458
    [Google Scholar]
  141. 141.
    Zhao Z, Stanley BA, Zhang W, Assmann SM. 2010. ABA-regulated G protein signaling in Arabidopsis guard cells: a proteomic perspective. J. Proteome Res. 9:1637–47
    [Google Scholar]
  142. 142.
    Zhao Z, Zhang W, Stanley BA, Assmann SM. 2008. Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20:3210–26
    [Google Scholar]
  143. 143.
    Zhu H, Li C, Gao C. 2020. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 21:661–77
    [Google Scholar]
  144. 144.
    Zhu Y, Li H, Bhatti S, Zhou S, Yang Y et al. 2016. Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots. Hortic. Res. 3:16026
    [Google Scholar]
  145. 145.
    Zürcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, Müller B. 2013. A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol. 161:1066–75
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-070522-052132
Loading
/content/journals/10.1146/annurev-arplant-070522-052132
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error