1932

Abstract

Plant invasions, a byproduct of globalization, are increasing worldwide. Because of their ecological and economic impacts, considerable efforts have been made to understand and predict the success of non-native plants. Numerous frameworks, hypotheses, and theories have been advanced to conceptualize the interactions of multiple drivers and context dependence of invasion success with the aim of achieving robust explanations with predictive power. We review these efforts from a community-level perspective rather than a biogeographical one, focusing on terrestrial systems, and explore the roles of intrinsic plant properties in determining species invasiveness, as well as the effects of biotic and abiotic conditions in mediating ecosystem invasibility (or resistance) and ecological and evolutionary processes. We also consider the fundamental influences of human-induced changes at scales ranging from local to global in triggering, promoting, and sustaining plant invasions and discuss how these changes could alter future invasion trajectories.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070522-071021
2023-05-22
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-070522-071021.html?itemId=/content/journals/10.1146/annurev-arplant-070522-071021&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbo S, Pinhasi van-Oss R, Gopher A, Saranga Y, Ofner I, Peleg Z. 2014. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci 19:351–60
    [Google Scholar]
  2. 2.
    Affre L, Suehs CM, Charpentier S, Vilà M, Brundu G, Lambdon P et al. 2010. Consistency on the habitat degree of invasion for three invasive plant species across Mediterranean islands. Biol. Invasions 12:2537–48
    [Google Scholar]
  3. 3.
    Ahlstrand NI, Gopalakrishnan S, Vieira FG, Bieker VC, Meudt HM et al. 2022. Travel tales of a worldwide weed: genomic signatures of Plantago major L. reveal distinct genotypic groups with links to colonial trade routes. Front. Plant Sci. 13:838166
    [Google Scholar]
  4. 4.
    Aikio S, Duncan RP, Hulme P. 2010. Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos 119:370–78
    [Google Scholar]
  5. 5.
    Aikio S, Duncan RP, Hulme PE. 2012. The vulnerability of habitats to plant invasion: disentangling the roles of propagule pressure, time and sampling effort. Glob. Ecol. Biogeogr. 21:778–86
    [Google Scholar]
  6. 6.
    Arredondo TM, Marchini GL, Cruzan MB. 2018. Evidence for human-mediated range expansion and gene flow in an invasive grass. Proc. R. Soc. B 285:20181125
    [Google Scholar]
  7. 7.
    Baker HG 1965. Characteristics and modes of origin of weeds. The Genetics of Colonizing Species HG Baker, GL Stebbins 147–69. New York: Academic
    [Google Scholar]
  8. 8.
    Barney JN, Whitlow TH. 2008. A unifying framework for biological invasions: the state factor model. Biol. Invasions 10:259–72
    [Google Scholar]
  9. 9.
    Beaury EM, Finn JT, Corbin JD, Barr V, Bradley BA. 2020. Biotic resistance to invasion is ubiquitous across ecosystems of the United States. Ecol. Lett. 23:476–82
    [Google Scholar]
  10. 10.
    Bernard-Verdier M, Hulme PE. 2015. Alien and native plant species play different roles in plant community structure. J. Ecol. 103:143–52
    [Google Scholar]
  11. 11.
    Bjarnason A, Katsanevakis S, Galanidis A, Vogiatzakis IN, Moustakas A. 2017. Evaluating hypotheses of plant species invasions on Mediterranean islands: inverse patterns between alien and endemic species. Front. Ecol. Evol. 5:91
    [Google Scholar]
  12. 12.
    Blackburn TM, Cassey P, Duncan RP 2020. Colonization pressure: a second null model for invasion biology. Biol. Invasions 22:1221–33
    [Google Scholar]
  13. 13.
    Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP et al. 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26:333–39The first article to unify invasion processes across taxonomic groups.
    [Google Scholar]
  14. 14.
    Blossey B, Nötzold R. 1995. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J. Ecol. 83:887–89
    [Google Scholar]
  15. 15.
    Bossdorf O, Prati D, Auge H, Schmid B. 2004. Reduced competitive ability in an invasive plant. Ecol. Lett. 7:346–53
    [Google Scholar]
  16. 16.
    Bottollier-Curtet M, Planty-Tabacchi A-M, Tabacchi E 2013. Competition between young exotic invasive and native dominant plant species: implications for invasions within riparian areas. J. Veg. Sci. 24:1033–42
    [Google Scholar]
  17. 17.
    Briski E, Chan FT, Darling JA, Lauringson V, MacIsaac HJ et al. 2018. Beyond propagule pressure: importance of selection during the transport stage of biological invasions. Front. Ecol. Environ. 16:345–53
    [Google Scholar]
  18. 18.
    Cadotte MW, Campbell SE, Li S-p, Sodhi DS, Mandrak NE. 2018. Preadaptation and naturalization of nonnative species: Darwin's two fundamental insights into species invasion. Annu. Rev. Plant Biol. 69:661–84
    [Google Scholar]
  19. 19.
    Cadotte MW, Hamilton MA, Murray BR. 2009. Phylogenetic relatedness and plant invader success across two spatial scales. Divers. Distrib. 15:481–88
    [Google Scholar]
  20. 20.
    Cadotte MW, Tucker CM. 2017. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32:429–37
    [Google Scholar]
  21. 21.
    Cahill JF, Kembel SW, Lamb EG, Keddy PA. 2008. Does phylogenetic relatedness influence the strength of competition among vascular plants?. Persp. Plant Ecol. 10:41–50
    [Google Scholar]
  22. 22.
    Callaway RM, Cipollini D, Barto K, Thelen GC, Hallett SG et al. 2008. Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043–55
    [Google Scholar]
  23. 23.
    Callaway RM, Ridenour WM. 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2:436–43
    [Google Scholar]
  24. 24.
    Callaway RM, Thelen GC, Rodriguez A, Holben WE. 2004. Soil biota and exotic plant invasion. Nature 427:731–33
    [Google Scholar]
  25. 25.
    Caño L, Escarré J, Fleck I, Blanco-Moreno JM, Sans FX. 2008. Increased fitness and plasticity of an invasive species in its introduced range: a study using Senecio pterophorus. J. Ecol. 96:468–76
    [Google Scholar]
  26. 26.
    Cassey P, Delean S, Lockwood JL, Sadowski JS, Blackburn TM. 2018. Dissecting the null model for biological invasions: a meta-analysis of the propagule pressure effect. PLOS Biol 16:e2005987
    [Google Scholar]
  27. 27.
    Castro-Díez P, Godoy O, Alonso A, Gallardo A, Saldaña A. 2014. What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol. Lett. 17:1–12
    [Google Scholar]
  28. 28.
    Catford JA, Jansson R, Nilsson C. 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15:22–40The first article to compare theoretical frameworks and highlight redundancies and gaps.
    [Google Scholar]
  29. 29.
    Catford JA, Vesk PA, Richardson DM, Pyšek P. 2012. Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Glob. Change Biol. 18:44–62
    [Google Scholar]
  30. 30.
    Catford JA, Wilson JRU, Pyšek P, Hulme PE, Duncan RP. 2022. Addressing context dependence in ecology. Trends Ecol. Evol. 37:158–70
    [Google Scholar]
  31. 31.
    Cavieres LA. 2021. Facilitation and the invasibility of plant communities. J. Ecol. 109:2019–28
    [Google Scholar]
  32. 32.
    Chance DP, McCollum JR, Street GM, Strickland BK, Lashley MA. 2019. Native species abundance buffers non-native plant invasibility following intermediate forest management disturbances. For. Sci. 65:336–43
    [Google Scholar]
  33. 33.
    Chrobock T, Kempel A, Fischer M, van Kleunen M. 2011. Introduction bias: Cultivated alien plant species germinate faster and more abundantly than native species in Switzerland. Basic Appl. Ecol. 12:244–50
    [Google Scholar]
  34. 34.
