1932

Abstract

The shoot meristem of land plants maintains the capacity for organ generation throughout its lifespan due to a group of undifferentiated stem cells. Most meristems are shaped like a dome with a precise spatial arrangement of functional domains, and, within and between these domains, cells interact through a network of interconnected signaling pathways. Intercellular communication in meristems is mediated by mobile transcription factors, small RNAs, hormones, and secreted peptides that are perceived by membrane-localized receptors. In recent years, we have gained deeper insight into the underlying molecular processes of the shoot meristem, and we discuss here how plants integrate internal and external inputs to control shoot meristem activities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070523-035342
2024-07-22
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070523-035342.html?itemId=/content/journals/10.1146/annurev-arplant-070523-035342&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Antebi YE, Linton JM, Klumpe H, Bintu B, Gong M, et al. 2017.. Combinatorial signal perception in the BMP pathway. . Cell 170::118496.e24
    [Crossref] [Google Scholar]
  2. 2.
    Bahafid E, Bradtmöller I, Thies AM, Nguyen T, Gutierrez C, et al. 2023.. The Arabidopsis SHORTROOT network coordinates shoot apical meristem development with auxin-dependent lateral organ initiation. . eLife 12::e83334
    [Crossref] [Google Scholar]
  3. 3.
    Bartrina I, Jensen H, Novak O, Strnad M, Werner T, Schmulling T. 2017.. Gain-of-function mutants of the cytokinin receptors AHK2 and AHK3 regulate plant organ size, flowering time and plant longevity. . Plant Physiol. 173::178397
    [Crossref] [Google Scholar]
  4. 4.
    Baubec T, Finke A, Mittelsten Scheid O, Pecinka A. 2014.. Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. . EMBO Rep. 15::44652
    [Crossref] [Google Scholar]
  5. 5.
    Besnard F, Refahi Y, Morin V, Marteaux B, Brunoud G, et al. 2014.. Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. . Nature 505::41721
    [Crossref] [Google Scholar]
  6. 6.
    Besnard F, Rozier F, Vernoux T. 2014.. The AHP6 cytokinin signaling inhibitor mediates an auxin-cytokinin crosstalk that regulates the timing of organ initiation at the shoot apical meristem. . Plant Signal. Behav. 9::e28788
    [Crossref] [Google Scholar]
  7. 7.
    Bhatia N, Bozorg B, Larsson A, Ohno C, Jonsson H, Heisler MG. 2016.. Auxin acts through MONOPTEROS to regulate plant cell polarity and pattern phyllotaxis. . Curr. Biol. 26::32028
    [Crossref] [Google Scholar]
  8. 8.
    Bleckmann A, Weidtkamp-Peters S, Seidel CAM, Simon R. 2010.. Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. . Plant Physiol. 152::16676
    [Crossref] [Google Scholar]
  9. 9.
    Blümke P, Schlegel J, Gonzalez-Ferrer C, Becher S, Pinto KG, et al. 2021.. Receptor-like cytoplasmic kinase MAZZA mediates developmental processes with CLAVATA1 family receptors in Arabidopsis. . J. Exp. Bot. 72::485370
    [Crossref] [Google Scholar]
  10. 10.
    Bommert P, Je BI, Goldshmidt A, Jackson D. 2013.. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. . Nature 502::55558
    [Crossref] [Google Scholar]
  11. 11.
    Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, et al. 2005.. thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. . Development 132::123545
    [Crossref] [Google Scholar]
  12. 12.
    Bommert P, Nagasawa NS, Jackson D. 2013.. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. . Nat. Genet. 45::33437
    [Crossref] [Google Scholar]
  13. 13.
    Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. 2000.. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. . Science 289::61719 13. Together with Reference 31, identified CLV3, a signaling peptide seminal in understanding molecular mechanisms in plant meristems.
    [Crossref] [Google Scholar]
  14. 14.
    Breiden M, Olsson V, Blumke P, Schlegel J, Gustavo-Pinto K, et al. 2021.. The cell fate controlling CLE40 peptide requires CNGCs to trigger highly localized Ca2+ transients in Arabidopsis thaliana root meristems. . Plant Cell Physiol. 62::1290301
    [Crossref] [Google Scholar]
  15. 15.
    Burian A, Barbier de Reuille P, Kuhlemeier C. 2016.. Patterns of stem cell divisions contribute to plant longevity. . Curr. Biol. 26::138594
    [Crossref] [Google Scholar]
  16. 16.
