1932

Abstract

Plant vascular tissues are crucial for the long-distance transport of water, nutrients, and a multitude of signal molecules throughout the plant body and, therefore, central to plant growth and development. The intricate development of vascular tissues is orchestrated by unique populations of dedicated stem cells integrating endogenous as well as environmental cues. This review summarizes our current understanding of vascular-related stem cell biology and of vascular tissue differentiation. We present an overview of the molecular and cellular mechanisms governing the maintenance and fate determination of vascular stem cells and highlight the interplay between intrinsic and external cues. In this context, we emphasize the role of transcription factors, hormonal signaling, and epigenetic modifications. We also discuss emerging technologies and the large repertoire of cell types associated with vascular tissues, which have the potential to provide unprecedented insights into cellular specialization and anatomical adaptations to distinct ecological niches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070523-040525
2024-07-22
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070523-040525.html?itemId=/content/journals/10.1146/annurev-arplant-070523-040525&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ageeva MV, Petrovská B, Kieft H, Sal'nikov VV, Snegireva AV, et al. 2005.. Intrusive growth of flax phloem fibers is of intercalary type. . Planta 222:(4):56574
    [Crossref] [Google Scholar]
  2. 2.
    Anne P, Amiguet-Vercher A, Brandt B, Kalmbach L, Geldner N, et al. 2018.. CLERK is a novel receptor kinase required for sensing of root-active CLE peptides in Arabidopsis. . Development 145:(10):dev162354
    [Crossref] [Google Scholar]
  3. 3.
    Aubry E, Hoffmann B, Vilaine F, Gilard F, Klemens PAW, et al. 2022.. A vacuolar hexose transport is required for xylem development in the inflorescence stem. . Plant Physiol. 188:(2):122947
    [Crossref] [Google Scholar]
  4. 4.
    Augstein F, Carlsbecker A. 2022.. Salinity induces discontinuous protoxylem via a DELLA-dependent mechanism promoting salt tolerance in Arabidopsis seedlings. . New Phytol. 236:(1):195209
    [Crossref] [Google Scholar]
  5. 5.
    Beck CB, Schmid R, Rothwell GW. 1982.. Stelar morphology and the primary vascular system of seed plants. . Bot. Rev. 48:(4):691815
    [Crossref] [Google Scholar]
  6. 6.
    Behnke HD, Sjolund RD, eds. 1990.. Sieve Elements: Comparative Structure, Induction and Development. Berlin, Heidelberg:: Springer
    [Google Scholar]
  7. 7.
    Ben-Targem M, Ripper D, Bayer M, Ragni L. 2021.. Auxin and gibberellin signaling cross-talk promotes hypocotyl xylem expansion and cambium homeostasis. . J. Exp. Bot. 72:(10):364760
    [Crossref] [Google Scholar]
  8. 8.
    Bishopp A, Help H, El-Showk S, Weijers D, Scheres B, et al. 2011.. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. . Curr. Biol. 21:(11):91726
    [Crossref] [Google Scholar]
  9. 9.
    Blokhina O, Laitinen T, Hatakeyama Y, Delhomme N, Paasela T, et al. 2019.. Ray parenchymal cells contribute to lignification of tracheids in developing xylem of Norway spruce. . Plant Physiol. 181:(4):155272
    [Crossref] [Google Scholar]
  10. 10.
    Bossinger G, Spokevicius AV. 2018.. Sector analysis reveals patterns of cambium differentiation in poplar stems. . J. Exp. Bot. 69:(18):433948
    [Crossref] [Google Scholar]
  11. 11.
    Botha CEJ. 2013.. A tale of two neglected systems—structure and function of the thin- and thick-walled sieve tubes in monocotyledonous leaves. . Front. Plant Sci. 4::297
    [Crossref] [Google Scholar]
  12. 12.
    Brackmann K, Qi J, Gebert M, Jouannet V, Schlamp T, et al. 2018.. Spatial specificity of auxin responses coordinates wood formation. . Nat. Commun. 9:(1):875
    [Crossref] [Google Scholar]
  13. 13.
    Braun DM. 2022.. Phloem loading and unloading of sucrose: what a long, strange trip from source to sink. . Annu. Rev. Plant Biol. 73::55384
    [Crossref] [Google Scholar]
  14. 14.
    Breda AS, Hazak O, Schultz P, Anne P, Graeff M, et al. 2019.. A cellular insulator against CLE45 peptide signaling. . Curr. Biol. 29:(15):25018.e3
    [Crossref] [Google Scholar]
  15. 15.
    Burkart RC, Strotmann VI, Kirschner GK, Akinci A, Czempik L, et al. 2022.. PLETHORA-WOX5 interaction and subnuclear localization control Arabidopsis root stem cell maintenance. . EMBO Rep. 23:(6):e54105
    [Crossref] [Google Scholar]
  16. 16.
    Cai J, Li D, Aharoni A. 2023.. The role of long-distance mobile metabolites in the plant stress response and signaling. . Plant J. 114:(5):111531
    [Crossref] [Google Scholar]
  17. 17.