    Chytrý M, Jarošík V, Pyšek P, Hájek O, Knollová I et al. 2008. Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:1541–53The first rigorous analysis, based on a large data set, to reveal the importance of habitats for plant invasions.
    [Google Scholar]
  35. 35.
    Chytrý M, Maskell L, Pino J, Pyšek P, Vilà M et al. 2008. Habitat invasions by alien plants: a quantitative comparison between Mediterranean, subcontinental and oceanic regions of Europe. J. Appl. Ecol. 45:448–58
    [Google Scholar]
  36. 36.
    Colautti RI, Grigorovich IA, MacIsaac HJ. 2006. Propagule pressure: a null model for biological invasions. Biol. Invasions 8:1023–37
    [Google Scholar]
  37. 37.
    Colautti RI, Lau JA. 2015. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol. Ecol. 24:1999–2017
    [Google Scholar]
  38. 38.
    Colautti RI, Parker JD, Cadotte MW, Pyšek P, Brown CS et al. 2014. Quantifying the invasiveness of species. NeoBiota 21:7–27
    [Google Scholar]
  39. 39.
    Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ. 2004. Is invasion success explained by the enemy release hypothesis?. Ecol. Lett. 7:721–33
    [Google Scholar]
  40. 40.
    Crawley MJ. 1997. Plant Ecology Oxford, UK: Blackwell Sci. Publ.
  41. 41.
    Čuda J, Rumlerová Z, Brůna J, Skálová H, Pyšek P. 2017. Floods affect the abundance of invasive Impatiens glandulifera and its spread from river corridors. Divers. Distrib. 23:342–54
    [Google Scholar]
  42. 42.
    Daehler CC. 2003. Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu. Rev. Ecol. Evol. Syst. 34:183–211
    [Google Scholar]
  43. 43.
    Daehler CC. 2009. Short lag times for invasive tropical plants: evidence from experimental plantings in Hawai'i. PLOS ONE 4:e4462
    [Google Scholar]
  44. 44.
    Dainese M, Aikio S, Hulme PE, Bertolli A, Prosser F et al. 2017. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Change 7:577–80
    [Google Scholar]
  45. 45.
    Darwin C 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life London: J. Murray
  46. 46.
    Davidson AM, Jennions M, Nicotra AB. 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 14:419–31
    [Google Scholar]
  47. 47.
    Davies KF, Harrison S, Safford HD, Viers JH. 2007. Productivity alters the scale dependence of the diversity–invasibility relationship. Ecology 88:1940–47
    [Google Scholar]
  48. 48.
    Davis MA. 2009. Invasion Biology New York: Oxford Univ. Press
  49. 49.
    Davis MA, Grime JP, Thompson K. 2000. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88:528–34A seminal article explaining the invasibility of plant communities based on the dynamics of resources and propagule supply.
    [Google Scholar]
  50. 50.
    Davis MA, Thompson K, Grime PJ. 2005. Invasibility: the local mechanism driving community assembly and species diversity. Ecography 28:696–704
    [Google Scholar]
  51. 51.
    Dellinger AS. 2020. Pollination syndromes in the 21st century: Where do we stand and where may we go?. New Phytol 228:1193–213
    [Google Scholar]
  52. 52.
    DeWalt SJ, Denslow JS., Hamrick JL. 2004. Biomass allocation, growth, and photosynthesis of genotypes from native and introduced ranges of the tropical shrub Clidemia hirta. Oecologia 138:521–31
    [Google Scholar]
  53. 53.
    Diez JM, Sullivan JJ, Hulme PE, Edwards G, Duncan RP. 2008. Darwin's naturalization conundrum: dissecting taxonomic patterns of species invasions. Ecol. Lett. 11:674–81
    [Google Scholar]
  54. 54.
    Divíšek J, Chytrý M, Beckage B, Gotelli NJ, Lososová Z et al. 2018. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 9:4631
    [Google Scholar]
  55. 55.
    Dlugosch KM, Parker IM. 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17:431–49
    [Google Scholar]
  56. 56.
    Dostál P, Müllerová J, Pyšek P, Pergl J, Klinerová T. 2013. The impact of an invasive plant changes over time. Ecol. Lett. 16:1277–84
    [Google Scholar]
  57. 57.
    Drenovsky RE, Grewell BJ, D'Antonio CM, Funk JL, James JJ et al. 2012. A functional trait perspective on plant invasion. Ann. Bot. 110:141–53
    [Google Scholar]
  58. 58.
    Dukes J, Mooney H. 1999. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14:135–39
    [Google Scholar]
  59. 59.
    Ehrenfeld JG. 2010. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41:59–80
    [Google Scholar]
  60. 60.
    Ellstrand NC, Schierenbeck K. 2000. Hybridization as a stimulus for the evolution of invasiveness in plants?. PNAS 97:7043–50
    [Google Scholar]
  61. 61.
    Elton CS. 1958. The Ecology of Invasions by Animals and Plants London: Methuen
  62. 62.
    Enders M, Havemann F, Ruland F, Bernard-Verdier M, Catford JA et al. 2020. A conceptual map of invasion biology: integrating hypotheses into a consensus network. Glob. Ecol. Biogeogr. 29:978–91
    [Google Scholar]
  63. 63.
    Eppinga MB, Rietkerk M, Dekker SC, De Ruiter PC, Van der Putten WH. 2006. Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos 114:168–76
    [Google Scholar]
  64. 64.
    Ernst AR, Barak RS, Hipp AL, Kramer AT, Marx HE, Larkin DJ. 2022. The invasion paradox dissolves when using phylogenetic and temporal perspectives. J. Ecol. 110:443–56
    [Google Scholar]
  65. 65.
    Estoup A, Ravigné V, Hufbauer R, Vitalis R, Gautier M et al. 2016. Is there a genetic paradox of biological invasion?. Annu. Rev. Ecol. Evol. Syst. 47:51–72
    [Google Scholar]
  66. 66.
    Eyster H, Wolkovich EM. 2021. Comparisons in the native and introduced ranges reveal little evidence of climatic adaptation in germination traits. Clim. Change Ecol. 2:100023
    [Google Scholar]
  67. 67.
    Felker-Quinn E, Schweitzer JA, Bailey JK. 2013. Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA). Ecol. Evol. 3:739–51
    [Google Scholar]
  68. 68.
    Firn J, Moore JL, MacDougall AS, Borer ET, Seabloom EW et al. 2011. Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecol. Lett. 14:274–81
    [Google Scholar]
  69. 69.
    Flores-Moreno H, Thomson FJ, Warton DI, Moles AT 2013. Are introduced species better dispersers than native species? A global comparative study of seed dispersal distance. PLOS ONE 8:e68541
    [Google Scholar]
  70. 70.
    Foxcroft LC, Pickett STA, Cadenasso ML. 2011. Expanding the conceptual frameworks of plant invasion ecology. Persp. Plant Ecol. Evol. Syst. 13:89–100
    [Google Scholar]
  71. 71.
    Foxcroft LC, Spear D, van Wilgen NJ, McGeoch MA 2019. Assessing the association between pathways of alien plant invaders and their impacts in protected areas. NeoBiota 43:1–25
    [Google Scholar]
  72. 72.
    Franks SJ, Weber JJ, Aitken SN. 2014. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7:123–39
    [Google Scholar]
  73. 73.
    Fridley JD. 2013. Plant invasions across the Northern Hemisphere: a deep-time perspective. Ann. N. Y. Acad. Sci. 1293:8–17
    [Google Scholar]
  74. 74.
    Fridley JD, Craddock A. 2015. Contrasting growth phenology of native and invasive forest shrubs mediated by genome size. New Phytol 207:659–68
    [Google Scholar]
  75. 75.
    Fridley JD, Jo I, Hulme PE, Duncan RP 2021. A habitat-based assessment of the role of competition in plant invasions. J. Ecol. 109:1263–74
    [Google Scholar]
  76. 76.
