1932

Abstract

Understanding the mechanistic basis of epigenetic memory has proven to be a difficult task due to the underlying complexity of the systems involved in its establishment and maintenance. Here, we review the role of computational modeling in helping to unlock this complexity, allowing the dissection of intricate feedback dynamics. We focus on three forms of epigenetic memory encoded in gene regulatory networks, DNA methylation, and histone modifications and discuss the important advantages offered by plant systems in their dissection. We summarize the main modeling approaches involved and highlight the principal conceptual advances that the modeling has enabled through iterative cycles of predictive modeling and experiments. Lastly, we discuss remaining gaps in our understanding and how intertwined theory and experimental approaches might help in their resolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070523-041445
2024-07-22
2025-02-17
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070523-041445.html?itemId=/content/journals/10.1146/annurev-arplant-070523-041445&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alvarez-Buylla ER, Chaos A, Aldana M, Benítez M, Cortes-Poza Y, et al. 2008.. Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. . PLOS ONE 3::e3626 1. Uses BGRNs to study floral morphogenesis and the transitions between different cell fates.
    [Crossref] [Google Scholar]
  2. 2.
    Angel A, Song J, Dean C, Howard M. 2011.. A Polycomb-based switch underlying quantitative epigenetic memory. . Nature 476::1058 2. Mechanistic single-locus level model of cold-induced Polycomb silencing at FLC.
    [Crossref] [Google Scholar]
  3. 3.
    Angel A, Song J, Yang H, Questa JI, Dean C, Howard M. 2015.. Vernalizing cold is registered digitally at FLC. . PNAS 112::414651
    [Crossref] [Google Scholar]
  4. 4.
    Antoniou-Kourounioti RL, Hepworth J, Heckmann A, Duncan S, Qüesta J, et al. 2018.. Temperature sensing is distributed throughout the regulatory network that controls FLC epigenetic silencing in vernalization. . Cell Syst. 7::64355.e9 4. Population-level model of FLC epigenetic states that successfully predicts FLC silencing dynamics in field experiments.
    [Crossref] [Google Scholar]
  5. 5.
    Antoniou-Kourounioti RL, Meschichi A, Reeck S, Berry S, Menon G, et al. 2023.. Integrating analog and digital modes of gene expression at Arabidopsis FLC. . eLife 12::e79743 5. Combines quantitative single-cell imaging approaches with a dynamic tissue-level computational model of FLC transcriptional states.
    [Crossref] [Google Scholar]
  6. 6.
    Arand J, Spieler D, Karius T, Branco MR, Meilinger D, et al. 2012.. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. . PLOS Genet. 8::e1002750
    [Crossref] [Google Scholar]
  7. 7.
    Azpeitia E, Benítez M, Vega I, Villarreal C, Alvarez-Buylla ER. 2010.. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche. . BMC Syst. Biol. 4::134
    [Crossref] [Google Scholar]
  8. 8.
    Becker C, Hagmann J, Muller J, Koenig D, Stegle O, et al. 2011.. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. . Nature 480::24549
    [Crossref] [Google Scholar]
  9. 9.
    Berry S, Dean C, Howard M. 2017.. Slow chromatin dynamics allow Polycomb target genes to filter fluctuations in transcription factor activity. . Cell Syst. 4::44557.e8
    [Crossref] [Google Scholar]
  10. 10.
    Berry S, Hartley M, Olsson TS, Dean C, Howard M. 2015.. Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. . eLife 4::e07205 10. Experimentally demonstrates autonomous digital switching at individual FLC copies during cold-induced epigenetic silencing.
    [Crossref] [Google Scholar]
  11. 11.
    Bewick AJ, Schmitz RJ. 2017.. Gene body DNA methylation in plants. . Curr. Opin. Plant Biol. 36::10310
    [Crossref] [Google Scholar]
  12. 12.
    Briffa A, Hollwey E, Shahzad Z, Moore JD, Lyons DB, et al. 2023.. Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations. . Cell Syst. 14::95367.e17 12. Mechanistic model that recreates empirical methylation patterns and variation based on epigenetic principles/DNA sequence.
    [Crossref] [Google Scholar]
  13. 13.