    Castro-Rodriguez V, Kleist TJ, Gappel NM, Atanjaoui F, Okumoto S, et al. 2022.. Sponging of glutamate at the outer plasma membrane surface reveals roles for glutamate in development. . Plant J. 109::66474
    [Crossref] [Google Scholar]
  17. 17.
    Chang W, Guo Y, Zhang H, Liu X, Guo L. 2020.. Same actor in different stages: genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. . Front. Ecol. Evol. 8::89
    [Crossref] [Google Scholar]
  18. 18.
    Chickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM. 2012.. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. . PNAS 109::40027
    [Crossref] [Google Scholar]
  19. 19.
    Chou H, Zhu Y, Ma Y, Berkowitz GA. 2016.. The CLAVATA signaling pathway mediating stem cell fate in shoot meristems requires Ca2+ as a secondary cytosolic messenger. . Plant J. 85::494506
    [Crossref] [Google Scholar]
  20. 20.
    Chu H, Qian Q, Liang W, Yin C, Tan H, et al. 2006.. The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. . Plant Physiol. 142::103952
    [Crossref] [Google Scholar]
  21. 21.
    Chung Y, Zhu Y, Wu M-F, Simonini S, Kuhn A, et al. 2019.. Auxin Response Factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS. . Nat. Commun. 10::886
    [Crossref] [Google Scholar]
  22. 22.
    Cock JM, McCormick S. 2001.. A large family of genes that share homology with CLAVATA3. . Plant Physiol. 126::93942
    [Crossref] [Google Scholar]
  23. 23.
    Copley SD. 2015.. An evolutionary biochemist's perspective on promiscuity. . Trends Biochem. Sci. 40::7278
    [Crossref] [Google Scholar]
  24. 24.
    Crook AD, Willoughby AC, Hazak O, Okuda S, VanDerMolen KR, et al. 2020.. BAM1/2 receptor kinase signaling drives CLE peptide-mediated formative cell divisions in Arabidopsis roots. . PNAS 117::3275056
    [Crossref] [Google Scholar]
  25. 25.
    Dao TQ, Weksler N, Liu HM-H, Leiboff S, Fletcher JC. 2022.. Interactive CLV3, CLE16 and CLE17 signaling mediates stem cell homeostasis in the Arabidopsis shoot apical meristem. . Development 149::dev200787
    [Crossref] [Google Scholar]
  26. 26.
    Daum G, Medzihradszky A, Suzaki T, Lohmann JU. 2014.. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. . PNAS 111::1461924 26. Confirmed the importance of communication between layers in the meristem to maintain proper organization.
    [Crossref] [Google Scholar]
  27. 27.
    DeFalco TA, Anne P, James SR, Willoughby AC, Schwanke F, et al. 2022.. A conserved module regulates receptor kinase signalling in immunity and development. . Nat. Plants 8::35665
    [Crossref] [Google Scholar]
  28. 28.
    DeYoung BJ, Clark SE. 2008.. BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. . Genetics 180::895904 28. Showed that the contrast in CLV1 and BAM functions arises from their expression pattern, despite their structural similarities.
    [Crossref] [Google Scholar]
  29. 29.
    Diévart A, Dalal M, Tax FE, Lacey AD, Huttly A, et al. 2003.. CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. . Plant Cell 15::1198211
    [Crossref] [Google Scholar]
  30. 30.
    Evans MW, Grover FO. 1940.. Developmental morphology of the growing point of the shoot and the inflorescence in grasses. . J. Agric. Res. 61::481520
    [Google Scholar]
  31. 31.
    Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. 1999.. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. . Science 283::191114 31. Together with Reference 13, identified CLV3, a signaling peptide seminal in understanding molecular mechanisms in plant meristems.
    [Crossref] [Google Scholar]
  32. 32.
    Fozard JA, King JR, Bennett MJ. 2013.. Modelling auxin efflux carrier phosphorylation and localization. . J. Theor. Biol. 319::3449
    [Crossref] [Google Scholar]
  33. 33.
    Garnelo Gómez B, Rosas-Díaz T, Shi C, Fan P, Zhang D, et al. 2021.. The viral silencing suppressor P19 interacts with the receptor-like kinases BAM1 and BAM2 and suppresses the cell-to-cell movement of RNA silencing independently of its ability to bind sRNA. . New Phytol. 229::184043
    [Crossref] [Google Scholar]
  34. 34.
    Goad DM, Zhu C, Kellogg EA. 2017.. Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function. . New Phytol. 216::60516
    [Crossref] [Google Scholar]
  35. 35.