    Fridley JD, Sax DF. 2014. The imbalance of nature: revisiting a Darwinian framework for invasion biology. Glob. Ecol. Biogeogr. 23:1157–66
    [Google Scholar]
  77. 77.
    Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW et al. 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17Explains that the nature of the relationship between native and non-native species richness depends on spatial scale.
    [Google Scholar]
  78. 78.
    Fristoe TS, Chytrý M, Dawson W, Essl F, Heleno R et al. 2021. Dimensions of invasiveness: links between local abundance, geographic range size, and habitat breadth in Europe's alien and native floras. PNAS 118:e2021173118
    [Google Scholar]
  79. 79.
    Funk JL. 2013. The physiology of invasive plants in low-resource environments. Conserv. Physiol. 1:cot026
    [Google Scholar]
  80. 80.
    Funk JL, Standish RJ, Stock WD, Valladares F. 2016. Plant functional traits of dominant native and invasive species in Mediterranean-climate ecosystems. Ecology 97:75–83
    [Google Scholar]
  81. 81.
    Funk JL, Vitousek PM. 2007. Resource use efficiency and plant invasion in low-resource systems. Nature 446:1079–81
    [Google Scholar]
  82. 82.
    Gaertner M, Biggs R, Te Beest M, Hui C, Molofsky J, Richardson DM 2014. Invasive plants as drivers of regime shifts: identifying high priority invaders that alter feedback relationships. Divers. Distrib. 20:733–44
    [Google Scholar]
  83. 83.
    Gallagher RV, Beaumont LJ, Hughes L, Leishman MR. 2010. Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98:790–99
    [Google Scholar]
  84. 84.
    Gallagher RV, Randall RP, Leishman MR. 2015. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv. Biol. 29:360–69
    [Google Scholar]
  85. 85.
    Gallien L, Carboni M. 2017. The community ecology of invasive species: Where are we and what's next?. Ecography 40:335–52
    [Google Scholar]
  86. 86.
    Gallien L, Thornhill AH, Zurell D, Miller JT, Richardson DM. 2019. Global predictors of alien plant establishment success: combining niche and trait proxies. Proc. R. Soc. B 286:20182477
    [Google Scholar]
  87. 87.
    Gentili R, Ambrosini R, Augustinus BA, Caronni S, Cardarelli E et al. 2021. High phenotypic plasticity in a prominent plant invader along altitudinal and temperature gradients. Plants 10:2144
    [Google Scholar]
  88. 88.
    Gioria M, Carta A, Baskin CC, Dawson W, Essl F et al. 2021. Persistent soil seed banks promote naturalization and invasiveness in flowering plants. Ecol. Lett. 24:1655–67
    [Google Scholar]
  89. 89.
    Gioria M, Dieterich B, Osborne BA. 2011. Battle of the giants: primary and secondary invasions by large herbaceous species. Biol. Environ. 111B:177–93
    [Google Scholar]
  90. 90.
    Gioria M, Osborne B. 2014. Resource competition in plant invasions: emerging patterns and research needs. Front. Plant Sci. 5:501
    [Google Scholar]
  91. 91.
    Gioria M, Osborne BA, Pyšek P 2022. Soil seed banks under a warming climate. Plant Regeneration from Seeds: A Global Warming Perspective C Baskin, J Baskin 285–98. New York: Academic
    [Google Scholar]
  92. 92.
    Gioria M, Pyšek P. 2016. The legacy of plant invasions: changes in the soil seed bank of invaded plant communities. BioScience 66:40–53
    [Google Scholar]
  93. 93.
    Godoy O, Valladares F, Castro-Díez P. 2011. Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Funct. Ecol. 25:1248–59
    [Google Scholar]
  94. 94.
    Grime JP. 1979. Plant Strategies and Vegetation Processes Chichester, UK: John Wiley and Sons
  95. 95.
    Grime JP. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86:902–10
    [Google Scholar]
  96. 96.
    Gruntman M, Zieger S, Tielbörger K. 2016. Invasive success and the evolution of enhanced weaponry. Oikos 125:59–65
    [Google Scholar]
  97. 97.
    Guo Q. 2014. Plant hybridization: the role of human disturbance and biological invasion. Divers. Distrib. 20:1345–54
    [Google Scholar]
  98. 98.
    Guo Q, Fei S, Dukes JS, Oswalt CM, Iannone BV III, Potter KM 2015. A unified approach for quantifying invasibility and degree of invasion. Ecology 96:2613–21
    [Google Scholar]
  99. 99.
    Guo W-Y, van Kleunen M, Winter M, Weigelt P, Stein A et al. 2018. The role of adaptive strategies in plant naturalization. Ecol. Lett. 21:1380–89
    [Google Scholar]
  100. 100.
    Gurevitch J, Fox GA, Wardle GM, Inderjit, Taub D 2011. Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol. Lett. 14:407–18
    [Google Scholar]
  101. 101.
    Hager HA, Ryan GD, Kovacs HM, Newman JA. 2016. Effects of elevated CO2 on photosynthetic traits of native and invasive C3 and C4 grasses. BMC Ecol 16:28
    [Google Scholar]
  102. 102.
    Hale AN, Tonsor SJ, Kalisz S 2011. Testing the mutualism disruption hypothesis: physiological mechanisms for invasion of intact perennial plant communities. Ecosphere 2:110
    [Google Scholar]
  103. 103.
    Hawkins BA, Rueda M, Rangel TF, Field R, Diniz-Filho JAF. 2014. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests. J. Biogeogr. 41:23–38
    [Google Scholar]
  104. 104.
    Hegarty MJ, Abbott RJ, Hiscock SJ. 2012. Allopolyploid speciation in action: the origins and evolution of Senecio cambrensis. Polyploidy and Genome Evolution PS Soltis, DE Soltis 245–70. Berlin, Heidelberg, Ger: Springer
    [Google Scholar]
  105. 105.
    Hierro JL, Eren Ö, Montesinos D, Andonian K, Kethsuriani L et al. 2020. Increments in weed seed size track global range expansion and contribute to colonization in a non-native region. Biol. Invasions 22:969–82
    [Google Scholar]
  106. 106.
    Hobbs RJ, Huenneke L. 1992. Disturbance, diversity, and invasion: implications for conservation. Conserv. Biol. 6:324–37
    [Google Scholar]
  107. 107.
    Hock M, Hofmann R, Essl F, Pyšek P, Bruelheide H, Erfmeier A. 2020. Native distribution characteristics rather than functional traits explain preadaptation of invasive species to high-UV-B environments. Divers. Distrib. 26:1421–38
    [Google Scholar]
  108. 108.
    Holle BV, Simberloff D. 2005. Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–18
    [Google Scholar]
  109. 109.
    Houseman GR, Foster BL, Brassil CE. 2014. Propagule pressure-invasibility relationships: testing the influence of soil fertility and disturbance with Lespedeza cuneata. Oecologia 174:511–20
    [Google Scholar]
  110. 110.
    Hovick SM, Bunker DE, Peterson CJ, Carson WP. 2011. Purple loosestrife suppresses plant species colonization far more than broad-leaved cattail: experimental evidence with plant community implications. J. Ecol. 99:225–34
    [Google Scholar]
  111. 111.
    Hovick SM, Whitney KD. 2019. Propagule pressure and genetic diversity enhance colonization by a ruderal species: a multi-generation field experiment. Ecol. Monogr. 89:e01368
    [Google Scholar]
  112. 112.
    Hovick SM, Whitney KD, Gurevitch J. 2014. Hybridisation is associated with increased fecundity and size in invasive taxa: meta-analytic support for the hybridisation-invasion hypothesis. Ecol. Lett. 17:1464–77
    [Google Scholar]
  113. 113.
    Howell A, Winkler DE, Phillips ML, McNellis B, Reed SC. 2020. Experimental warming changes phenology and shortens growing season of the dominant invasive plant Bromus tectorum (Cheatgrass). Front. Plant Sci. 11:570001
    [Google Scholar]
  114. 114.
