1932

Abstract

Biodiversity conservation requires conserving evolutionary potential—the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070523-044239
2024-07-22
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070523-044239.html?itemId=/content/journals/10.1146/annurev-arplant-070523-044239&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aavik T, Helm A. 2018.. Restoration of plant species and genetic diversity depends on landscape-scale dispersal. . Restor. Ecol. 26::S92102
    [Crossref] [Google Scholar]
  2. 2.
    Aguirre-Liguori JA, Ramírez-Barahona S, Gaut BS. 2021.. The evolutionary genomics of species’ responses to climate change. . Nat. Ecol. Evol. 5:(10):135060
    [Crossref] [Google Scholar]
  3. 3.
    Ahrens CW, Jordan R, Bragg J, Harrison PA, Hopley T, et al. 2021.. Regarding the F-word: the effects of data filtering on inferred genotype-environment associations. . Mol. Ecol. Resour. 21:(5):146074
    [Crossref] [Google Scholar]
  4. 4.
    Aitken SN, Bemmels JB. 2016.. Time to get moving: assisted gene flow of forest trees. . Evol. Appl. 9:(1):27190
    [Crossref] [Google Scholar]
  5. 5.
    Aitken SN, Whitlock MC. 2013.. Assisted gene flow to facilitate local adaptation to climate change. . Annu. Rev. Ecol. Evol. Syst. 44::36788
    [Crossref] [Google Scholar]
  6. 6.
    Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. 2008.. Adaptation, migration or extirpation: climate change outcomes for tree populations. . Evol. Appl. 1:(1):95111
    [Crossref] [Google Scholar]
  7. 7.
    Allendorf FW, Funk WC, Aitken SN, Byrne M, Luikart G. 2022.. Conservation and the Genomics of Populations. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  8. 8.
    Anderson JT, Song BH. 2020.. Plant adaptation to climate change—Where are we?. J. Syst. Evol. 58:(5):53345
    [Crossref] [Google Scholar]
  9. 9.
    Antonelli A, Fry C, Smith RJ, Simmonds MSJ, Kersey PJ, et al. 2020.. State of the World's Plants and Fungi 2020. Kew, UK:: Royal Botanic Gardens Kew
    [Google Scholar]
  10. 10.
    Bailey TG, Harrison PA, Davidson NJ, Weller-Wong A, Tilyard P, et al. 2021.. Embedding genetics experiments in restoration to guide plant choice for a degraded landscape with a changing climate. . Ecol. Manag. Restorat. 22:(S2):92105
    [Crossref] [Google Scholar]
  11. 11.
    Balding M, Williams KJH. 2016.. Plant blindness and the implications for plant conservation. . Conserv. Biol. 30:(6):119299
    [Crossref] [Google Scholar]
  12. 12.
    Balkenhol N, Waits LP, Dezzani RJ. 2009.. Statistical approaches in landscape genetics: An evaluation of methods for linking landscape and genetic data. . Ecography 32:(5):81830
    [Crossref] [Google Scholar]
  13. 13.
    Beichman AC, Huerta-Sanchez E, Lohmueller KE. 2018.. Using genomic data to infer historic population dynamics of nonmodel organisms. . Annu. Rev. Ecol. Evol. Syst. 49::43356
    [Crossref] [Google Scholar]
  14. 14.
    Bell G. 2017.. Evolutionary rescue. . Annu. Rev. Ecol. Evol. Syst. 48::60527
    [Crossref] [Google Scholar]
  15. 15.
    Bell G, Gonzalez A. 2009.. Evolutionary rescue can prevent extinction following environmental change. . Ecol. Lett. 12:(9):94248
    [Crossref] [Google Scholar]
  16. 16.
    Bell G, Gonzalez A. 2011.. Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. . Science 332::132731
    [Crossref] [Google Scholar]
  17. 17.
    Benning JW, Faulkner A, Moeller DA. 2023.. Rapid evolution during climate change: demographic and genetic constraints on adaptation to severe drought. . Proc. R. Soc. B 290::20230336
    [Crossref] [Google Scholar]
  18. 18.
    Bode RF, Tong R. 2018.. Pollinators exert positive selection on flower size on urban, but not on rural Scotch broom (Cytisus scoparius L. Link). . J. Plant Ecol. 11:(3):493501
    [Crossref] [Google Scholar]
  19. 19.
    Bontrager M, Angert AL. 2019.. Gene flow improves fitness at a range edge under climate change. . Evol. Lett. 3:(1):5568
    [Crossref] [Google Scholar]
  20. 20.