    Carbonnel S, Cornelis S, Hazak O. 2023.. The CLE33 peptide represses phloem differentiation via autocrine and paracrine signaling in Arabidopsis. . Commun. Biol. 6:(1):588
    [Crossref] [Google Scholar]
  18. 18.
    Carland F, Nelson T. 2009.. CVP2- and CVL1-mediated phosphoinositide signaling as a regulator of the ARF GAP SFC/VAN3 in establishment of foliar vein patterns. . Plant J. 59:(6):895907
    [Crossref] [Google Scholar]
  19. 19.
    Carlsbecker A, Lee J-Y, Roberts CJ, Dettmer J, Lehesranta S, et al. 2010.. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. . Nature 465:(7296):31621
    [Crossref] [Google Scholar]
  20. 20.
    Castelblanque L, Balaguer B, Martí C, Rodríguez JJ, Orozco M, Vera P. 2016.. Novel insights into the organization of laticifer cells: a cell comprising a unified whole system. . Plant Physiol. 172:(2):103244
    [Google Scholar]
  21. 21.
    Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, et al. 2012.. Sucrose efflux mediated by sweet proteins as a key step for phloem transport. . Science 335:(6065):20711
    [Crossref] [Google Scholar]
  22. 22.
    Chen Q, Payyavula RS, Chen L, Zhang J, Zhang C, Turgeon R. 2018.. FLOWERING LOCUS T mRNA is synthesized in specialized companion cells in Arabidopsis and Maryland Mammoth tobacco leaf veins. . PNAS 115:(11):283035
    [Crossref] [Google Scholar]
  23. 23.
    Cho H, Cho HS, Nam H, Jo H, Yoon J, et al. 2018.. Translational control of phloem development by RNA G-quadruplex-JULGI determines plant sink strength. . Nat. Plants 4:(6):37690
    [Crossref] [Google Scholar]
  24. 24.
    Conde D, Triozzi PM, Pereira WJ, Schmidt HW, Balmant KM, et al. 2022.. Single-nuclei transcriptome analysis of the shoot apex vascular system differentiation in Populus. . Development 149:(21):dev200632
    [Crossref] [Google Scholar]
  25. 25.
    Dang TVT, Lee S, Cho H, Choi K, Hwang I. 2023.. The LBD11-ros feedback regulatory loop modulates vascular cambium proliferation and secondary growth in Arabidopsis. . Mol. Plant 16:(7):113145
    [Crossref] [Google Scholar]
  26. 26.
    De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, et al. 2014.. Integration of growth and patterning during vascular tissue formation in Arabidopsis. . Science 345:(6197):1255215
    [Crossref] [Google Scholar]
  27. 27.
    Depuydt S, Rodriguez-Villalon A, Santuari L, Wyser-Rmili C, Ragni L, Hardtke CS. 2013.. Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3. . PNAS 110:(17):707479
    [Crossref] [Google Scholar]
  28. 28.
    Diaz-Ardila HN, Gujas B, Wang Q, Moret B, Hardtke CS. 2023.. pH-dependent CLE peptide perception permits phloem differentiation in Arabidopsis roots. . Curr. Biol. 33:(3):597605.e3
    [Crossref] [Google Scholar]
  29. 29.
    Donner TJ, Sherr I, Scarpella E. 2009.. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. . Development 136:(19):323546
    [Crossref] [Google Scholar]
  30. 30.
    Du J, Wang Y, Chen W, Xu M, Zhou R, et al. 2023.. High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem. . Mol. Plant 16:(5):80928
    [Crossref] [Google Scholar]
  31. 31.
    Edwards J, Martin AP, Andriunas F, Offler CE, Patrick JW, McCurdy DW. 2010.. GIGANTEA is a component of a regulatory pathway determining wall ingrowth deposition in phloem parenchyma transfer cells of Arabidopsis thaliana. . Plant J. 63:(4):65161
    [Crossref] [Google Scholar]
  32. 32.
    Eleftheriou EP. 1985.. Microtubules and root protophloem ontogeny in wheat. . J. Cell Sci. 75::16579
    [Crossref] [Google Scholar]
  33. 33.
    Esau K. 1973.. Comparative structure of companion cells and phloem parenchyma cells in Mimosa pudica L. . Ann. Bot. 37:(3):62532
    [Crossref] [Google Scholar]
  34. 34.
    Etchells JP, Smit ME, Gaudinier A, Williams CJ, Brady SM. 2016.. A brief history of the TDIF-PXY signalling module: balancing meristem identity and differentiation during vascular development. . New Phytol. 209:(2):47484
    [Crossref] [Google Scholar]
  35. 35.
    Evert RF. 2006.. Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. Hoboken, NJ, USA:: John Wiley & Sons
    [Google Scholar]
  36. 36.
    Felipo-Benavent A, Úrbez C, Blanco-Touriñán N, Serrano-Mislata A, Baumberger N, et al. 2018.. Regulation of xylem fiber differentiation by gibberellins through DELLA-KNAT1 interaction. . Development 145:(23):dev164962
    [Crossref] [Google Scholar]
  37. 37.
    Feng Q, Li L, Liu Y, Shao X, Li X. 2021.. Jasmonate regulates the FAMA/mediator complex subunit 8-THIOGLUCOSIDE GLUCOHYDROLASE 1 cascade and myrosinase activity. . Plant Physiol. 187:(2):96380
    [Crossref] [Google Scholar]
  38. 38.
    Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, et al. 2020.. Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. . Nat. Plants 6:(2):5566
    [Crossref] [Google Scholar]
  39. 39.
    Fujiwara M, Imamura M, Matsushita K, Roszak P, Yamashino T, et al. 2023.. Patterned proliferation orients tissue-wide stress to control root vascular symmetry in Arabidopsis. . Curr. Biol. 33:(5):88698.e8
    [Crossref] [Google Scholar]
  40. 40.
    Furuta KM, Yadav SR, Lehesranta S, Belevich I, Miyashima S, et al. 2014.. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. . Science 345:(6199):93337
    [Crossref] [Google Scholar]
  41. 41.
    Ghosh S, Nelson JF, Cobb GMC, Etchells JP, de Lucas M. 2022.. Light regulates xylem cell differentiation via PIF in Arabidopsis. . Cell Rep. 40:(3):111075
    [Crossref] [Google Scholar]
  42. 42.
    Gorshkov O, Mokshina N, Gorshkov V, Chemikosova S, Gogolev Y, Gorshkova T. 2017.. Transcriptome portrait of cellulose-enriched flax fibres at advanced stage of specialization. . Plant Mol. Biol. 93:(4–5):43149
    [Crossref] [Google Scholar]
  43. 43.
    Graeff M, Hardtke CS. 2021.. Metaphloem development in the Arabidopsis root tip. . Development 148:(18):dev199766
    [Crossref] [Google Scholar]
  44. 44.
    Graeff M, Rana S, Wendrich JR, Dorier J, Eekhout T, et al. 2021.. A single-cell morpho-transcriptomic map of brassinosteroid action in the Arabidopsis root. . Mol. Plant 14:(12):198599
    [Crossref] [Google Scholar]
  45. 45.
    Guerriero G, Behr M, Legay S, Mangeot-Peter L, Zorzan S, et al. 2017.. Transcriptomic profiling of hemp bast fibres at different developmental stages. . Sci. Rep. 7:(1):4961
    [Crossref] [Google Scholar]
  46. 46.
    Gujas B, Kastanaki E, Sturchler A, Cruz TMD, Ruiz-Sola MA, et al. 2020.. A reservoir of pluripotent phloem cells safeguards the linear developmental trajectory of protophloem sieve elements. . Curr. Biol. 30:(5):75566.e4
    [Crossref] [Google Scholar]
  47. 47.
    Gursanscky NR, Jouannet V, Grünwald K, Sanchez P, Laaber-Schwarz M, Greb T. 2016.. MOL1 is required for cambium homeostasis in Arabidopsis. . Plant J. 86:(3):21020
    [Crossref] [Google Scholar]
  48. 48.
    Hagel JM, Yeung EC, Facchini PJ. 2008.. Got milk? The secret life of laticifers. . Trends Plant Sci. 13:(12):63139
    [Crossref] [Google Scholar]
  49. 49.
    Han S, Cho H, Noh J, Qi J, Jung H-J, et al. 2018.. BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth. . Nat. Plants 4:(8):60514
    [Crossref] [Google Scholar]
  50. 50.
    Hardtke CS. 2023.. Phloem development. . New Phytol. 239:(3):85267
    [Crossref] [Google Scholar]
  51. 51.
    Hazak O, Brandt B, Cattaneo P, Santiago J, Rodriguez-Villalon A, et al. 2017.. Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature. . EMBO Rep. 18:(8):136781
    [Crossref] [Google Scholar]
  52. 52.
    Heilmann M, Heilmann I. 2022.. Regulators regulated: different layers of control for plasma membrane phosphoinositides in plants. . Curr. Opin. Plant Biol. 67::102218
    [Crossref] [Google Scholar]
  53. 53.
    Hirai R, Wang S, Demura T, Ohtani M. 2021.. Histone deacetylation controls xylem vessel cell differentiation via transcriptional regulation of a transcription repressor complex OFP1/4-MYB75-KNAT7-BLH6. . Front. Plant Sci. 12::825810
    [Crossref] [Google Scholar]
  54. 54.
    Hirakawa Y, Kondo Y, Fukuda H. 2010.. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. . Plant Cell 22:(8):261829
    [Crossref] [Google Scholar]
  55. 55.
    Holzwart E, Huerta AI, Glöckner N, Garnelo Gómez B, Wanke F, et al. 2018.. BRI1 controls vascular cell fate in the Arabidopsis root through RLP44 and phytosulfokine signaling. . PNAS 115:(46):1183843
    [Crossref] [Google Scholar]
  56. 56.
    Holzwart E, Wanke F, Glöckner N, Höfte H, Harter K, Wolf S. 2020.. A mutant allele uncouples the brassinosteroid-dependent and independent functions of BRASSINOSTEROID INSENSITIVE 1. . Plant Physiol. 182:(1):66978
    [Crossref] [Google Scholar]
  57. 57.
    Hu C, Zhu Y, Cui Y, Zeng L, Li S, et al. 2022.. A CLE-BAM-CIK signalling module controls root protophloem differentiation in Arabidopsis. . New Phytol. 233:(1):28296
    [Crossref] [Google Scholar]
  58. 58.