    Huang QQ, Pan XY, Fan ZW, Peng SL. 2015. Stress relief may promote the evolution of greater phenotypic plasticity in exotic invasive species: a hypothesis. Ecol. Evol. 5:1169–77
    [Google Scholar]
  115. 115.
    Huebner CD 2022. Effects of global climate change on regeneration of invasive plant species from seeds. Plant Regeneration from Seeds: A Global Warming Perspective C Baskin, J Baskin 243–58. New York: Academic
    [Google Scholar]
  116. 116.
    Hufbauer RA, Facon B, Ravigné V, Turgeon J, Foucaud J et al. 2012. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol. Appl. 5:89–101
    [Google Scholar]
  117. 117.
    Hughes RF, Denslow JS. 2005. Invasion by a N2-fixing tree alters function and structure in wet lowland forests of Hawaii. Ecol. Appl. 15:1615–28
    [Google Scholar]
  118. 118.
    Hui C, Richardson DM. 2022. Invading Ecological Networks Cambridge, UK: Cambridge Univ. Press
  119. 119.
    Hui C, Richardson DM, Landi P, Minoarivelo HO, Garnas J, Roy HE. 2016. Defining invasiveness and invasibility in ecological networks. Biol. Invasions 18:971–83
    [Google Scholar]
  120. 120.
    Hui C, Richardson DM, Landi P, Minoarivelo HO, Roy HE et al. 2021. Trait positions for elevated invasiveness in adaptive ecological networks. Biol. Invasions 23:1965–85
    [Google Scholar]
  121. 121.
    Hull-Sanders HM, Clare R, Johnson RH, Meyer GA 2007. Evaluation of the evolution of increased competitive ability (EICA) hypothesis: loss of defense against generalist but not specialist herbivores. J. Chem. Ecol. 33:781–99
    [Google Scholar]
  122. 122.
    Hulme PE. 2008. Phenotypic plasticity and plant invasions: Is it all Jack?. Funct. Ecol. 22:3–7
    [Google Scholar]
  123. 123.
    Hulme PE. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46:10–18
    [Google Scholar]
  124. 124.
    Hulme PE, Bernard-Verdier M. 2018. Comparing traits of native and alien plants: Can we do better?. Funct. Ecol. 32:117–25
    [Google Scholar]
  125. 125.
    Jacquemart A, Vanparys V, Meerts P. 2013. Generalist versus specialist herbivores on the invasive Senecio inaequidens and a native related species: What makes the difference?. Am. J. Plant Sci. 4:386–94
    [Google Scholar]
  126. 126.
    Jelbert K, Stott I, McDonald RA, Hodgson D. 2015. Invasiveness of plants is predicted by size and fecundity in the native range. Ecol. Evol. 5:1933–43
    [Google Scholar]
  127. 127.
    Jeschke JM, Aparicio LG, Haider S, Heger T, Lortie CJ et al. 2012. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14:1–20
    [Google Scholar]
  128. 128.
    Jeschke JM, Aparicio LG, Haider S, Heger T, Lortie CJ et al. 2012. Taxonomic bias and lack of cross-taxonomic studies in invasion biology. Front. Ecol. Environ. 10:349–50
    [Google Scholar]
  129. 129.
    Jo I, Fridley JD, Frank DA. 2017. Invasive plants accelerate nitrogen cycling: evidence from experimental woody monocultures. J. Ecol. 105:1105–10
    [Google Scholar]
  130. 130.
    Joshi J, Vrieling K. 2005. The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecol. Lett. 8:704–14
    [Google Scholar]
  131. 131.
    Junaedi DI, Hidayat IW, Efendi M, Mutaqien Z, Zuhri M et al. 2021. Leaf thickness and elevation explain naturalized alien species richness in a tropical mountain forest: a case study from Mount Gede-Pangrango National Park, Indonesia. J. Mt. Sci. 18:1837–46
    [Google Scholar]
  132. 132.
    Kalisz S, Kivlin SN, Bialic-Murphy L. 2021. Allelopathy is pervasive in invasive plants. Biol. Invasions 23:367–71
    [Google Scholar]
  133. 133.
    Kalusová V, Chytrý M, Kartesz JT, Nishino M, Pyšek P. 2013. Where do they come from and where do they go? European natural habitats as donors of invasive alien plants globally. Divers. Distrib. 19:199–214
    [Google Scholar]
  134. 134.
    Kalusová V, Chytrý M, van Kleunen M, Mucina L, Dawson W et al. 2017. Naturalization of European plants on other continents: the role of donor habitats. PNAS 114:13756–61
    [Google Scholar]
  135. 135.
    Keane RM, Crawley MJ. 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17:164–70
    [Google Scholar]
  136. 136.
    Keller JA, Shea K. 2021. Warming and shifting phenology accelerate an invasive plant life cycle. Ecology 102:e03219
    [Google Scholar]
  137. 137.
    Keller SR, Taylor DR. 2010. Genomic admixture increases fitness during a biological invasion. J. Evol. Biol. 23:1720–31
    [Google Scholar]
  138. 138.
    Ketola T, Saarinen K, Lindström L. 2017. Propagule pressure increase and phylogenetic diversity decrease community's susceptibility to invasion. BMC Ecol 17:15
    [Google Scholar]
  139. 139.
    Knight CA, Molinari NA, Petrov DA. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Ann. Bot. 95:177–90
    [Google Scholar]
  140. 140.
    Kolar CS, Lodge DM. 2001. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16:199–204
    [Google Scholar]
  141. 141.
    Kubešová M, Moravcová L, Suda J, Jarošík V, Pyšek P. 2010. Naturalized plants have smaller genomes than their noninvading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82:81–96
    [Google Scholar]
  142. 142.
    Kuebbing S, Rodriguez-Cabal MA, Fowler D, Breza L, Schweitzer JA et al. 2013. Resource availability and plant diversity explain patterns of invasion of an exotic grass. J. Plant Ecol. 6:141–49
    [Google Scholar]
  143. 143.
    Kueffer C. 2012. The importance of collaborative learning and research among conservationists from different oceanic islands. Rev. Ecol. Terre Vie 11:125–35
    [Google Scholar]
  144. 144.
    Kueffer C, Pyšek P, Richardson DM. 2013. Integrative invasion science: model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytol 200:615–33
    [Google Scholar]
  145. 145.
    Küster EC, Kühn I, Bruelheide H, Klotz S. 2008. Trait interactions help explain plant invasion success in the German flora. J. Ecol. 96:860–68
    [Google Scholar]
  146. 146.
    Lachmuth S, Durka W, Schurr FM. 2010. The making of a rapid plant invader: genetic diversity and differentiation in the native and invaded range of Senecio inaequidens. Mol. Ecol. 19:3952–67
    [Google Scholar]
  147. 147.
    Lamarque LJ, Lortie CJ, Porté AJ, Delzon S. 2015. Genetic differentiation and phenotypic plasticity in life-history traits between native and introduced populations of invasive maple trees. Biol. Invasions 17:1109–22
    [Google Scholar]
  148. 148.
    Larkin DJ. 2012. Lengths and correlates of lag phases in upper-Midwest plant invasions. Biol. Invasions 14:827–38
    [Google Scholar]
  149. 149.
    Lavergne S, Molofsky J. 2007. Increased genetic variation and evolutionary potential drive the success of an invasive grass. PNAS 104:3883–88
    [Google Scholar]
  150. 150.
    Lavoie C, Joly S, Bergeron A, Guay G, Groeneveld E. 2016. Explaining naturalization and invasiveness: new insights from historical ornamental plant catalogs. Ecol. Evol. 6:7188–98
    [Google Scholar]
  151. 151.
    Lázaro-Lobo A, Ervin GN. 2019. A global examination on the differential impacts of roadsides on native versus exotic and weedy plant species. Glob. Ecol. Conserv. 17:e00555
    [Google Scholar]
  152. 152.