    Bontrager M, Usui T, Lee-Yaw JA, Anstett DN, Branch HA, et al. 2021.. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. . Evolution 75:(6):131633
    [Crossref] [Google Scholar]
  21. 21.
    Booker TR, Yeaman S, Whitlock MC. 2021.. Global adaptation complicates the interpretation of genome scans for local adaptation. . Evol. Lett. 5:(1):415
    [Crossref] [Google Scholar]
  22. 22.
    Borrell JS, Zohren J, Nichols RA, Buggs RJA. 2020.. Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow. . Evol. Appl. 13:(1):16175
    [Crossref] [Google Scholar]
  23. 23.
    Boucher FC, Dentant C, Ibanez S, Capblancq T, Boleda M, et al. 2021.. Discovery of cryptic plant diversity on the rooftops of the Alps. . Sci. Rep. 11:(1):11128
    [Crossref] [Google Scholar]
  24. 24.
    Boyd JN, Anderson JT, Brzyski J, Baskauf C, Cruse-Sanders J. 2022.. Eco-evolutionary causes and consequences of rarity in plants: a meta-analysis. . New Phytol. 235:(3):127286
    [Crossref] [Google Scholar]
  25. 25.
    Brady SP, Bolnick DI, Angert AL, Gonzalez A, Barrett RDH, et al. 2019.. Causes of maladaptation. . Evol. Appl. 12:(7):122942
    [Crossref] [Google Scholar]
  26. 26.
    Briscoe Runquist RD, Gorton AJ, Yoder JB, Deacon NJ, Grossman JJ, et al. 2020.. Context dependence of local adaptation to abiotic and biotic environments: A quantitative and qualitative synthesis. . Am. Nat. 195:(3):41231
    [Crossref] [Google Scholar]
  27. 27.
    Britt M, Haworth SE, Johnson JB, Martchenko D, Shafer ABA. 2018.. The importance of non-academic coauthors in bridging the conservation genetics gap. . Biol. Conserv. 218::11823
    [Crossref] [Google Scholar]
  28. 28.
    Broadhurst LM, Lowe A, Coates DJ, Cunningham SA, McDonald M, et al. 2008.. Seed supply for broadscale restoration: maximizing evolutionary potential. . Evol. Appl. 1:(4):58797
    [Crossref] [Google Scholar]
  29. 29.
    Brown AHD, Young AG. 2000.. Genetic diversity in tetraploid populations of the endangered daisy Rutidosis leptorrhynchoides and implications for its conservation. . Heredity 85:(2):12229
    [Crossref] [Google Scholar]
  30. 30.
    Bucharova A, Lampei C, Conrady M, May E, Matheja J, et al. 2021.. Plant provenance affects pollinator network: implications for ecological restoration. . J. Appl. Ecol. 59::37383
    [Crossref] [Google Scholar]
  31. 31.
    Capblancq T, Fitzpatrick MC, Bay RA, Exposito-Alonso M, Keller SR. 2020.. Genomic prediction of (mal)adaptation across current and future climatic landscapes. . Annu. Rev. Ecol. Evol. Syst. 51::24569 31. Detailed review of the use of genomics to predict maladaptation under projected future conditions.
    [Crossref] [Google Scholar]
  32. 32.
    Capblancq T, Forester BR. 2021.. Redundancy analysis: A Swiss Army Knife for landscape genomics. . Methods Ecol. Evol. 12:(12):2298309
    [Crossref] [Google Scholar]
  33. 33.
    Carlson S, Cunningham C, Westley P. 2014.. Evolutionary rescue in a changing world. . Trends Ecol. Evol. 29::52130
    [Crossref] [Google Scholar]
  34. 34.
    Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. 2018.. Runs of homozygosity: windows into population history and trait architecture. . Nat. Rev. Genet. 19:(4):22034
    [Crossref] [Google Scholar]
  35. 35.
    Chan WY, Hoffmann AA, van Oppen MJH. 2019.. Hybridization as a conservation management tool. . Conserv. Lett. 12:(5):e12652
    [Crossref] [Google Scholar]
  36. 36.
    Chen J, Li L, Milesi P, Jansson G, Berlin M, et al. 2019.. Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. . Evol. Appl. 12:(8):153951
    [Crossref] [Google Scholar]
  37. 37.
    Chevin LM, Collins S, Lefèvre F. 2013.. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. . Funct. Ecol. 27:(4):96779
    [Crossref] [Google Scholar]
  38. 38.
    Conv. Biol. Divers. 2022.. Decision 15/4: Kunming-Montreal Global Biodiversity Framework. CBD/COP/DEC/15/4 . Montreal, Canada:
    [Google Scholar]
  39. 39.