    Hunziker P, Halkier BA, Schulz A. 2019.. Arabidopsis glucosinolate storage cells transform into phloem fibres at late stages of development. . J. Exp. Bot. 70:(16):430517
    [Crossref] [Google Scholar]
  59. 59.
    Ikematsu S, Tasaka M, Torii KU, Uchida N. 2017.. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. . New Phytol. 213:(4):1697709
    [Crossref] [Google Scholar]
  60. 60.
    Ilegems M, Douet V, Meylan-Bettex M, Uyttewaal M, Brand L, et al. 2010.. Interplay of auxin, KANADI and class III HD-ZIP transcription factors in vascular tissue formation. . Development 137:(6):97584
    [Crossref] [Google Scholar]
  61. 61.
    Immanen J, Nieminen K, Smolander O-P, Kojima M, Alonso Serra J, et al. 2016.. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. . Curr. Biol. 26:(15):199097
    [Crossref] [Google Scholar]
  62. 62.
    Kastanaki E, Blanco-Touriñán N, Sarazin A, Sturchler A, Gujas B, et al. 2022.. A genetic framework for proximal secondary vein branching in the Arabidopsis thaliana embryo. . Development 149:(12):dev200403
    [Crossref] [Google Scholar]
  63. 63.
    Kim J-Y, Symeonidi E, Pang TY, Denyer T, Weidauer D, et al. 2021.. Distinct identities of leaf phloem cells revealed by single cell transcriptomics. . Plant Cell 33:(3):51130
    [Crossref] [Google Scholar]
  64. 64.
    Knoblauch M, Knoblauch J, Mullendore DL, Savage JA, Babst BA, et al. 2016.. Testing the Münch hypothesis of long distance phloem transport in plants. . eLife 5::e15341
    [Crossref] [Google Scholar]
  65. 65.
    Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M, et al. 2014.. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling. . Nat. Commun. 5::3504
    [Crossref] [Google Scholar]
  66. 66.
    Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, et al. 2005.. Transcription switches for protoxylem and metaxylem vessel formation. . Genes Dev. 19:(16):185560
    [Crossref] [Google Scholar]
  67. 67.
    Landge AN, Jordan BM, Diego X, Müller P. 2020.. Pattern formation mechanisms of self-organizing reaction-diffusion systems. . Dev. Biol. 460:(1):211
    [Crossref] [Google Scholar]
  68. 68.
    Lebovka I, Hay Mele B, Liu X, Zakieva A, Schlamp T, et al. 2023.. Computational modeling of cambium activity provides a regulatory framework for simulating radial plant growth. . eLife 12::e66627 68. Presents a cell-based computational model visualizing cambium activity and integrating central cambium regulators.
    [Crossref] [Google Scholar]
  69. 69.
    Lee KH, Du Q, Zhuo C, Qi L, Wang H. 2019.. LBD29-involved auxin signaling represses NAC master regulators and fiber wall biosynthesis. . Plant Physiol. 181:(2):595608
    [Crossref] [Google Scholar]
  70. 70.
    Li M, Sack FD. 2014.. Myrosin idioblast cell fate and development are regulated by the Arabidopsis transcription factor FAMA, the auxin pathway, and vesicular trafficking. . Plant Cell 26:(10):405366
    [Crossref] [Google Scholar]
  71. 71.
    Liebsch D, Sunaryo W, Holmlund M, Norberg M, Zhang J, et al. 2014.. Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. . Development 141:(22):431119
    [Crossref] [Google Scholar]
  72. 72.
    Liu C, Yu H, Rao X, Li L, Dixon RA. 2021.. Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1. . PNAS 118:(5):e2010911118
    [Crossref] [Google Scholar]
  73. 73.
    Loh SC, Othman AS, Veera Singham G. 2019.. Identification and characterization of jasmonic acid- and linolenic acid-mediated transcriptional regulation of secondary laticifer differentiation in Hevea brasiliensis. . Sci. Rep. 9:(1):14296
    [Crossref] [Google Scholar]
  74. 74.
    Luo F, Zhang Q, Xin H, Liu H, Yang H, et al. 2022.. A phytochrome B-PIF4-MYC2/MYC4 module inhibits secondary cell wall thickening in response to shaded light. . Plant Commun. 3:(6):100416
    [Crossref] [Google Scholar]
  75. 75.
    Maeda H, Song W, Sage TL, DellaPenna D. 2006.. Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. . Plant Cell 18:(10):271032
    [Crossref] [Google Scholar]
  76. 76.
    Maeda T, Sugano SS, Shirakawa M, Sagara M, Ito T, et al. 2023.. Single-cell RNA sequencing of Arabidopsis leaf tissues identifies multiple specialized cell types: idioblast myrosin cells and potential glucosinolate-producing cells. . Plant Cell Physiol. 64:(2):23447
    [Crossref] [Google Scholar]
  77. 77.
    Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, et al. 2006.. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. . Science 311:(5757):9498
    [Crossref] [Google Scholar]
  78. 78.
    Mähönen AP, Ten Tusscher K, Siligato R, Smetana O, Díaz-Triviño S, et al. 2014.. PLETHORA gradient formation mechanism separates auxin responses. . Nature 515:(7525):12529
    [Crossref] [Google Scholar]
  79. 79.