    Busto-Moner L, Morival J, Ren H, Fahim A, Reitz Z, et al. 2020.. Stochastic modeling reveals kinetic heterogeneity in post-replication DNA methylation. . PLOS Comput. Biol. 16::e1007195
    [Crossref] [Google Scholar]
  14. 14.
    Calderwood A, Lloyd A, Hepworth J, Tudor EH, Jones DM, et al. 2021.. Total FLC transcript dynamics from divergent paralogue expression explains flowering diversity in Brassica napus. . New Phytol. 229::353448
    [Crossref] [Google Scholar]
  15. 15.
    Choi J, Lyons DB, Kim MY, Moore JD, Zilberman D. 2020.. DNA methylation and histone H1 jointly repress transposable elements and aberrant intragenic transcripts. . Mol. Cell 77::31023.e7
    [Crossref] [Google Scholar]
  16. 16.
    Choi J, Lyons DB, Zilberman D. 2021.. Histone H1 prevents non-CG methylation-mediated small RNA biogenesis in Arabidopsis heterochromatin. . eLife 10::e72676
    [Crossref] [Google Scholar]
  17. 17.
    Coleman-Derr D, Zilberman D. 2012.. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. . PLOS Genet. 8::e1002988
    [Crossref] [Google Scholar]
  18. 18.
    Cruz-Ramírez A, Díaz-Triviño S, Blilou I, Grieneisen VA, Sozzani R, et al. 2012.. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. . Cell 150::100215
    [Crossref] [Google Scholar]
  19. 19.
    Davila-Velderrain J, Caldu-Primo JL, Martinez-Garcia JC, Alvarez-Buylla ER. 2018.. Modeling the epigenetic landscape in plant development. . Methods Mol. Biol. 1819::35783
    [Crossref] [Google Scholar]
  20. 20.
    Davila-Velderrain J, Martinez-Garcia JC, Alvarez-Buylla ER. 2015.. Modeling the epigenetic attractors landscape: toward a post-genomic mechanistic understanding of development. . Front. Genet. 6::160
    [Crossref] [Google Scholar]
  21. 21.
    Davila-Velderrain J, Villarreal C, Alvarez-Buylla ER. 2015.. Reshaping the epigenetic landscape during early flower development: induction of attractor transitions by relative differences in gene decay rates. . BMC Syst. Biol. 9::20
    [Crossref] [Google Scholar]
  22. 22.
    Dodd IB, Micheelsen MA, Sneppen K, Thon G. 2007.. Theoretical analysis of epigenetic cell memory by nucleosome modification. . Cell 129::81322
    [Crossref] [Google Scholar]
  23. 23.
    Du J, Johnson LM, Groth M, Feng S, Hale CJ, et al. 2014.. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. . Mol. Cell 55::495504
    [Crossref] [Google Scholar]
  24. 24.
    Erdmann RM, Picard CL. 2020.. RNA-directed DNA methylation. . PLOS Genet. 16::e1009034
    [Crossref] [Google Scholar]
  25. 25.
    Faast R, Thonglairoam V, Schulz TC, Beall J, Wells JRE, et al. 2001.. Histone variant H2A.Z is required for early mammalian development. . Curr. Biol. 11::118387
    [Crossref] [Google Scholar]
  26. 26.
    Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, et al. 2010.. Conservation and divergence of methylation patterning in plants and animals. . PNAS 107::868994
    [Crossref] [Google Scholar]
  27. 27.
    Fitz-James MH, Cavalli G. 2022.. Molecular mechanisms of transgenerational epigenetic inheritance. . Nat. Rev. Genet. 23::32541
    [Crossref] [Google Scholar]
  28. 28.
    Fraser P, Bickmore W. 2007.. Nuclear organization of the genome and the potential for gene regulation. . Nature 447::41317
    [Crossref] [Google Scholar]
  29. 29.
    Fultz D, Choudury SG, Slotkin RK. 2015.. Silencing of active transposable elements in plants. . Curr. Opin. Plant Biol. 27::6776
    [Crossref] [Google Scholar]
  30. 30.