    Gutierrez-Alanis D, Yong-Villalobos L, Jimenez-Sandoval P, Alatorre-Cobos F, Oropeza-Aburto A, et al. 2017.. Phosphate starvation-dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling. . Dev. Cell 41::55570.e3
    [Crossref] [Google Scholar]
  36. 36.
    Han H, Yan A, Li L, Zhu Y, Feng B, et al. 2020.. A signal cascade originated from epidermis defines apical-basal patterning of Arabidopsis shoot apical meristems. . Nat. Commun. 11::1214
    [Crossref] [Google Scholar]
  37. 37.
    Han H, Zhou Y. 2022.. Function and regulation of microRNA171 in plant stem cell homeostasis and developmental programing. . Int. J. Mol. Sci. 23::2544
    [Crossref] [Google Scholar]
  38. 38.
    Hazak O, Brandt B, Cattaneo P, Santiago J, Rodriguez-Villalon A, et al. 2017.. Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature. . EMBO Rep. 18::136781
    [Crossref] [Google Scholar]
  39. 39.
    Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, et al. 2010.. Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. . PLOS Biol. 8::e1000516
    [Crossref] [Google Scholar]
  40. 40.
    Hirakawa Y, Fujimoto T, Ishida S, Uchida N, Sawa S, et al. 2020.. Induction of multichotomous branching by CLAVATA peptide in Marchantia polymorpha. . Curr. Biol. 30::383340.e4
    [Crossref] [Google Scholar]
  41. 41.
    Hirakawa Y, Uchida N, Yamaguchi YL, Tabata R, Ishida S, et al. 2019.. Control of proliferation in the haploid meristem by CLE peptide signaling in Marchantia polymorpha. . PLOS Genet. 15::e1007997
    [Crossref] [Google Scholar]
  42. 42.
    Hobe M, Muller R, Grunewald M, Brand U, Simon R. 2003.. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. . Dev. Genes Evol. 213::37181
    [Crossref] [Google Scholar]
  43. 43.
    Hu C, Zhu Y, Cui Y, Cheng K, Liang W, et al. 2018.. A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. . Nat. Plants 4::20511
    [Crossref] [Google Scholar]
  44. 44.
    Incarbone M, Bradamante G, Pruckner F, Wegscheider T, Rozhon W, et al. 2023.. Salicylic acid and RNA interference mediate antiviral immunity of plant stem cells. . PNAS 120::e2302069120
    [Crossref] [Google Scholar]
  45. 45.
    Ishida T, Tabata R, Yamada M, Aida M, Mitsumasu K, et al. 2014.. Heterotrimeric G proteins control stem cell proliferation through CLAVATA signaling in Arabidopsis. . EMBO Rep. 15::12029
    [Crossref] [Google Scholar]
  46. 46.
    Ishihara H, Sugimoto K, Tarr PT, Temman H, Kadokura S, et al. 2019.. Primed histone demethylation regulates shoot regenerative competency. . Nat. Commun. 10::1786
    [Crossref] [Google Scholar]
  47. 47.
    Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED, et al. 2016.. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. . Nat. Genet. 48::78591
    [Crossref] [Google Scholar]
  48. 48.
    Je BI, Xu F, Wu Q, Liu L, Meeley R, et al. 2018.. The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. . eLife 7::e35673
    [Crossref] [Google Scholar]
  49. 49.
    Jones DS, John A, VanDerMolen KR, Nimchuk ZL. 2021.. CLAVATA signaling ensures reproductive development in plants across thermal environments. . Curr. Biol. 31::22027.e5
    [Crossref] [Google Scholar]
  50. 50.
    Jönsson H, Heisler M, Reddy GV, Agrawal V, Gor V, et al. 2005.. Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. . Bioinformatics 21:(Suppl. 1):i23240
    [Crossref] [Google Scholar]
  51. 51.
    Jonsson K, Hamant O, Bhalerao RP. 2022.. Plant cell walls as mechanical signaling hubs for morphogenesis. . Curr. Biol. 32::R33440
    [Crossref] [Google Scholar]
  52. 52.
    Kellogg E, Camara P, Rudall P, Ladd P, Malcomber S, et al. 2013.. Early inflorescence development in the grasses (Poaceae). . Front. Plant Sci. 4::250
    [Crossref] [Google Scholar]
  53. 53.
    Kimura Y, Tasaka M, Torii KU, Uchida N. 2018.. ERECTA-family genes coordinate stem cell functions between the epidermal and internal layers of the shoot apical meristem. . Development 145::dev156380
    [Crossref] [Google Scholar]
  54. 54.
    Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, et al. 2010.. RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. . Development 137::391120
    [Crossref] [Google Scholar]
  55. 55.