    Mahroug S, Burlat V, St-Pierre B. 2007.. Cellular and sub-cellular organisation of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. . Phytochem. Rev. 6:(2–3):36381
    [Crossref] [Google Scholar]
  80. 80.
    Mäkilä R, Wybouw B, Smetana O, Vainio L, Solé-Gil A, et al. 2023.. Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. . Nat. Plants 9:(4):63144
    [Crossref] [Google Scholar]
  81. 81.
    Marhava P, Aliaga Fandino AC, Koh SWH, Jelínková A, Kolb M, et al. 2020.. Plasma membrane domain patterning and self-reinforcing polarity in Arabidopsis. . Dev. Cell 52:(2):22335.e5
    [Crossref] [Google Scholar]
  82. 82.
    Marhava P, Bassukas AEL, Zourelidou M, Kolb M, Moret B, et al. 2018.. A molecular rheostat adjusts auxin flux to promote root protophloem differentiation. . Nature 558:(7709):297300 82. The article reveals that phloem differentiation involves a BRX-dependent steepening of auxin gradients.
    [Crossref] [Google Scholar]
  83. 83.
    McCubbin TJ, Braun DM. 2020.. Unraveling the puzzle of phloem parenchyma transfer cell wall ingrowth. . J. Exp. Bot. 71:(16):461720
    [Crossref] [Google Scholar]
  84. 84.
    Milhinhos A, Vera-Sirera F, Blanco-Touriñán N, Mari-Carmona C, Carrió-Seguí À, et al. 2019.. SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. . PNAS 116:(37):1871016
    [Crossref] [Google Scholar]
  85. 85.
    Miyashima S, Roszak P, Sevilem I, Toyokura K, Blob B, et al. 2019.. Mobile pear transcription factors integrate positional cues to prime cambial growth. . Nature 565:(7740):49094 85. Reveals the role of DOF transcription factors in phloem and procambium development.
    [Crossref] [Google Scholar]
  86. 86.
    Moret B, Marhava P, Aliaga Fandino AC, Hardtke CS, Ten Tusscher KHW. 2020.. Local auxin competition explains fragmented differentiation patterns. . Nat. Commun. 11:(1):2965
    [Crossref] [Google Scholar]
  87. 87.
    Nguyen CT, Kurenda A, Stolz S, Chételat A, Farmer EE. 2018.. Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. . PNAS 115:(40):1017883
    [Crossref] [Google Scholar]
  88. 88.
    Nguyen STT, Greaves T, McCurdy DW. 2017.. Heteroblastic development of transfer cells is controlled by the microRNA MIR156/SPL module. . Plant Physiol. 173:(3):167691
    [Crossref] [Google Scholar]
  89. 89.
    Nintemann SJ, Hunziker P, Andersen TG, Schulz A, Burow M, Halkier BA. 2018.. Localization of the glucosinolate biosynthetic enzymes reveals distinct spatial patterns for the biosynthesis of indole and aliphatic glucosinolates. . Physiol. Plant 163:(2):13854
    [Crossref] [Google Scholar]
  90. 90.
    Ostermeyer GP, Jensen KH, Franzen AR, Peters WS, Knoblauch M. 2022.. Diversity of funnel plasmodesmata in angiosperms: The impact of geometry on plasmodesmal resistance. . Plant J. 110:(3):70719
    [Crossref] [Google Scholar]
  91. 91.
    Otero S, Gildea I, Roszak P, Lu Y, Di Vittori V, et al. 2022.. A root phloem pole cell atlas reveals common transcriptional states in protophloem-adjacent cells. . Nat. Plants 8:(8):95470 91. More than 10,000 phloem-derived cells are profiled by single-cell RNA-sequencing.
    [Crossref] [Google Scholar]
  92. 92.
    Pien S, Fleury D, Mylne JS, Crevillen P, Inzé D, et al. 2008.. ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. . Plant Cell 20:(3):58088
    [Crossref] [Google Scholar]
  93. 93.
    Qian P, Song W, Zaizen-Iida M, Kume S, Wang G, et al. 2022.. A DOF-CLE circuit controls phloem organization. . Nat. Plants 8:(7):81727 93. Establishes the central role of DOFs in phloem development and within a DOF-CLE circuit.
    [Crossref] [Google Scholar]
  94. 94.
    Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS. 2011.. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. . Plant Cell 23:(4):132236
    [Crossref] [Google Scholar]
  95. 95.
    Ramachandran P, Augstein F, Mazumdar S, Nguyen TV, Minina EA, et al. 2021.. Abscisic acid signaling activates distinct VND transcription factors to promote xylem differentiation in Arabidopsis. . Curr. Biol. 31:(14):315361.e5 95. This study shows how ABA-mediated environmental stress modifies xylem development.
    [Crossref] [Google Scholar]
  96. 96.
    Ren S-C, Song X-F, Chen W-Q, Lu R, Lucas WJ, Liu C-M. 2019.. CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex. . J. Integr. Plant Biol. 61:(10):104361
    [Crossref] [Google Scholar]
  97. 97.