    Gallusci P, Agius DR, Moschou PN, Dobranszki J, Kaiserli E, Martinelli F. 2023.. Deep inside the epigenetic memories of stressed plants. . Trends Plant Sci. 28::14253
    [Crossref] [Google Scholar]
  31. 31.
    García-Gómez ML, Ornelas-Ayala D, Garay-Arroyo A, García-Ponce B, de la Paz Sánchez M, Álvarez-Buylla ER. 2020.. A system-level mechanistic explanation for asymmetric stem cell fates: Arabidopsis thaliana root niche as a study system. . Sci. Rep. 10::3525
    [Crossref] [Google Scholar]
  32. 32.
    Gillespie DT. 1977.. Exact stochastic simulation of coupled chemical reactions. . J. Phys. Chem. 81::234061
    [Crossref] [Google Scholar]
  33. 33.
    Ginno PA, Gaidatzis D, Feldmann A, Hoerner L, Imanci D, et al. 2020.. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. . Nat. Commun. 11::2680
    [Crossref] [Google Scholar]
  34. 34.
    Glancy E, Ciferri C, Bracken AP. 2021.. Structural basis for PRC2 engagement with chromatin. . Curr. Opin. Struct. Biol. 67::13544
    [Crossref] [Google Scholar]
  35. 35.
    Guarino F, Cicatelli A, Castiglione S, Agius DR, Orhun GE, et al. 2022.. An epigenetic alphabet of crop adaptation to climate change. . Front. Genet. 13::818727
    [Crossref] [Google Scholar]
  36. 36.
    Haerter JO, Lovkvist C, Dodd IB, Sneppen K. 2014.. Collaboration between CpG sites is needed for stable somatic inheritance of DNA methylation states. . Nucleic Acids Res. 42::223544
    [Crossref] [Google Scholar]
  37. 37.
    Haggerty C, Kretzmer H, Riemenschneider C, Kumar AS, Mattei AL, et al. 2021.. Dnmt1 has de novo activity targeted to transposable elements. . Nat. Struct. Mol. Biol. 28::594603
    [Crossref] [Google Scholar]
  38. 38.
    Hannan Parker A, Wilkinson SW, Ton J. 2022.. Epigenetics: a catalyst of plant immunity against pathogens. . New Phytol. 233::6683
    [Crossref] [Google Scholar]
  39. 39.
    Harris KD, Lloyd JPB, Domb K, Zilberman D, Zemach A. 2019.. DNA methylation is maintained with high fidelity in the honey bee germline and exhibits global non-functional fluctuations during somatic development. . Epigenetics Chromatin 12::62
    [Crossref] [Google Scholar]
  40. 40.
    Hazarika RR, Serra M, Zhang Z, Zhang Y, Schmitz RJ, Johannes F. 2022.. Molecular properties of epimutation hotspots. . Nat. Plants 8::14656
    [Crossref] [Google Scholar]
  41. 41.
    Hollwey E, Briffa A, Howard M, Zilberman D. 2023.. Concepts, mechanisms and implications of long-term epigenetic inheritance. . Curr. Opin. Genet. Dev. 81::102087
    [Crossref] [Google Scholar]
  42. 42.
    Holoch D, Wassef M, Lövkvist C, Zielinski D, Aflaki S, et al. 2021.. A cis-acting mechanism mediates transcriptional memory at Polycomb target genes in mammals. . Nat. Genet. 53::168697
    [Crossref] [Google Scholar]
  43. 43.
    Hunt BG, Brisson JA, Yi SV, Goodisman MA. 2010.. Functional conservation of DNA methylation in the pea aphid and the honeybee. . Genome Biol. Evol. 2::71928
    [Crossref] [Google Scholar]
  44. 44.
    Kawakatsu T, Huang SC, Jupe F, Sasaki E, Schmitz RJ, et al. 2016.. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. . Cell 166::492505
    [Crossref] [Google Scholar]
  45. 45.
    Klose RJ, Cooper S, Farcas AM, Blackledge NP, Brockdorff N. 2013.. Chromatin sampling—an emerging perspective on targeting Polycomb repressor proteins. . PLOS Genet. 9::e1003717
    [Crossref] [Google Scholar]
  46. 46.