    Cook CN, Beever EA, Thurman LL, Thompson LM, Gross JE, et al. 2021.. Supporting the adaptive capacity of species through more effective knowledge exchange with conservation practitioners. . Evol. Appl. 14:(8):196979
    [Crossref] [Google Scholar]
  40. 40.
    Cook CN, Sgrò CM. 2017.. Aligning science and policy to achieve evolutionarily enlightened conservation. . Conserv. Biol. 31:(3):50112
    [Crossref] [Google Scholar]
  41. 41.
    Dauphin B, Rellstab C, Schmid M, Zoller S, Karger DN, et al. 2020.. Genomic vulnerability to rapid climate warming in a tree species with a long generation time. . Glob. Change Biol. 27::118195
    [Crossref] [Google Scholar]
  42. 42.
    Dauphin B, Rellstab C, Wüest RO, Karger DN, Holderegger R, et al. 2023.. Re-thinking the environment in landscape genomics. . Trends Ecol. Evol. 38::26174 42. Review highlighting important considerations when selecting environmental data for GEA studies of local adaptation.
    [Crossref] [Google Scholar]
  43. 43.
    De León LF, Silva B, Avilés-Rodríguez KJ, Buitrago-Rosas D. 2023.. Harnessing the omics revolution to address the global biodiversity crisis. . Curr. Opin. Biotechnol. 80::102901
    [Crossref] [Google Scholar]
  44. 44.
    Delaney JT, Baack EJ. 2012.. Intraspecific chromosome number variation and prairie restoration—a case study in northeast Iowa, U.S.A. . Restor. Ecol. 20:(5):57683
    [Crossref] [Google Scholar]
  45. 45.
    Depardieu C, Gérardi S, Nadeau S, Parent GJ, Mackay J, et al. 2021.. Connecting tree-ring phenotypes, genetic associations and transcriptomics to decipher the genomic architecture of drought adaptation in a widespread conifer. . Mol. Ecol. 30:(16):3898917
    [Crossref] [Google Scholar]
  46. 46.
    Derry AM, Fraser DJ, Brady SP, Astorg L, Lawrence ER, et al. 2019.. Conservation through the lens of (mal)adaptation: concepts and meta-analysis. . Evol. Appl. 12:(7):1287304 46. Distinguishes conservation practices that target adaptive state versus adaptive processes and implications for (mal)adaptation.
    [Crossref] [Google Scholar]
  47. 47.
    Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. 2014.. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. . Mol. Ecol. Resour. 14:(1):20914
    [Crossref] [Google Scholar]
  48. 48.
    Edmands S. 2007.. Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. . Mol. Ecol. 16::46375
    [Crossref] [Google Scholar]
  49. 49.
    Etterson JR, Shaw RG. 2001.. Constraint to adaptive evolution in response to global warming. . Science 294:(5540):15154
    [Crossref] [Google Scholar]
  50. 50.
    Exposito-Alonso M, Booker TR, Czech L, Gillespie L, Hateley S, et al. 2022.. Genetic diversity loss in the Anthropocene. . Science 377:(6613):143135 50. Predicts the extent of genetic diversity loss based on population extirpations of plant and animal species.
    [Crossref] [Google Scholar]
  51. 51.
    Exposito-Alonso M, Gómez Rodríguez R, Barragán C, Capovilla G, Cha E, et al. 2019.. Natural selection on the Arabidopsis thaliana genome in present and future climates. . Nature 573:(7772):12629
    [Crossref] [Google Scholar]
  52. 52.
    Exposito-Alonso M, Vasseur F, Ding W, Wang G, Burbano HA, Weigel D. 2018.. Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana. . Nat. Ecol. Evol. 2::35258
    [Crossref] [Google Scholar]
  53. 53.
    Feiner N, Brun-Usan M, Uller T. 2021.. Evolvability and evolutionary rescue. . Evol. Dev. 23:(4):30819
    [Crossref] [Google Scholar]
  54. 54.
    Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, et al. 2017.. Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. . BMC Genom. 18:(1):69
    [Crossref] [Google Scholar]
  55. 55.
    Fitzpatrick MC, Blois JL, Williams JW, Nieto-Lugilde D, Maguire KC, Lorenz DJ. 2018.. How will climate novelty influence ecological forecasts? Using the Quaternary to assess future reliability. . Glob. Change Biol. 24:(8):357586
    [Crossref] [Google Scholar]
  56. 56.
    Fitzpatrick MC, Chhatre VE, Soolanayakanahally RY, Keller SR. 2021.. Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests. . Mol. Ecol. Resour. 21:(8):274965
    [Crossref] [Google Scholar]
  57. 57.