    Rodriguez-Villalon A, Gujas B, Kang YH, Breda AS, Cattaneo P, et al. 2014.. Molecular genetic framework for protophloem formation. . PNAS 111:(31):1155156
    [Crossref] [Google Scholar]
  98. 98.
    Rodriguez-Villalon A, Gujas B, van Wijk R, Munnik T, Hardtke CS. 2015.. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching. . Development 142:(8):143746
    [Google Scholar]
  99. 99.
    Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, et al. 2017.. Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. . eLife 6::e24125
    [Crossref] [Google Scholar]
  100. 100.
    Roszak P, Heo J-O, Blob B, Toyokura K, Sugiyama Y, et al. 2021.. Cell-by-cell dissection of phloem development links a maturation gradient to cell specialization. . Science 374:(6575):eaba5531 100. The study uses single-cell transcriptomics to reconstruct the protophloem trajectory and the related transcriptional network.
    [Crossref] [Google Scholar]
  101. 101.
    Rowe J, Grangé-Guermente M, Exposito-Rodriguez M, Wimalasekera R, Lenz MO, et al. 2023.. Next-generation ABACUS biosensors reveal cellular ABA dynamics driving root growth at low aerial humidity. . Nat. Plants 9::110315
    [Crossref] [Google Scholar]
  102. 102.
    Ruiz Sola MA, Coiro M, Crivelli S, Zeeman SC, Schmidt Kjølner Hansen S, Truernit E. 2017.. OCTOPUS-LIKE 2, a novel player in Arabidopsis root and vascular development, reveals a key role for OCTOPUS family genes in root metaphloem sieve tube differentiation. . New Phytol. 216:(4):1191204
    [Crossref] [Google Scholar]
  103. 103.
    Saiga S, Möller B, Watanabe-Taneda A, Abe M, Weijers D, Komeda Y. 2012.. Control of embryonic meristem initiation in Arabidopsis by PHD-finger protein complexes. . Development 139:(8):139198
    [Crossref] [Google Scholar]
  104. 104.
    Saito M, Kondo Y, Fukuda H. 2018.. BES1 and BZR1 redundantly promote phloem and xylem differentiation. . Plant Cell Physiol. 59:(3):590600
    [Crossref] [Google Scholar]
  105. 105.
    Sando T, Hayashi T, Takeda T, Akiyama Y, Nakazawa Y, et al. 2009.. Histochemical study of detailed laticifer structure and rubber biosynthesis-related protein localization in Hevea brasiliensis using spectral confocal laser scanning microscopy. . Planta 230:(1):21525
    [Crossref] [Google Scholar]
  106. 106.
    Scarpella E, Meijer AH. 2004.. Pattern formation in the vascular system of monocot and dicot plant species. . New Phytol. 164:(2):20942
    [Crossref] [Google Scholar]
  107. 107.
    Serra O, Mähönen AP, Hetherington AJ, Ragni L. 2022.. The making of plant armor: the periderm. . Annu. Rev. Plant Biol. 73::40532
    [Crossref] [Google Scholar]
  108. 108.
    Shi D, Jouannet V, Agustí J, Kaul V, Levitsky V, et al. 2021.. Tissue-specific transcriptome profiling of the Arabidopsis inflorescence stem reveals local cellular signatures. . Plant Cell 33:(2):20023
    [Crossref] [Google Scholar]
  109. 109.
    Shi D, Lebovka I, López-Salmerón V, Sanchez P, Greb T. 2019.. Bifacial cambium stem cells generate xylem and phloem during radial plant growth. . Development 146:(1):dev171355 109. Lineage tracing reveals that a single bifacial stem cell generates xylem and phloem cell lineages.
    [Crossref] [Google Scholar]
  110. 110.
    Shirakawa M, Hara-Nishimura I. 2018.. Specialized vacuoles of myrosin cells: chemical defense strategy in Brassicales plants. . Plant Cell Physiol. 59:(7):130916
    [Google Scholar]
  111. 111.
    Shirakawa M, Ueda H, Nagano AJ, Shimada T, Kohchi T, Hara-Nishimura I. 2014.. FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in Arabidopsis. . Plant Cell 26:(10):403952
    [Crossref] [Google Scholar]
  112. 112.
    Shirakawa M, Ueda H, Shimada T, Hara-Nishimura I. 2016.. FAMA: a molecular link between stomata and myrosin cells. . Trends Plant Sci. 21:(10):86171
    [Crossref] [Google Scholar]
  113. 113.
    Sibout R, Plantegenet S, Hardtke CS. 2008.. Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. . Curr. Biol. 18:(6):45863
    [Crossref] [Google Scholar]
  114. 114.
    Singh A, Menéndez-Perdomo IM, Facchini PJ. 2019.. Benzylisoquinoline alkaloid biosynthesis in opium poppy: an update. . Phytochem. Rev. 18::145782
    [Crossref] [Google Scholar]
  115. 115.
    Smet W, Sevilem I, de Luis Balaguer MA, Wybouw B, Mor E, et al. 2019.. DOF2.1 controls cytokinin-dependent vascular cell proliferation downstream of TMO5/LHW. . Curr. Biol. 29:(3):52029.e6
    [Crossref] [Google Scholar]
  116. 116.