    Le Roux JJ, Hui C, Keet J-H, Ellis AG 2017. Co-introduction versus ecological fitting as pathways to the establishment of effective mutualisms during biological invasions. New Phytol 215:1354–60
    [Google Scholar]
  153. 153.
    Lee MR, Flory SL, Phillips RP. 2012. Positive feedbacks to growth of an invasive grass through alteration of nitrogen cycling. Oecologia 170:457–65
    [Google Scholar]
  154. 154.
    Levin DA. 2021. Propagule pressure and the establishment of emergent polyploid populations. Ann. Bot. 127:1–5
    [Google Scholar]
  155. 155.
    Levine JM, D'Antonio CM 1999. Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26
    [Google Scholar]
  156. 156.
    Li G, Barfknecht DF, Gibson DJ. 2021. Disturbance effects on productivity–plant diversity relationships from a 22-year-old successional field. J. Veg. Sci. 32:e12970
    [Google Scholar]
  157. 157.
    Liedtke R, Barros A, Essl F, Lembrechts JJ, Wedegärtner REM et al. 2020. Hiking trails as conduits for the spread of non-native species in mountain areas. Biol. Invasions 22:1121–34
    [Google Scholar]
  158. 158.
    Liu C, Wolter C, Xian W, Jeschke JM. 2020. Most invasive species largely conserve their climatic niche. PNAS 117:23643–51
    [Google Scholar]
  159. 159.
    Liu R-L, Yang Y-B, Lee BR, Liu G, Zhang W-G et al. 2021. The dispersal-related traits of an invasive plant Galinsoga quadriradiata correlate with elevation during range expansion into mountain ranges. AoB PLANTS 13:plab008
    [Google Scholar]
  160. 160.
    Lockwood JL, Cassey P, Blackburn T 2005. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20:223–28
    [Google Scholar]
  161. 161.
    Lockwood JL, Hoopes MF, Marchetti MP. 2007. Invasion Ecology Oxford, UK: Blackwell
  162. 162.
    Lombaert E, Guillemaud T, Cornuet J-M, Malausa T, Facon B et al. 2010. Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLOS ONE 5:e9743
    [Google Scholar]
  163. 163.
    Lonsdale WM. 1999. Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–36Defines the difference between the level of invasion and invasibility.
    [Google Scholar]
  164. 164.
    Lortie CJ, Filazzola A, Brown C, Lucero J, Zuliani M et al. 2021. Facilitation promotes plant invasions and indirect negative interactions. Oikos 130:1056–61
    [Google Scholar]
  165. 165.
    Lucero JE, Arab NM, Meyer ST, Pal RW, Fletcher RA et al. 2020. Escape from natural enemies depends on the enemies, the invader, and competition. Ecol. Evol. 10:10818–28
    [Google Scholar]
  166. 166.
    Lundgren JG, Saska P, Honěk A. 2013. Molecular approach to describing a seed-based food web: the post-dispersal granivore community of an invasive plant. Ecol. Evol. 3:1642–52
    [Google Scholar]
  167. 167.
    MacDougall AS, Gilbert B, Levine JM. 2009. Plant invasions and the niche. J. Ecol. 97:609–15
    [Google Scholar]
  168. 168.
    Marchini GL, Maraist CA, Cruzan MB. 2019. Trait divergence, not plasticity, determines the success of a newly invasive plant. Ann. Bot. 123:667–79
    [Google Scholar]
  169. 169.
    Maron JL, Klironomos J, Waller L, Callaway RM. 2014. Invasive plants escape from suppressive soil biota at regional scales. J. Ecol. 102:19–27
    [Google Scholar]
  170. 170.
    Maron JL, Vilà M, Bommarco R, Elmendorf S, Beardsley P. 2004. Rapid evolution of an invasive plant. Ecol. Monogr. 74:261–80
    [Google Scholar]
  171. 171.
    Matesanz S, Gianoli E, Valladares F. 2010. Global change and the evolution of phenotypic plasticity in plants. Ann. N. Y. Acad. Sci. 1206:35–55
    [Google Scholar]
  172. 172.
    Maurel N, Hanspach J, Kühn I, Pyšek P, van Kleunen M. 2016. Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Glob. Ecol. Biogeogr. 25:1500–9
    [Google Scholar]
  173. 173.
    McDougall KL, Lembrechts J, Rew LJ, Haider S, Cavieres LA et al. 2018. Running off the road: roadside non-native plants invading mountain vegetation. Biol. Invasions 20:3461–73
    [Google Scholar]
  174. 174.
    Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S et al. 2007. Invasion in a heterogeneous world: resistance, coexistence or hostile takeover?. Ecol. Lett. 10:77–94
    [Google Scholar]
  175. 175.
    Mesgaran MB, Lewis MA, Ades PK, Donohue K, Ohadi S et al. 2016. Hybridization can facilitate species invasions, even without enhancing local adaptation. PNAS 113:10210–14
    [Google Scholar]
  176. 176.
    Meyerson LA, Cronin JT, Bhattarai GP, Brix H, Lambertini C et al. 2016. Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interaction with herbivores?. Biol. Invasions 18:2531–49
    [Google Scholar]
  177. 177.
    Meyerson LA, Mooney HA. 2007. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5:199–208
    [Google Scholar]
  178. 178.
    Meyerson LA, Pyšek P, Lučanová M, Wigginton S, Tran C-T et al. 2020. Plant genome size influences stress tolerance of invasive and native plants via plasticity. Ecosphere 11:e03145
    [Google Scholar]
  179. 179.
    Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA et al. 2006. Biotic interactions and plant invasions. Ecol. Lett. 9:726–40
    [Google Scholar]
  180. 180.
    Moles AT, Gruber MAM, Bonser SP. 2008. A new framework for predicting invasive plant species. J. Ecol. 96:13–17
    [Google Scholar]
  181. 181.
    Moles AT, Westoby M. 2004. Seedling survival and seed size: a synthesis of the literature. J. Ecol. 92:372–83
    [Google Scholar]
  182. 182.
    Molina-Montenegro MA, Acuña-Rodríguez IS, Flores TSM, Hereme R, Lafon A et al. 2018. Is the success of plant invasions the result of rapid adaptive evolution in seed traits? Evidence from a latitudinal rainfall gradient. Front. Plant Sci. 9:208
    [Google Scholar]
  183. 183.
    Montesinos D. 2022. Fast invasives fastly become faster: Invasive plants align largely with the fast side of the plant economics spectrum. J. Ecol. 110:1010–14
    [Google Scholar]
  184. 184.
    Montesinos D, Callaway RM. 2018. Traits correlate with invasive success more than plasticity: a comparison of three Centaurea congeners. Ecol. Evol. 8:7378–85
    [Google Scholar]
  185. 185.
    Moodley D, Geerts S, Richardson DM, Wilson JRU. 2013. Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLOS ONE 8:e75078
    [Google Scholar]
  186. 186.
    Moravcová L, Pyšek P, Jarošík V, Pergl J. 2015. Getting the right traits: Reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species. PLOS ONE 10:e0123634
    [Google Scholar]
  187. 187.
    Mounger J, Ainouche ML, Bossdorf O, Cavé-Radet A, Li B et al. 2021. Epigenetics and the success of invasive plants. Philos. Trans. R. Soc. B 376:20200117
    [Google Scholar]
  188. 188.
    Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ et al. 2010. Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–92
    [Google Scholar]
  189. 189.
    Novoa A, Richardson DM, Pyšek P, Meyerson LA, Bacher S et al. 2020. Invasion syndromes: a systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions 22:1801–20Proposes a novel approach for understanding species invasiveness based on context.
    [Google Scholar]
  190. 190.
    Ocampo-Ariza C, Bufford JL, Hulme PE, Champion P, Godsoe W. 2018. Strong fitness differences impede coexistence between an invasive water fern (Azolla pinnata R. Br.) and its native congener (Azolla rubra R. Br.) in New Zealand. Biol. Invasions 20:2889–97
    [Google Scholar]
  191. 191.