    Kinoshita A, Vayssieres A, Richter R, Sang Q, Roggen A, et al. 2020.. Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. . eLife 9::e60661
    [Crossref] [Google Scholar]
  56. 56.
    Kirch T, Simon R, Grunewald M, Werr W. 2003.. The DORNRÖSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem ccll fate and lateral organ development. . Plant Cell 15::694705
    [Crossref] [Google Scholar]
  57. 57.
    Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, et al. 2013.. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. . Dev. Cell 24::12532
    [Crossref] [Google Scholar]
  58. 58.
    Knauer S, Javelle M, Li L, Li X, Ma X, et al. 2019.. A high-resolution gene expression atlas links dedicated meristem genes to key architectural traits. . Genome Res. 29::196273
    [Crossref] [Google Scholar]
  59. 59.
    Kosentka PZ, Overholt A, Maradiaga R, Mitoubsi O, Shpak ED. 2019.. EPFL signals in the boundary region of the SAM restrict its size and promote leaf initiation. . Plant Physiol. 179::26579 59. Showed how parallel signaling from the boundaries regulates the central zone in the shoot apical meristem.
    [Crossref] [Google Scholar]
  60. 60.
    Kwon CT, Heo J, Lemmon ZH, Capua Y, Hutton SF, et al. 2020.. Rapid customization of Solanaceae fruit crops for urban agriculture. . Nat. Biotechnol. 38::18288
    [Crossref] [Google Scholar]
  61. 61.
    Kwon CT, Tang L, Wang X, Gentile I, Hendelman A, et al. 2022.. Dynamic evolution of small signalling peptide compensation in plant stem cell control. . Nat. Plants 8::34655
    [Crossref] [Google Scholar]
  62. 62.
    Landrein B, Kiss A, Sassi M, Chauvet A, Das P, et al. 2015.. Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. . eLife 4::e07811
    [Crossref] [Google Scholar]
  63. 63.
    Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, et al. 2018.. Rapid improvement of domestication traits in an orphan crop by genome editing. . Nat. Plants 4::76670
    [Crossref] [Google Scholar]
  64. 64.
    Li S, Meng S, Weng J, Wu Q. 2022.. Fine-tuning shoot meristem size to feed the world. . Trends Plant Sci. 27::35563
    [Crossref] [Google Scholar]
  65. 65.
    Li T, Yan A, Bhatia N, Altinok A, Afik E, et al. 2019.. Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche. . Nat. Commun. 10::726
    [Crossref] [Google Scholar]
  66. 66.
    Li T, Yang X, Yu Y, Si X, Zhai X, et al. 2018.. Domestication of wild tomato is accelerated by genome editing. . Nat. Biotechnol. 36::116063
    [Crossref] [Google Scholar]
  67. 67.
    Li Z, He Y. 2020.. Roles of brassinosteroids in plant reproduction. . Int. J. Mol. Sci. 21::872
    [Crossref] [Google Scholar]
  68. 68.
    Liu L, Gallagher J, Arevalo ED, Chen R, Skopelitis T, et al. 2021.. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. . Nat. Plants 7::28794
    [Crossref] [Google Scholar]
  69. 69.
    Liu X, Dinh TT, Li D, Shi B, Li Y, et al. 2014.. AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy. . Plant J. 80::62941
    [Crossref] [Google Scholar]
  70. 70.
    Liu Z, Shpak ED, Hong T. 2020.. A mathematical model for understanding synergistic regulations and paradoxical feedbacks in the shoot apical meristem. . Comput. Struct. Biotechnol. J. 18::387789
    [Crossref] [Google Scholar]
  71. 71.
    Lyndon RF, Cunninghame ME. 1986.. Control of shoot apical development via cell division. . Symp. Soc. Exp. Biol. 40::23355
    [Google Scholar]
  72. 72.
    Ma Y, Miotk A, Šutiković Z, Ermakova O, Wenzl C, et al. 2019.. WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis. . Nat. Commun. 10::5093
    [Crossref] [Google Scholar]
  73. 73.
    Mangelsdorf PC. 1945.. The origin and nature of the ear of maize. . Botanic. Museum Leaflets Harv. Univ. 12::3375
    [Crossref] [Google Scholar]
  74. 74.
    Meng X, Wang H, He Y, Liu Y, Walker JC, et al. 2012.. A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. . Plant Cell 24::494860
    [Crossref] [Google Scholar]
  75. 75.