    Klughammer J, Romanovskaia D, Nemc A, Posautz A, Seid CA, et al. 2023.. Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species. . Nat. Commun. 14::232
    [Crossref] [Google Scholar]
  47. 47.
    Kyriakopoulos C, Giehr P, Wolf V. 2017.. H(O)TA: estimation of DNA methylation and hydroxylation levels and efficiencies from time course data. . Bioinformatics 33::173334
    [Crossref] [Google Scholar]
  48. 48.
    Lang Z, Xie S, Zhu JK. 2016.. The 1001 Arabidopsis DNA methylomes: an important resource for studying natural genetic, epigenetic, and phenotypic variation. . Trends Plant Sci. 21::9068
    [Crossref] [Google Scholar]
  49. 49.
    Lewis SH, Ross L, Bain SA, Pahita E, Smith SA, et al. 2020.. Widespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods. . PLOS Genet. 16::e1008864
    [Crossref] [Google Scholar]
  50. 50.
    Li E, Bestor TH, Jaenisch R. 1992.. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. . Cell 69::91526
    [Crossref] [Google Scholar]
  51. 51.
    Lieberman-Lazarovich M, Kaiserli E, Bucher E, Mladenov V. 2022.. Natural and induced epigenetic variation for crop improvement. . Curr. Opin. Plant Biol. 70::102297
    [Crossref] [Google Scholar]
  52. 52.
    Lövkvist C, Dodd IB, Sneppen K, Haerter JO. 2016.. DNA methylation in human epigenomes depends on local topology of CpG sites. . Nucleic Acids Res. 44::512332
    [Crossref] [Google Scholar]
  53. 53.
    Lövkvist C, Mikulski P, Reeck S, Hartley M, Dean C, Howard M. 2021.. Hybrid protein assembly-histone modification mechanism for PRC2-based epigenetic switching and memory. . eLife 10::e66454
    [Crossref] [Google Scholar]
  54. 54.
    Lyons DB, Briffa A, He S, Choi J, Hollwey E, et al. 2023.. Extensive de novo activity stabilizes epigenetic inheritance of CG methylation in Arabidopsis transposons. . Cell Rep. 42::112132 54. Model assessing the scale of de novo methylation occurring in heterochromatic transposons using maintenance-compromised mutants.
    [Crossref] [Google Scholar]
  55. 55.
    Muyle AM, Seymour DK, Lv Y, Huettel B, Gaut BS. 2022.. Gene body methylation in plants: mechanisms, functions, and important implications for understanding evolutionary processes. . Genome Biol. Evol. 14::evac038
    [Crossref] [Google Scholar]
  56. 56.
    Nickels JF, Edwards AK, Charlton SJ, Mortensen AM, Hougaard SCL, et al. 2021.. Establishment of heterochromatin in domain-size-dependent bursts. . PNAS 118::e2022887118
    [Crossref] [Google Scholar]
  57. 57.
    Niederhuth CE, Bewick AJ, Ji L, Alabady MS, Kim KD, et al. 2016.. Widespread natural variation of DNA methylation within angiosperms. . Genome Biol. 17::194
    [Crossref] [Google Scholar]
  58. 58.
    Nishio H, Buzas DM, Nagano AJ, Iwayama K, Ushio M, Kudoh H. 2020.. Repressive chromatin modification underpins the long-term expression trend of a perennial flowering gene in nature. . Nat. Commun. 11::2065
    [Crossref] [Google Scholar]
  59. 59.
    Nishio H, Iwayama K, Kudoh H. 2020.. Duration of cold exposure defines the rate of reactivation of a perennial FLC orthologue via H3K27me3 accumulation. . Sci. Rep. 10::16056
    [Crossref] [Google Scholar]
  60. 60.
    Oberkofler V, Bäurle I. 2022.. Inducible epigenome editing probes for the role of histone H3K4 methylation in Arabidopsis heat stress memory. . Plant Physiol. 189::70314
    [Crossref] [Google Scholar]
  61. 61.