    Oduor AMO, van Kleunen M, Stift M. 2020. Allelopathic effects of native and invasive Brassica nigra do not support the novel-weapons hypothesis. Am. J. Bot. 107:1106–13
    [Google Scholar]
  192. 192.
    O'Loughlin LS, Green PT. 2017. Secondary invasion: when invasion success is contingent on other invaders altering the properties of recipient ecosystems. Ecol. Evol. 7:7628–37
    [Google Scholar]
  193. 193.
    Omer A, Fristoe T, Yang Q, Maurel N, Weigelt P et al. 2021. Characteristics of the naturalized flora of Southern Africa largely reflect the non-random introduction of alien species for cultivation. Ecography 44:1812–25
    [Google Scholar]
  194. 194.
    Ortega YK, Pearson DE. 2005. Weak versus strong invaders of natural plant communities: assessing invasibility and impact. Ecol. Appl. 15:651–61
    [Google Scholar]
  195. 195.
    Osunkoya OO, Lock CB, Dhileepan K, Buru JC. 2021. Lag times and invasion dynamics of established and emerging weeds: insights from herbarium records of Queensland, Australia. Biol. Invasions 23:3383–408
    [Google Scholar]
  196. 196.
    Packer JG, Meyerson LA, Richardson DM, Brundu G, Allen WJ et al. 2017. Global networks for invasion science: benefits, challenges and guidelines. Biol. Invasions 19:1081–96
    [Google Scholar]
  197. 197.
    Palacio-López K, Gianoli E. 2011. Invasive plants do not display greater phenotypic plasticity than their native or non-invasive counterparts: a meta-analysis. Oikos 120:1393–401
    [Google Scholar]
  198. 198.
    Pandit MK, White SM, Pocock MJO. 2014. The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol 203:697–703
    [Google Scholar]
  199. 199.
    Park DS, Feng X, Maintner BS, Ernst KC, Enquist BJ. 2020. Darwin's naturalization conundrum can be explained by spatial scale. PNAS 117:10904–10
    [Google Scholar]
  200. 200.
    Parker IM, Gilbert GS. 2007. When there is no escape: the effects of natural enemies on native, invasive, and noninvasive plants. Ecology 88:1210–24
    [Google Scholar]
  201. 201.
    Parker JD, Burkepile DE, Hay ME. 2006. Opposing effects of native and exotic herbivores on plant invasions. Science 311:1459–61
    [Google Scholar]
  202. 202.
    Parker JD, Hay ME. 2005. Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecol. Lett. 8:959–67
    [Google Scholar]
  203. 203.
    Parker JD, Torchin ME, Hufbauer RA, Lemoine NP, Alba C et al. 2013. Do invasive species perform better in their new ranges?. Ecology 94:985–94
    [Google Scholar]
  204. 204.
    Pattison Z, Minderman J, Boon PJ, Willby N. 2017. Twenty years of change in riverside vegetation: what role have invasive alien plants played?. Appl. Veg. Sci. 20:422–34
    [Google Scholar]
  205. 205.
    Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J et al. 2009. Ain't no mountain high enough: plant invasions reaching new elevations. Front. Ecol. Environ. 7:479–86
    [Google Scholar]
  206. 206.
    Peng S, Kinlock NL, Gurevitch J, Peng S. 2019. Correlation of native and exotic species richness: A global meta-analysis finds no invasion paradox across scales. Ecology 100:e02552
    [Google Scholar]
  207. 207.
    Perkins LB, Leger EA, Nowak RS. 2011. Invasion triangle: an organizational framework for species invasion. Ecol. Evol. 1:610–25
    [Google Scholar]
  208. 208.
    Perkins LB, Nowak RS. 2013. Invasion syndromes: hypotheses on relationships among invasive species attributes and characteristics of invaded sites. J. Arid Land 5:275–83
    [Google Scholar]
  209. 209.
    Petitpierre B, McDougall K, Seipel T, Broennimann O, Guisan A et al. 2016. Will climate change increase the risk of plant invasions into mountains?. Ecol. Appl. 26:530–44
    [Google Scholar]
  210. 210.
    Plenderleith FA, Irrazabal VA, Burslem DFRP, Travis JMJ, Powell PA. 2022. Predicting spatially heterogeneous invasive spread: Pyracantha angustifolia invading a dry Andean valley in northern Argentina. Biol. Invasions 24:2201–16
    [Google Scholar]
  211. 211.
    Potgieter LJ, Cadotte MW. 2020. The application of selected invasion frameworks to urban ecosystems. NeoBiota 62:365–86
    [Google Scholar]
  212. 212.
    Pouteau R, Biurrun I, Brunel C, Chytrý M, Dawson W et al. 2021. Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species. Divers. Distrib. 27:2063–76
    [Google Scholar]
  213. 213.
    Prati D, Bossdorf O. 2004. Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am. J. Bot. 2:285–88
    [Google Scholar]
  214. 214.
    Prior KM, Robinson JM, Meadley Dunphy SA, Frederickson ME 2015. Mutualism between co-introduced species facilitates invasion and alters plant community structure. Proc. R. Soc. B 282:20142846
    [Google Scholar]
  215. 215.
    Pyšek P, Bacher S, Kühn I, Novoa A, Catford JA et al. 2020. MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota 62:407–61
    [Google Scholar]
  216. 216.
    Pyšek P, Čuda J, Šmilauer P, Skálová H, Chumová Z et al. 2020. Competition among native and invasive Phragmites australis populations: an experimental test of the effects of invasion status, genome size, and ploidy level. Ecol. Evol. 10:1106–18
    [Google Scholar]
  217. 217.
    Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM et al. 2020. Scientists' warning on invasive alien species. Biol. Rev. 95:1511–34
    [Google Scholar]
  218. 218.
    Pyšek P, Jarošík V, Pergl J, Moravcová L, Chytrý M, Kühn I. 2014. Temperate trees and shrubs as global invaders: The relationship between invasiveness and native distribution depends on biological traits. Biol. Invasions 16:577–89
    [Google Scholar]
  219. 219.
    Pyšek P, Køivánek M, Jarošík V. 2009. Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90:2734–44
    [Google Scholar]
  220. 220.
    Pyšek P, Manceur MA, Alba C, McGregor KF, Pergl J et al. 2015. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96:762–74
    [Google Scholar]
  221. 221.
    Pyšek P, Pergl J, Essl F, Lenzner B, Dawson W et al. 2017. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89:203–74
    [Google Scholar]
  222. 222.
    Pyšek P, Richardson DM. 2007. Traits associated with invasiveness in alien plants: Where do we stand?. Biological Invasions W Nentwig 97–125. Berlin: Springer
    [Google Scholar]
  223. 223.
    Razanajatovo M, van Kleunen M, Kreft H, Dawson W, Essl F et al. 2019. Autofertility and self-compatibility moderately benefit island colonization of plants. Glob. Ecol. Biogeogr. 28:341–52
    [Google Scholar]
  224. 224.
    Reinhart KO, Callaway RM. 2006. Soil biota and invasive plants. New Phytol 170:445–57
    [Google Scholar]
  225. 225.
    Rejmánek M, Richardson DM. 1996. What attributes make some plant species more invasive?. Ecology 77:1655–61Demonstrates that the difference between invasive and noninvasive species can be described using a relatively simple model originally developed for pines.
    [Google Scholar]
  226. 226.
    Rejmánek M, Richardson DM, Pyšek P. 2005. Plant invasions and invasibility of plant communities. Vegetation Ecology E van der Maarel 332–55. Malden, MA: Blackwell
    [Google Scholar]
  227. 227.
    Ricciardi A, Jones LA, Kestrup ÅM, Ward JM 2011. Expanding the propagule pressure concept to understand the impact of biological invasions. Fifty Years of Invasion Ecology. The Legacy of Charles Elton DM Richardson 225–35. Oxford, UK: Wiley-Blackwell
    [Google Scholar]
  228. 228.
    Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M. 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 9:981–93
    [Google Scholar]
  229. 229.
    Richardson DM 2011. Invasion science: the roads travelled and the roads ahead. Fifty Years of Invasion Ecology. The Legacy of Charles Elton DM Richardson 397–407. Oxford, UK: Wiley-Blackwell
    [Google Scholar]
  230. 230.
    Richardson DM, Allsopp N, D'Antonio CM, Milton SJ, Rejmánek M 2000. Plant invasions—the role of mutualisms. Biol. Rev. Camb. Philos. Soc. 75:65–93
    [Google Scholar]
  231. 231.
    Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC et al. 2007. Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 13:126–39
    [Google Scholar]
  232. 232.
    Richardson DM, Hui C, Nuñez MA, Pauchard A. 2014. Tree invasions: patterns, processes, challenges and opportunities. Biol. Invasions 16:473–81
    [Google Scholar]
  233. 233.
    Richardson DM, Pyšek P. 2006. Plant invasions: merging the concepts of species invasiveness and community invasibility. Progr. Phys. Geogr. 30:409–31
    [Google Scholar]
  234. 234.
    Richardson DM, Pyšek P. 2012. Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol 196:383–96
    [Google Scholar]
  235. 235.
    Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD et al. 2000. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6:93–107
    [Google Scholar]
  236. 236.
    Richardson DM, Williams PA, Hobbs RJ. 1994. Pine invasions in the Southern Hemisphere: determinants of spread and invadibility. J. Biogeogr. 21:511–27
    [Google Scholar]
  237. 237.
    Ridley CE, Ellstrand NC. 2009. Evolution of enhanced reproduction in the hybrid-derived invasive, California wild radish (Raphanus sativus). Biol. Invasions 11:2251–64
    [Google Scholar]
  238. 238.
    Rosche C, Hensen I, Mráz P, Durka W, Hartmann M, Lachmuth S. 2017. Invasion success in polyploids: the role of inbreeding in the contrasting colonization abilities of diploid versus tetraploid populations of Centaurea stoebe s.l. J. Ecol. 105:425–35
    [Google Scholar]
  239. 239.
    Rotter MC, Holeski LM. 2018. A meta-analysis of the evolution of increased competitive ability hypothesis: genetic-based trait variation and herbivory resistance trade-offs. Biol. Invasions 20:2647–60
    [Google Scholar]
  240. 240.
    Rutland CA, Hall ND, McElroy JS. 2021. The impact of polyploidization on the evolution of weed species: historical understanding and current limitations. Front. Agron. 3:626454
    [Google Scholar]
  241. 241.
    Saul WC, Jeschke JM. 2015. Eco-evolutionary experience in novel species interactions. Ecol. Lett. 18:236–45
    [Google Scholar]
  242. 242.
    Schierenbeck KA, Ellstrand NC. 2009. Hybridization and evolution of invasiveness in plants and other organisms. Biol. Invasions 11:1093–105
    [Google Scholar]
  243. 243.
    Schrieber K, Lachmuth S. 2017. The genetic paradox of invasions revisited: the potential role of inbreeding × environment interactions in invasion success. Biol. Rev. 92:939–52
    [Google Scholar]
  244. 244.
    Schultheis EH, Berardi AE, Lau JA. 2015. No release for the wicked: Enemy release is dynamic and not associated with invasiveness. Ecology 96:2446–57
    [Google Scholar]
  245. 245.
    Seabloom EW, Harpole WS, Reichman OJ, Tilman D. 2003. Invasion, competitive dominance, and resource use by exotic and native California grassland species. PNAS 100:13384
    [Google Scholar]
  246. 246.
    Seebens H, Bacher S, Blackburn TM, Capinha C, Dawson W et al. 2021. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27:970–82
    [Google Scholar]
  247. 247.
    Shea K, Chesson P. 2002. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 17:170–76
    [Google Scholar]
  248. 248.
    Sher AA, Hyatt LA. 1999. The Disturbed Resource-Flux Invasion Matrix: a new framework for patterns of plant invasion. Biol. Invasions 1:107–14
    [Google Scholar]
  249. 249.
    Simberloff D. 2009. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 40:81–102
    [Google Scholar]
  250. 250.
    Simberloff D, Von Holle B. 1999. Positive interactions of nonindigenous species: invasional meltdown?. Biol. Invasions 1:21–32Seminal article that showed that invasions change levels of invasibility, often rendering an ecosystem more open to further invasions.
    [Google Scholar]
  251. 251.
    Sinclair JS, Brown JA, Lockwood JL. 2020. Reciprocal human-natural system feedback loops within the invasion process. NeoBiota 62:489–508
    [Google Scholar]
  252. 252.
    Smith AL, Hodkinson TR, Villellas J, Catford JA, Csergő AM. 2021. Global gene flow releases invasive plants from environmental constraints on genetic diversity. PNAS 117:4218–27
    [Google Scholar]
  253. 253.
    Smith MD, Wilcox JC, Kelly T, Knapp AK. 2004. Dominance not richness determines invasibility of tallgrass prairie. Oikos 106:253–62
    [Google Scholar]
  254. 254.
    Stevens AV, Nicotra AB, Godfree RC, Guja LK 2020. Polyploidy affects the seed, dormancy and seedling characteristics of a perennial grass, conferring an advantage in stressful climates. Plant Biol 22:500–13
    [Google Scholar]
  255. 255.
    Stohlgren TJ, Jarnevitch C, Chong GW. 2006. Scale and plant invasions: a theory of biotic acceptance. Preslia 78:405–26
    [Google Scholar]
  256. 256.
    Suda J, Meyerson LA, Leitch IJ, Pyšek P. 2015. The hidden side of plant invasions: the role of genome size. New Phytol 205:994–1007
    [Google Scholar]
  257. 257.
    Sun Y, Müller-Schärer H, Schaffner U. 2016. Neighbour origin and ploidy level drive impact of an alien invasive plant species in a competitive environment. PLOS ONE 11:e0155712
    [Google Scholar]
  258. 258.
    te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J et al. 2012. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 109:19–45A review of the role of polyploidy (whole-genome duplication) as a determinant of the invasiveness of non-native plants.
    [Google Scholar]
  259. 259.
    Thébault A. 2009. Resistance of plant communities to invasive species: disentangling invasiveness from invasibility PhD Thesis, Éc. Polytech. Féd. Lausanne:
  260. 260.
    Thébault A, Gillet F, Müller-Schärer H, Buttler A. 2011. Polyploidy and invasion success: trait trade-offs in native and introduced cytotypes of two Asteraceae species. Plant Ecol 212:315–25
    [Google Scholar]
  261. 261.
    Thuiller W, Gallien L, Boulangeat I, de Bello F, Munkemuller T et al. 2010. Resolving Darwin's naturalization conundrum: a quest for evidence. Divers. Distrib. 16:461–75
    [Google Scholar]
  262. 262.
    Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M. 2005. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob. Change Biol. 11:2234–50
    [Google Scholar]
  263. 263.
    Tilman D. 1997. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 87:81–92
    [Google Scholar]
  264. 264.
    Tilman D, Wedin D, Knops J. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–20
    [Google Scholar]
  265. 265.
    Tomasetto F, Duncan RP, Hulme PE. 2019. Resolving the invasion paradox: pervasive scale and study dependence in the native-alien species richness relationship. Ecol. Lett. 22:1038–46
    [Google Scholar]
  266. 266.
    Torres N, Herrera I, Fajardo L, Bustamante RO. 2021. Meta-analysis of the impact of plant invasions on soil microbial communities. BMC Ecol. Evo. 21:172
    [Google Scholar]
  267. 267.
    Traveset A, Brundu B, Carta M, Mprezetou I, Lambdon P et al. 2008. Consistent performance of invasive plant species within and among islands of the Mediterranean basin. Biol. Invasions 10:847–58
    [Google Scholar]
  268. 268.