    Merelo P, González-Cuadra I, Ferrándiz C. 2022.. A cellular analysis of meristem activity at the end of flowering points to cytokinin as a major regulator of proliferative arrest in Arabidopsis. . Curr. Biol. 32::74962.e3 75. Linked the proliferative arrest with hormone signaling in meristems.
    [Crossref] [Google Scholar]
  76. 76.
    Minow MAA, Coneva V, Lesy V, Misyura M, Colasanti J. 2022.. Plant gene silencing signals move from the phloem to influence gene expression in shoot apical meristems. . BMC Plant Biol. 22::606
    [Crossref] [Google Scholar]
  77. 77.
    Müller R, Bleckmann A, Simon R. 2008.. The receptor kinase CORYNE of Arabidopsis transmits the stem cell–limiting signal CLAVATA3 independently of CLAVATA1. . Plant Cell 20::93446
    [Crossref] [Google Scholar]
  78. 78.
    Müller R, Borghi L, Kwiatkowska D, Laufs P, Simon R. 2006.. Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. . Plant Cell 18::118898
    [Crossref] [Google Scholar]
  79. 79.
    Munos S, Ranc N, Botton E, Berard A, Rolland S, et al. 2011.. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. . Plant Physiol. 156::224454
    [Crossref] [Google Scholar]
  80. 80.
    Narasimhan M, Simon R. 2022.. Spatial range, temporal span, and promiscuity of CLE-RLK signaling. . Front. Plant Sci. 13::906087
    [Crossref] [Google Scholar]
  81. 81.
    Nguyen V, Gutzat R. 2022.. Epigenetic regulation in the shoot apical meristem. . Curr. Opin. Plant Biol. 69::102267
    [Crossref] [Google Scholar]
  82. 82.
    Nimchuk ZL, Zhou Y, Tarr PT, Peterson BA, Meyerowitz EM. 2015.. Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases. . Development 142::104349 82. Showed how the expression profiles changed between meristem regions to compensate for meristem maintenance.
    [Crossref] [Google Scholar]
  83. 83.
    Pan L, Lv S, Yang N, Lv Y, Liu Z, et al. 2016.. The multifunction of CLAVATA2 in plant development and immunity. . Front. Plant Sci. 7::1573
    [Google Scholar]
  84. 84.
    Perales M, Rodriguez K, Snipes S, Yadav RK, Diaz-Mendoza M, Reddy GV. 2016.. Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. . PNAS 113::E6298306
    [Crossref] [Google Scholar]
  85. 85.
    Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schone S, et al. 2016.. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. . eLife 5::e17023
    [Crossref] [Google Scholar]
  86. 86.
    Pfeiffer A, Wenzl C, Lohmann JU. 2017.. Beyond flexibility: controlling stem cells in an ever changing environment. . Curr. Opin. Plant Biol. 35::11723
    [Crossref] [Google Scholar]
  87. 87.
    Plong A, Rodriguez K, Alber M, Chen W, Reddy GV. 2021.. CLAVATA3 mediated simultaneous control of transcriptional and post-translational processes provides robustness to the WUSCHEL gradient. . Nat. Commun. 12::6361
    [Crossref] [Google Scholar]
  88. 88.
    Reinhardt D, Frenz M, Mandel T, Kuhlemeier C. 2003.. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. . Development 130::407383
    [Crossref] [Google Scholar]
  89. 89.
    Ren S-C, Song X-F, Chen W-Q, Lu R, Lucas WJ, Liu C-M. 2019.. CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex. . J. Integr. Plant Biol. 61::104361
    [Crossref] [Google Scholar]
  90. 90.
    Rodriguez K, Perales M, Snipes S, Yadav RK, Diaz-Mendoza M, Reddy GV. 2016.. DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning. . PNAS 113::E630715
    [Crossref] [Google Scholar]
  91. 91.
    Rodriguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. 2017.. Engineering quantitative trait variation for crop improvement by genome editing. . Cell 171::47080.e8
    [Crossref] [Google Scholar]
  92. 92.
    Rodriguez-Leal D, Xu C, Kwon CT, Soyars C, Demesa-Arevalo E, et al. 2019.. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. . Nat. Genet. 51::78692
    [Crossref] [Google Scholar]
  93. 93.
    Sang Q, Vayssières A, Ó'Maoiléidigh DS, Yang X, Vincent C, et al. 2022.. MicroRNA172 controls inflorescence meristem size through regulation of APETALA2 in Arabidopsis. . New Phytol. 235::35671
    [Crossref] [Google Scholar]
  94. 94.