    Smetana O, Mäkilä R, Lyu M, Amiryousefi A, Sánchez Rodríguez F, et al. 2019.. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. . Nature 565:(7740):48589 116. The study uncovers the role of early xylem cells as organizers of vascular stem cells.
    [Crossref] [Google Scholar]
  117. 117.
    Smit ME, McGregor SR, Sun H, Gough C, Bågman A-M, et al. 2020.. A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis. . Plant Cell 32:(2):31935
    [Crossref] [Google Scholar]
  118. 118.
    Smith RA, Schuetz M, Karlen SD, Bird D, Tokunaga N, et al. 2017.. Defining the diverse cell populations contributing to lignification in Arabidopsis stems. . Plant Physiol. 174:(2):102836
    [Crossref] [Google Scholar]
  119. 119.
    Srivastava LM. 1963.. Secondary Phloem in the Pinaceae, Vol. 36. Berkeley, CA:: Univ. Calif. Press
    [Google Scholar]
  120. 120.
    Takata N, Awano T, Nakata MT, Sano Y, Sakamoto S, et al. 2019.. Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells. . Tree Physiol. 39:(4):51425
    [Crossref] [Google Scholar]
  121. 121.
    Tamaki T, Oya S, Naito M, Ozawa Y, Furuya T, et al. 2020.. VISUAL-CC system uncovers the role of GSK3 as an orchestrator of vascular cell type ratio in plants. . Commun. Biol. 3:(1):184
    [Crossref] [Google Scholar]
  122. 122.
    Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, et al. 2015.. An Arabidopsis gene regulatory network for secondary cell wall synthesis. . Nature 517:(7536):57175
    [Crossref] [Google Scholar]
  123. 123.
    Temmerman A, Guillory A, Bonhomme S, Goormachtig S, Struk S. 2022.. Masks start to drop: suppressor of MAX2 1-like proteins reveal their many faces. . Front. Plant Sci. 13::887232
    [Crossref] [Google Scholar]
  124. 124.
    Tenorio Berrío R, Verstaen K, Vandamme N, Pevernagie J, Achon I, et al. 2022.. Single-cell transcriptomics sheds light on the identity and metabolism of developing leaf cells. . Plant Physiol. 188:(2):898918
    [Crossref] [Google Scholar]
  125. 125.
    Truernit E, Bauby H, Belcram K, Barthélémy J, Palauqui J-C. 2012.. OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana. . Development 139:(7):130615
    [Crossref] [Google Scholar]
  126. 126.
    Tung C-C, Kuo S-C, Yang C-L, Yu J-H, Huang C-E, et al. 2023.. Single-cell transcriptomics unveils xylem cell development and evolution. . Genome Biol. 24:(1):3
    [Crossref] [Google Scholar]
  127. 127.
    Turco GM, Rodriguez-Medina J, Siebert S, Han D, Valderrama-Gómez , et al. 2019.. Molecular mechanisms driving switch behavior in xylem cell differentiation. . Cell Rep. 28:(2):34251.e4
    [Crossref] [Google Scholar]
  128. 128.
    Wallner E-S, López-Salmerón V, Belevich I, Poschet G, Jung I, et al. 2017.. Strigolactone- and karrikin-independent SMXL proteins are central regulators of phloem formation. . Curr. Biol. 27:(8):124147
    [Crossref] [Google Scholar]
  129. 129.
    Wallner E-S, Tonn N, Shi D, Jouannet V, Greb T. 2020.. SUPPRESSOR OF MAX2 1-LIKE 5 promotes secondary phloem formation during radial stem growth. . Plant J. 102:(5):90315
    [Crossref] [Google Scholar]
  130. 130.
    Wallner E-S, Tonn N, Shi D, Luzzietti L, Wanke F, et al. 2023.. OBERON3 and SUPPRESSOR OF MAX21-LIKE proteins form a regulatory module driving phloem development. . Nat. Commun. 14:(1):2128 130. This work reveals that a SMXL/OBE protein complex establishes a phloem-specific chromatin profile.
    [Crossref] [Google Scholar]
  131. 131.
    Wang X, Wang D, Xu W, Kong L, Ye X, et al. 2021.. Histone methyltransferase ATX1 dynamically regulates fiber secondary cell wall biosynthesis in Arabidopsis inflorescence stem. . Nucleic Acids Res. 49:(1):190205
    [Crossref] [Google Scholar]
  132. 132.
    Warmbrodt RD, Eschrich W. 1985.. Studies on the mycorrhizas of Pinus sylvestris L. produced in vitro with the basidiomycete Suillusvariegatus (Sw. EX Fr.) O. Kuntze. . New Phytol. 100:(3):40318
    [Crossref] [Google Scholar]
  133. 133.
    Wei X, Huang Y, Nguyen STT, Collings DA, McCurdy DW. 2022.. Asymmetric wall ingrowth deposition in Arabidopsis phloem parenchyma transfer cells is tightly associated with sieve elements. . J. Exp. Bot. 73:(16):541427
    [Crossref] [Google Scholar]
  134. 134.