    Obersriebnig MJ, Pallesen EM, Sneppen K, Trusina A, Thon G. 2016.. Nucleation and spreading of a heterochromatic domain in fission yeast. . Nat. Commun. 7::11518
    [Crossref] [Google Scholar]
  62. 62.
    Olariu V, Nilsson J, Jönsson H, Peterson C. 2017.. Different reprogramming propensities in plants and mammals: Are small variations in the core network wirings responsible?. PLOS ONE 12::e0175251 62. Studies the similarities in genetic networks of animals and plants by modeling chemical kinetics.
    [Crossref] [Google Scholar]
  63. 63.
    Parent JS, Cahn J, Herridge RP, Grimanelli D, Martienssen RA. 2021.. Small RNAs guide histone methylation in Arabidopsis embryos. . Genes Dev. 35::84146
    [Crossref] [Google Scholar]
  64. 64.
    Pease NA, Nguyen PHB, Woodworth MA, Ng KKH, Irwin B, et al. 2021.. Tunable, division-independent control of gene activation timing by a polycomb switch. . Cell Rep. 34::108888
    [Crossref] [Google Scholar]
  65. 65.
    Pelayo MA, Morishita F, Sawada H, Matsushita K, Iimura H, et al. 2023.. AGAMOUS regulates various target genes via cell cycle–coupled H3K27me3 dilution in floral meristems and stamens. . Plant Cell 35::282147
    [Crossref] [Google Scholar]
  66. 66.
    Pisupati R, Nizhynska V, Molla Morales A, Nordborg M. 2023.. On the causes of gene-body methylation variation in Arabidopsis thaliana. . PLOS Genet. 19::e1010728
    [Crossref] [Google Scholar]
  67. 67.
    Policarpi C, Dabin J, Hackett JA. 2021.. Epigenetic editing: dissecting chromatin function in context. . Bioessays 43::e2000316
    [Crossref] [Google Scholar]
  68. 68.
    Qüesta JI, Antoniou-Kourounioti RL, Rosa S, Li P, Duncan S, et al. 2020.. Noncoding SNPs influence a distinct phase of Polycomb silencing to destabilize long-term epigenetic memory at Arabidopsis FLC. . Genes Dev. 34::44661
    [Crossref] [Google Scholar]
  69. 69.
    Rackauckas C, Nie Q. 2017.. DifferentialEquations.jl—a performant and feature-rich ecosystem for solving differential equations in Julia. . J. Open Res. Softw. 5::15
    [Crossref] [Google Scholar]
  70. 70.
    Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, et al. 2018.. The transcriptional landscape of polyploid wheat. . Science 361::6403
    [Crossref] [Google Scholar]
  71. 71.
    Refahi Y, Zardilis A, Michelin G, Wightman R, Leggio B, et al. 2021.. A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control. . Dev. Cell 56::54056.e8
    [Crossref] [Google Scholar]
  72. 72.
    Reinig J, Ruge F, Howard M, Ringrose L. 2020.. A theoretical model of Polycomb/Trithorax action unites stable epigenetic memory and dynamic regulation. . Nat. Commun. 11::4782
    [Crossref] [Google Scholar]
  73. 73.
    Roessler K, Bousios A, Meca E, Gaut BS. 2018.. Modeling interactions between transposable elements and the plant epigenetic response: a surprising reliance on element retention. . Genome Biol. Evol. 10::80315
    [Crossref] [Google Scholar]
  74. 74.
    Sanchez-Corrales Y-E, Alvarez-Buylla ER, Mendoza L. 2010.. The Arabidopsis thaliana flower organ specification gene regulatory network determines a robust differentiation process. . J. Theor. Biol. 264::97183
    [Crossref] [Google Scholar]
  75. 75.
    Satake A, Iwasa Y. 2012.. A stochastic model of chromatin modification: cell population coding of winter memory in plants. . J. Theor. Biol. 302::617
    [Crossref] [Google Scholar]
  76. 76.
    Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA, et al. 2011.. Transgenerational epigenetic instability is a source of novel methylation variants. . Science 334::36973
    [Crossref] [Google Scholar]
  77. 77.