    Schlegel J, Denay G, Wink R, Pinto KG, Stahl Y, et al. 2021.. Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways. . eLife 10::e70934 94. Illustrated two antagonistic signaling pathways—CLV3-CLV1 and CLE40-BAM1—regulating stem cell homeostasis through WUS activity.
    [Crossref] [Google Scholar]
  95. 95.
    Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T. 2000.. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. . Cell 100::63544 95. Postulated the model for feedback regulation in the central zone by CLV and WUS.
    [Crossref] [Google Scholar]
  96. 96.
    Shang E, Wang X, Li T, Guo F, Ito T, Sun B. 2021.. Robust control of floral meristem determinacy by position-specific multifunctions of KNUCKLES. . PNAS 118::e2102826118
    [Crossref] [Google Scholar]
  97. 97.
    Shinohara H, Matsubayashi Y. 2015.. Reevaluation of the CLV3-receptor interaction in the shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding point of view. . Plant J. 82::32836
    [Crossref] [Google Scholar]
  98. 98.
    Shpak ED, Berthiaume CT, Hill EJ, Torii KU. 2004.. Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. . Development 131::1491501
    [Crossref] [Google Scholar]
  99. 99.
    Shpak ED, Lakeman MB, Torii KU. 2003.. Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA leucine-rich repeat receptor–like kinase signaling pathway that regulates organ shape. . Plant Cell 15::1095110
    [Crossref] [Google Scholar]
  100. 100.
    Singh S, Singh A, Singh A, Yadav S, Bajaj I, et al. 2020.. Role of chromatin modification and remodeling in stem cell regulation and meristem maintenance in Arabidopsis. . J. Exp. Bot. 71::77892
    [Crossref] [Google Scholar]
  101. 101.
    Skopelitis DS, Benkovics AH, Husbands AY, Timmermans MCP. 2017.. Boundary formation through a direct threshold-based readout of mobile small RNA gradients. . Dev. Cell 43::26573.e6
    [Crossref] [Google Scholar]
  102. 102.
    Skopelitis DS, Hill K, Klesen S, Marco CF, von Born P, et al. 2018.. Gating of miRNA movement at defined cell-cell interfaces governs their impact as positional signals. . Nat. Commun. 9::3107
    [Crossref] [Google Scholar]
  103. 103.
    Snipes SA, Rodriguez K, DeVries AE, Miyawaki KN, Perales M, et al. 2018.. Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription. . PLOS Genet. 14::e1007351
    [Crossref] [Google Scholar]
  104. 104.
    Somssich M, Je BI, Simon R, Jackson D. 2016.. CLAVATA-WUSCHEL signaling in the shoot meristem. . Development 143::323848
    [Crossref] [Google Scholar]
  105. 105.
    Somssich M, Ma Q, Weidtkamp-Peters S, Stahl Y, Felekyan S, et al. 2015.. Real-time dynamics of peptide ligand–dependent receptor complex formation in planta. . Sci. Signal. 8::ra76
    [Crossref] [Google Scholar]
  106. 106.
    Song S-K, Clark SE. 2005.. POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis. . Dev. Biol. 285::27284
    [Crossref] [Google Scholar]
  107. 107.
    Song X-F, Hou X-L, Liu C-M. 2021.. CLE peptides: critical regulators for stem cell maintenance in plants. . Planta 255::5
    [Crossref] [Google Scholar]
  108. 108.
    Stahl Y, Grabowski S, Bleckmann A, Kuhnemuth R, Weidtkamp-Peters S, et al. 2013.. Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. . Curr. Biol. 23::36271
    [Crossref] [Google Scholar]
  109. 109.
    Stahl Y, Simon R. 2013.. Gated communities: Apoplastic and symplastic signals converge at plasmodesmata to control cell fates. . J. Exp. Bot. 64::523741
    [Crossref] [Google Scholar]
  110. 110.
    Stahl Y, Wink RH, Ingram GC, Simon R. 2009.. A signaling module controlling the stem cell niche in Arabidopsis root meristems. . Curr. Biol. 19::90914
    [Crossref] [Google Scholar]
  111. 111.
    Steeves TA, Sussex IM. 1989.. Patterns in Plant Development. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  112. 112.
    Su CJ, Murugan A, Linton JM, Yeluri A, Bois J, et al. 2022.. Ligand-receptor promiscuity enables cellular addressing. . Cell Syst. 13::40825.e12
    [Crossref] [Google Scholar]
  113. 113.
    Sun B, Xu Y, Ng K-H, Ito T. 2009.. A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. . Genes Dev. 23::1791804
    [Crossref] [Google Scholar]
  114. 114.
    Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H-Y. 2004.. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. . Development 131::564957
    [Crossref] [Google Scholar]
  115. 115.
    Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano HY. 2006.. Conservation and diversification of meristem maintenance mechanism in Oryza sativa: function of the FLORAL ORGAN NUMBER2 gene. . Plant Cell Physiol. 47::1591602
    [Crossref] [Google Scholar]
  116. 116.
    Suzaki T, Yoshida A, Hirano H-Y. 2008.. Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice. . Plant Cell 20::204958
    [Crossref] [Google Scholar]
  117. 117.
    Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D. 2001.. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. . Genes Dev. 15::275566
    [Crossref] [Google Scholar]
  118. 118.
    Takahashi G, Betsuyaku S, Okuzumi N, Kiyosue T, Hirakawa Y. 2021.. An evolutionarily conserved coreceptor gene is essential for CLAVATA signaling in Marchantia polymorpha. . Front. Plant Sci. 12::657548 118. Identified the single ortholog of the subclass II coreceptor MpCIK, which participates in conserved CLE2-CLV1 signaling.
    [Crossref] [Google Scholar]
  119. 119.
    Takahashi G, Kiyosue T, Hirakawa Y. 2023.. Control of stem cell behavior by CLE-JINGASA signaling in the shoot apical meristem in Marchantia polymorpha. . Curr. Biol. 33::512131.e6
    [Crossref] [Google Scholar]
  120. 120.
    Takanashi H, Sumiyoshi H, Mogi M, Hayashi Y, Ohnishi T, Tsutsumi N. 2018.. miRNAs control HAM1 functions at the single-cell-layer level and are essential for normal embryogenesis in Arabidopsis. . Plant Mol. Biol. 96::62740
    [Crossref] [Google Scholar]
  121. 121.
    Tipper E, Leitao N, Dangeville P, Lawson DM, Charpentier M. 2023.. A novel mutant allele of AtCNGC15 reveals a dual function of nuclear calcium release in the root meristem. . J. Exp. Bot. 74::257284
    [Crossref] [Google Scholar]
  122. 122.
    Tran PT, Citovsky V. 2021.. Receptor-like kinase BAM1 facilitates early movement of the Tobacco mosaic virus. . Commun. Biol. 4::511
    [Crossref] [Google Scholar]
  123. 123.
    Uchida N, Lee JS, Horst RJ, Lai HH, Kajita R, et al. 2012.. Regulation of inflorescence architecture by intertissue layer ligand-receptor communication between endodermis and phloem. . PNAS 109::633742
    [Crossref] [Google Scholar]
  124. 124.
    Walker CH, Ware A, Šimura J, Ljung K, Wilson Z, Bennett T. 2023.. Cytokinin signaling regulates two-stage inflorescence arrest in Arabidopsis. . Plant Physiol. 191::47995
    [Crossref] [Google Scholar]
  125. 125.
    Wang C, Reid JB, Foo E. 2020.. The role of CLV1, CLV2 and HPAT homologues in the nitrogen-regulation of root development. . Physiol. Plant 170::60721
    [Crossref] [Google Scholar]
  126. 126.
    Wang C, Yang X, Zhang Y, Shen C, Shi J, et al. 2023.. Barley FASCIATED EAR genes determine inflorescence meristem size and yield traits. . Crop. J. 11::67991
    [Crossref] [Google Scholar]
  127. 127.
    Wang X, Aguirre L, Rodriguez-Leal D, Hendelman A, Benoit M, Lippman ZB. 2021.. Dissecting cis-regulatory control of quantitative trait variation in a plant stem cell circuit. . Nat. Plants 7::41927
    [Crossref] [Google Scholar]
  128. 128.
    Wang Y, Shirakawa M, Ito T. 2022.. Dynamic changes in reactive oxygen species in the shoot apex contribute to stem cell death in Arabidopsis thaliana. . Int. J. Mol. Sci. 23::3864
    [Crossref] [Google Scholar]
  129. 129.
    Ware A, Walker CH, Simura J, Gonzalez-Suarez P, Ljung K, et al. 2020.. Auxin export from proximal fruits drives arrest in temporally competent inflorescences. . Nat. Plants 6::699707
    [Crossref] [Google Scholar]
  130. 130.
    Wenzl C, Lohmann JU. 2023.. 3D imaging reveals apical stem cell responses to ambient temperature. . Cells Dev. 175::203850
    [Crossref] [Google Scholar]
  131. 131.
    Whitewoods CD, Cammarata J, Nemec Venza Z, Sang S, Crook AD, et al. 2018.. CLAVATA was a genetic novelty for the morphological innovation of 3D growth in land plants. . Curr. Biol. 28::236576.e5
    [Crossref] [Google Scholar]
  132. 132.