    Wei X, Nguyen STT, Collings DA, McCurdy DW. 2020.. Sucrose regulates wall ingrowth deposition in phloem parenchyma transfer cells in Arabidopsis via affecting phloem loading activity. . J. Exp. Bot. 71:(16):4690702
    [Crossref] [Google Scholar]
  135. 135.
    Wendrich JR, Yang B, Vandamme N, Verstaen K, Smet W, et al. 2020.. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. . Science 370:(6518):eaay4970
    [Crossref] [Google Scholar]
  136. 136.
    Woudenberg S, Renema J, Tomescu AMF, De Rybel B, Weijers D. 2022.. Deep origin and gradual evolution of transporting tissues: perspectives from across the land plants. . Plant Physiol. 190:(1):8599
    [Crossref] [Google Scholar]
  137. 137.
    Wu Y, Hou J, Yu F, Nguyen STT, McCurdy DW. 2018.. Transcript profiling identifies NAC-domain genes involved in regulating wall ingrowth deposition in phloem parenchyma transfer cells of Arabidopsis thaliana. . Front. Plant Sci. 9::341
    [Crossref] [Google Scholar]
  138. 138.
    Xu H, Giannetti A, Sugiyama Y, Zheng W, Schneider R, et al. 2022.. Secondary cell wall patterning—connecting the dots, pits and helices. . Open Biol. 12:(5):210208
    [Crossref] [Google Scholar]
  139. 139.
    Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, et al. 2010.. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. . Plant Cell 22:(4):124963
    [Crossref] [Google Scholar]
  140. 140.
    Yang B, Minne M, Brunoni F, Plačková L, Petřík I, et al. 2021.. Non-cell autonomous and spatiotemporal signalling from a tissue organizer orchestrates root vascular development. . Nat. Plants 7:(11):148594
    [Crossref] [Google Scholar]
  141. 141.
    Yang JH, Lee K-H, Du Q, Yang S, Yuan B, et al. 2020.. A membrane-associated NAC domain transcription factor XVP interacts with TDIF co-receptor and regulates vascular meristem activity. . New Phytol. 226:(1):5974
    [Crossref] [Google Scholar]
  142. 142.
    Yang S, Wang S, Li S, Du Q, Qi L, et al. 2020.. Activation of ACS7 in Arabidopsis affects vascular development and demonstrates a link between ethylene synthesis and cambial activity. . J. Exp. Bot. 71:(22):716070
    [Crossref] [Google Scholar]
  143. 143.
    Yang T-H, Lenglet-Hilfiker A, Stolz S, Glauser G, Farmer EE. 2020.. Jasmonate precursor biosynthetic enzymes LOX3 and LOX4 control wound-response growth restriction. . Plant Physiol. 184:(2):117280
    [Crossref] [Google Scholar]
  144. 144.
    You Y, Sawikowska A, Lee JE, Benstein RM, Neumann M, et al. 2019.. Phloem companion cell-specific transcriptomic and epigenomic analyses identify MRF1, a regulator of flowering. . Plant Cell 31:(2):32545
    [Crossref] [Google Scholar]
  145. 145.
    Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang J, et al. 2019.. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. . Nat. Plants 5:(10):103342
    [Crossref] [Google Scholar]
  146. 146.
    Zhang N, Deyholos MK. 2016.. RNASeq analysis of the shoot apex of flax (Linum usitatissimum) to identify phloem fiber specification genes. . Front. Plant Sci. 7::950
    [Google Scholar]
  147. 147.
    Zhang Q, Wang D, Zhang H, Wang M, Li P, et al. 2018.. Detection of autophagy processes during the development of nonarticulated laticifers in Euphorbia kansui Liou. . Planta 247:(4):84561
    [Crossref] [Google Scholar]
  148. 148.
    Zhang Q, Xie Z, Zhang R, Xu P, Liu H, et al. 2018.. Blue light regulates secondary cell wall thickening via MYC2/MYC4 activation of the NST1-directed transcriptional network in Arabidopsis. . Plant Cell 30:(10):251228
    [Crossref] [Google Scholar]
  149. 149.
    Zhao S, Erbilgin N. 2019.. Larger resin ducts are linked to the survival of lodgepole pine trees during mountain pine beetle outbreak. . Front. Plant Sci. 10::1459
    [Crossref] [Google Scholar]
  150. 150.
    Zhong R, Demura T, Ye Z-H. 2006.. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. . Plant Cell 18:(11):315870
    [Crossref] [Google Scholar]
  151. 151.
    Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H. 2008.. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. . Plant Cell 20:(10):276382
    [Crossref] [Google Scholar]
  152. 152.
    Zhong R, Taylor JJ, Ye ZH. 1997.. Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. . Plant Cell 9:(12):215970
    [Google Scholar]
  153. 153.
    Zimmermann U, Schneider H, Wegner LH, Wagner H-J, Szimtenings M, et al. 2002.. What are the driving forces for water lifting in the xylem conduit?. Physiol. Plant. 114:(3):32735
    [Crossref] [Google Scholar]
  154. 154.
    Zobel AM. 1985.. Ontogenesis of tannin coenocytes in Sambucus racemosa L. II. Mother tannin cells. . Ann. Bot. 56:(1):91104
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070523-040525
Loading
/content/journals/10.1146/annurev-arplant-070523-040525
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error