    Shahryary Y, Symeonidi A, Hazarika RR, Denkena J, Mubeen T, et al. 2020.. AlphaBeta: computational inference of epimutation rates and spectra from high-throughput DNA methylation data in plants. . Genome Biol. 21::260
    [Crossref] [Google Scholar]
  78. 78.
    Sigman MJ, Slotkin RK. 2016.. The first rule of plant transposable element silencing: location, location, location. . Plant Cell 28::30413
    [Crossref] [Google Scholar]
  79. 79.
    Sontag LB, Lorincz MC, Luebeck EG. 2006.. Dynamics, stability and inheritance of somatic DNA methylation imprints. . J. Theor. Biol. 242::89099 79. Markov chain model including cooperative feedback used to extract single site–resolution CG methylation epimutation rates.
    [Crossref] [Google Scholar]
  80. 80.
    Stroud H, Do T, Du J, Zhong X, Feng S, et al. 2014.. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. . Nat. Struct. Mol. Biol. 21::6472
    [Crossref] [Google Scholar]
  81. 81.
    Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE. 2013.. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. . Cell 152::35264
    [Crossref] [Google Scholar]
  82. 82.
    van der Graaf A, Wardenaar R, Neumann DA, Taudt A, Shaw RG, et al. 2015.. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. . PNAS 112::667681 82. Markov model combined with mCG transgenerational divergence analysis to extract locus-averaged CG methylation epimutation rates.
    [Crossref] [Google Scholar]
  83. 83.
    Vidalis A, Zivkovic D, Wardenaar R, Roquis D, Tellier A, Johannes F. 2016.. Methylome evolution in plants. . Genome Biol. 17::264
    [Crossref] [Google Scholar]
  84. 84.
    Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, et al. 2020.. SciPy 1.0: fundamental algorithms for scientific computing in Python. . Nat. Methods 17::26172
    [Crossref] [Google Scholar]
  85. 85.
    Wang Q, Yu G, Ming X, Xia W, Xu X, et al. 2020.. Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance. . Nat. Genet. 52::82839
    [Crossref] [Google Scholar]
  86. 86.
    Williams A, Spilianakis CG, Flavell RA. 2010.. Interchromosomal association and gene regulation in trans. . Trends Genet. 26::18897
    [Crossref] [Google Scholar]
  87. 86a.
    Winter CM, Szekely P, Popov V, Belcher H, Carter R, . 2024.. SHR and SCR coordinate root patterning and growth early in the cell cycle. . Nature 626::61116
    [Crossref] [Google Scholar]
  88. 87.
    Xu G, Lyu J, Li Q, Liu H, Wang D, et al. 2020.. Evolutionary and functional genomics of DNA methylation in maize domestication and improvement. . Nat. Commun. 11::5539
    [Crossref] [Google Scholar]
  89. 88.
    Yagound B, Remnant EJ, Buchmann G, Oldroyd BP. 2020.. Intergenerational transfer of DNA methylation marks in the honey bee. . PNAS 117::3251927
    [Crossref] [Google Scholar]
  90. 89.
    Yamaguchi N, Matsubara S, Yoshimizu K, Seki M, Hamada K, et al. 2021.. H3K27me3 demethylases alter HSP22 and HSP17.6C expression in response to recurring heat in Arabidopsis. . Nat. Commun. 12::3480
    [Crossref] [Google Scholar]
  91. 90.
    Yang H, Berry S, Olsson TSG, Hartley M, Howard M, Dean C. 2017.. Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis. . Science 357::114245
    [Crossref] [Google Scholar]
  92. 91.
    Yao N, Zhang Z, Yu L, Hazarika R, Yu C, et al. 2023.. An evolutionary epigenetic clock in plants. . Science 381::144045
    [Crossref] [Google Scholar]
  93. 92.
    Zemach A, McDaniel IE, Silva P, Zilberman D. 2010.. Genome-wide evolutionary analysis of eukaryotic DNA methylation. . Science 328::91619
    [Crossref] [Google Scholar]
  94. 93.
    Zhang H, Lang Z, Zhu JK. 2018.. Dynamics and function of DNA methylation in plants. . Nat. Rev. Mol. Cell Biol. 19::489506
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070523-041445
Loading
/content/journals/10.1146/annurev-arplant-070523-041445
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error