    Wu H, Qu X, Dong Z, Luo L, Shao C, et al. 2020.. WUSCHEL triggers innate antiviral immunity in plant stem cells. . Science 370::22731
    [Crossref] [Google Scholar]
  133. 133.
    Wu J, Sun W, Sun C, Xu C, Li S, et al. 2023.. Cold stress induces malformed tomato fruits by breaking the feedback loops of stem cell regulation in floral meristem. . New Phytol. 237::226883
    [Crossref] [Google Scholar]
  134. 134.
    Wu Q, Xu F, Liu L, Char SN, Ding Y, et al. 2020.. The maize heterotrimeric G protein β subunit controls shoot meristem development and immune responses. . PNAS 117::1799805
    [Crossref] [Google Scholar]
  135. 135.
    Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J. 2013.. Glucose–TOR signalling reprograms the transcriptome and activates meristems. . Nature 496::18186
    [Crossref] [Google Scholar]
  136. 136.
    Xu C, Liberatore KL, MacAlister CA, Huang Z, Chu YH, et al. 2015.. A cascade of arabinosyltransferases controls shoot meristem size in tomato. . Nat. Genet. 47::78492
    [Crossref] [Google Scholar]
  137. 137.
    Xu Y, Yamaguchi N, Gan ES, Ito T. 2019.. When to stop: an update on molecular mechanisms of floral meristem termination. . J. Exp. Bot. 70::171118
    [Crossref] [Google Scholar]
  138. 138.
    Yadav RK, Perales M, Gruel J, Girke T, Jonsson H, Reddy GV. 2011.. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. . Genes Dev. 25::202530
    [Crossref] [Google Scholar]
  139. 139.
    Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, et al. 2005.. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. . Curr. Biol. 15::156671
    [Crossref] [Google Scholar]
  140. 140.
    Yang N, Liu J, Gao Q, Gui S, Chen L, et al. 2019.. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. . Nat. Genet. 51::105259
    [Crossref] [Google Scholar]
  141. 141.
    Yoshida S, Mandel T, Kuhlemeier C. 2011.. Stem cell activation by light guides plant organogenesis. . Genes Dev. 25::143950
    [Crossref] [Google Scholar]
  142. 142.
    Yu H, Lin T, Meng X, Du H, Zhang J, et al. 2021.. A route to de novo domestication of wild allotetraploid rice. . Cell 184::115670.e14
    [Crossref] [Google Scholar]
  143. 143.
    Yu LP, Simon EJ, Trotochaud AE, Clark SE. 2000.. POLTERGEIST functions to regulate meristem development downstream of the CLAVATA loci. . Development 127::166170
    [Crossref] [Google Scholar]
  144. 144.
    Zeng J, Dong Z, Wu H, Tian Z, Zhao Z. 2017.. Redox regulation of plant stem cell fate. . EMBO J. 36::284455
    [Crossref] [Google Scholar]
  145. 145.
    Zhang D, Yuan Z. 2014.. Molecular control of grass inflorescence development. . Annu. Rev. Plant Biol. 65::55378
    [Crossref] [Google Scholar]
  146. 146.
    Zhang K, Wang R, Zi H, Li Y, Cao X, et al. 2018.. AUXIN RESPONSE FACTOR3 regulates floral meristem determinacy by repressing cytokinin biosynthesis and signaling. . Plant Cell 30::32446
    [Crossref] [Google Scholar]
  147. 147.
    Zhang L, DeGennaro D, Lin G, Chai J, Shpak ED. 2021.. ERECTA family signaling constrains CLAVATA3 and WUSCHEL to the center of the shoot apical meristem. . Development 148::dev189753
    [Crossref] [Google Scholar]
  148. 148.
    Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, et al. 2010.. Hormonal control of the shoot stem-cell niche. . Nature 465::108992
    [Crossref] [Google Scholar]
  149. 149.
    Zhou Y, Liu X, Engstrom EM, Nimchuk ZL, Pruneda-Paz JL, et al. 2015.. Control of plant stem cell function by conserved interacting transcriptional regulators. . Nature 517::37780 149. Described how transcriptional programs can be specifically established by transcription factor interactions in the stem cell niche.
    [Crossref] [Google Scholar]
  150. 150.
    Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, et al. 2018.. De novo domestication of wild tomato using genome editing. . Nat. Biotechnol. 36::121116
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070523-035342
Loading
/content/journals/10.1146/annurev-arplant-070523-035342
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error