    Traveset A, Richardson DM 2020. Plant invasions: the role of biotic interactions—an overview. Plant Invasions: The Role of Biotic Interactions A Traveset, DM Richardson 1–25. Wallingford, UK: CAB International
    [Google Scholar]
  269. 269.
    Treier UA, Broennimann O, Normand S, Guisan A, Schaffner U et al. 2009. Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology 90:1366–77
    [Google Scholar]
  270. 270.
    Turbelin A, Catford JA 2021. Invasive plants and climate change. Climate Change TM Letcher 515–39. Amsterdam: Elsevier. , 3rd ed..
    [Google Scholar]
  271. 271.
    Uddin MN, Asaeda T, Shampa SH, Robinson RW. 2020. Allelopathy and its coevolutionary implications between native and non-native neighbors of invasive Cynara cardunculus L. Ecol. Evol. 10:7463–75
    [Google Scholar]
  272. 272.
    Van de Peer Y, Ashman T-L, Soltis PS, Soltis DE. 2021. Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33:11–26
    [Google Scholar]
  273. 273.
    van Kleunen M, Dawson W, Schlaepfer D, Jeschke JM, Fischer M. 2010. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol. Lett. 13:947–58
    [Google Scholar]
  274. 274.
    van Kleunen M, Fischer M. 2005. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol 166:49–60
    [Google Scholar]
  275. 275.
    van Kleunen M, Schlaepfer DR, Glaettli M, Fischer M. 2011. Preadapted for invasiveness: Do species traits or their plastic response to shading differ between invasive and non-invasive plant species in their native range?. J. Biogeogr. 38:1294–304
    [Google Scholar]
  276. 276.
    van Kleunen M, Schmid B. 2003. No evidence for evolutionary increased competitive ability (EICA) in the invasive plant Solidago canadensis. Ecology 84:2824–31
    [Google Scholar]
  277. 277.
    van Kleunen M, Weber E, Fischer M 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13:235–45
    [Google Scholar]
  278. 278.
    Van Riper LC, Larson DL. 2009. Role of invasive Melilotus officinalis in two native plant communities. Plant Ecol 200:129–39
    [Google Scholar]
  279. 279.
    Vogelsang KM, Bever JD. 2009. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90:399–407
    [Google Scholar]
  280. 280.
    Von Holle B. 2013. Environmental stress alters native-nonnative relationships at the community scale. Biol. Invasions 15:417–27
    [Google Scholar]
  281. 281.
    Vorstenbosch T, Essl F, Lenzner B 2020. An uphill battle? The elevational distribution of alien plant species along rivers and roads in the Austrian Alps. NeoBiota 63:1–24
    [Google Scholar]
  282. 282.
    Waddell EH, Chapman DS, Hill JK, Hughes M, Sailim AB et al. 2020. Trait filtering during exotic plant invasion of tropical rainforest remnants along a disturbance gradient. Funct. Ecol. 34:2584–97
    [Google Scholar]
  283. 283.
    Wallingford PD, Morelli TL, Allen JM, Beaury EM, Blumenthal DM et al. 2020. Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts. Nat. Clim. Change 10:398–405
    [Google Scholar]
  284. 284.
    Wan J-Z, Wang C-J, Zimmermann NE, Li M-H, Pouteau R et al. 2021. Current and future plant invasions in protected areas: Does clonality matter?. Divers. Distrib. 27:2465–78
    [Google Scholar]
  285. 285.
    Warren RJ II, Candeias M, Labatore A, Olejniczak M, Yang L 2019. Multiple mechanisms in woodland plant species invasion. J. Plant Ecol. 12:201–9
    [Google Scholar]
  286. 286.
    Warren RJ II, King JR, Tarsa C, Haas B, Henderson J 2017. A systematic review of context bias in invasion biology. PLOS ONE 12:e0182502
    [Google Scholar]
  287. 287.
    White EM, Wilson JC, Clarke AR. 2006. Biotic indirect effects: a neglected concept in invasion biology. Divers. Distrib. 12:443–55
    [Google Scholar]
  288. 288.
    White SR, Tannas S, Bao T, Bennett JA, Bork EW et al. 2013. Using structural equation modelling to test the passenger, driver and opportunist concepts in a Poa pratensis invasion. Oikos 122:377–84
    [Google Scholar]
  289. 289.
    Williamson M, Fitter A. 1996. The varying success of invaders. Ecology 77:1661–66
    [Google Scholar]
  290. 290.
    Wilson JRU, Richardson DM, Rouget M, Procheş Ş, Amis MA et al. 2007. Residence time and potential range: crucial considerations in modelling plant invasions. Divers. Distrib. 13:11–22
    [Google Scholar]
  291. 291.
    Wolfe LM, Elzinga JA, Biere A. 2004. Increased susceptibility to enemies following introduction in the invasive plant Silene latifolia. Ecol. Lett. 7:813–20
    [Google Scholar]
  292. 292.
    Wolfe B, Klironomos JN. 2005. Breaking new ground: soil communities and exotic plant invasion. BioScience 55:477–87
    [Google Scholar]
  293. 293.
    Wolkovich EM, Cleland EE 2011. The phenology of plant invasions: a community ecology perspective. Front. Ecol. Environ. 9:287–94
    [Google Scholar]
  294. 294.
    Wyse SV, Etherington TR, Hulme PE. 2022. Quantifying the risk of non-native conifer establishment across heterogeneous landscapes. J. Appl. Ecol. 59:1608–18
    [Google Scholar]
  295. 295.
    Wyse SV, Hulme PE. 2021. Dispersal potential rather than risk assessment scores predict the spread rate of non-native pines across New Zealand. J. Appl. Ecol. 58:1981–92
    [Google Scholar]
  296. 296.
    Xia L, Geng Q, An S 2020. Rapid genetic divergence of an invasive species, Spartina alterniflora, in China. Front. Genet. 11:284
    [Google Scholar]
  297. 297.
    Yang Q, Carrillo J, Jin H, Shang L, Hovick SM et al. 2013. Plant–soil biota interactions of an invasive species in its native and introduced ranges: implications for invasion success. Soil Biol. Biochem. 65:78–85
    [Google Scholar]
  298. 298.
    Yelenik SG, D'Antonio CM 2013. Self-reinforcing impacts of plant invasions change over time. Nature 503:517–20
    [Google Scholar]
  299. 299.
    Young SL, Clements DR, DiTommaso A. 2017. Climate dynamics, invader fitness, and ecosystem resistance in an invasion-factor framework. Invasive Plant Sci. Manag. 10:215–31
    [Google Scholar]
  300. 300.
    Yuan L, Li JM, Yu FH, Oduor A, van Kleunen M. 2021. Allelopathic and competitive interactions between native and alien plants. Biol. Invasions 23:3077–90
    [Google Scholar]
  301. 301.
    Zenni RD, Dickie IA, Wingfield MJ, Hirsch H, Crous CJ et al. 2017. Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions. AoB PLANTS 9:plw085
    [Google Scholar]
  302. 302.
    Zhang Y, Leng Z, Wu Y, Jia H, Yan C et al. 2022. Interaction between nitrogen, phosphorus, and invasive alien plants. Sustainability 14:746
    [Google Scholar]
  303. 303.
    Zhang Z, Liu Y, Yuan L, Weber E, van Kleunen M. 2021. Effect of allelopathy on plant performance: a meta-analysis. Ecol. Lett. 24:348–362
    [Google Scholar]
  304. 304.
    Zhang Z, Pan X, Blumenthal D, van Kleunen M, Liu M et al. 2018. Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants. Ecology 99:866–75
    [Google Scholar]
  305. 305.
    Zhang Z, Zhou F, Pan X, van Kleunen M, Liu M et al. 2019. Evolution of increased intraspecific competitive ability following introduction: the importance of relatedness among genotypes. J. Ecol. 107:387–95
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-070522-071021
Loading
/content/journals/10.1146/annurev-arplant-070522-071021
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error