    Fitzpatrick MC, Keller SR. 2015.. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. . Ecol. Lett. 18:(1):116
    [Crossref] [Google Scholar]
  58. 58.
    Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S. 2018.. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. . Evol. Appl. 11:(7):103552
    [Crossref] [Google Scholar]
  59. 59.
    Forester BR, Beever EA, Darst C, Szymanski J, Funk WC. 2022.. Linking evolutionary potential to extinction risk: applications and future directions. . Front. Ecol. Environ. 20:(9):50715
    [Crossref] [Google Scholar]
  60. 60.
    Fox RJ, Donelson JM, Schunter C, Ravasi T, Gaitán-Espitia JD. 2019.. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. . Philos. Trans. R. Soc. B 374:(1768):20180174
    [Crossref] [Google Scholar]
  61. 61.
    Frank A, Howe GT, Sperisen C, Brang P, Clair JBS, et al. 2017.. Risk of genetic maladaptation due to climate change in three major European tree species. . Glob. Change Biol. 23:(12):535871
    [Crossref] [Google Scholar]
  62. 62.
    Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, et al. 2011.. Predicting the probability of outbreeding depression. . Conserv. Biol. 25:(3):46575
    [Crossref] [Google Scholar]
  63. 63.
    Frankham R, Bradshaw CJA, Brook BW. 2014.. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. . Biol. Conserv. 170::5663
    [Crossref] [Google Scholar]
  64. 64.
    Franks SJ, Hamann E, Weis AE. 2018.. Using the resurrection approach to understand contemporary evolution in changing environments. . Evol. Appl. 11:(1):1728
    [Crossref] [Google Scholar]
  65. 65.
    Franks SJ, Kane NC, O'Hara NB, Tittes S, Rest JS. 2016.. Rapid genome-wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools. . Mol. Ecol. 25:(15):362231
    [Crossref] [Google Scholar]
  66. 66.
    Franks SJ, Weber JJ, Aitken SN. 2014.. Evolutionary and plastic responses to climate change in terrestrial plant populations. . Evol. Appl. 7:(1):12339
    [Crossref] [Google Scholar]
  67. 67.
    Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. 2012.. Harnessing genomics for delineating conservation units. . Trends Ecol. Evol. 27:(9):48996
    [Crossref] [Google Scholar]
  68. 68.
    Gomulkiewicz R, Holt RD. 1995.. When does evolution by natural selection prevent extinction?. Evolution 49:(1):2017
    [Crossref] [Google Scholar]
  69. 69.
    Gonzalez A, Ronce O, Ferriere R, Hochberg ME. 2013.. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. . Philos. Trans. R. Soc. B 368:(1610):20120404
    [Crossref] [Google Scholar]
  70. 70.
    Gosney BJ, Potts BM, Forster LG, Whiteley C, Reilly JMO. 2021.. Consistent community genetic effects in the context of strong environmental and temporal variation in Eucalyptus. . Oecologia 195:(2):36782
    [Crossref] [Google Scholar]
  71. 71.
    Gougherty AV, Keller SR, Fitzpatrick MC. 2021.. Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. . Nat. Clim. Change 11::16671
    [Crossref] [Google Scholar]
  72. 72.
    Gougherty AV, Keller SR, Fitzpatrick MC. 2022.. Do genetically informed distribution models improve range predictions in past climates? A case study with balsam poplar. . Front. Biogeogr. 14:(3):e56931
    [Crossref] [Google Scholar]
  73. 73.
    Grummer JA, Booker TR, Matthey-Doret R, Nietlisbach P, Thomaz AT, Whitlock MC. 2022.. The immediate costs and long-term benefits of assisted gene flow in large populations. . Conserv. Biol. 36:(4):e13911
    [Crossref] [Google Scholar]
  74. 74.
    Guerrero J, Andrello M, Burgarella C, Manel S. 2018.. Soil environment is a key driver of adaptation in Medicago truncatula: new insights from landscape genomics. . New Phytol. 219:(1):37890
    [Crossref] [Google Scholar]
  75. 75.
    Gugger PF, Fitz-Gibbon ST, Albarrán-Lara A, Wright JW, Sork VL. 2021.. Landscape genomics of Quercus lobata reveals genes involved in local climate adaptation at multiple spatial scales. . Mol. Ecol. 30:(2):40623
    [Crossref] [Google Scholar]
  76. 76.
    Haller BC, Messer PW. 2019.. SLiM 3: Forward genetic simulations beyond the Wright–Fisher model. . Mol. Biol. Evol. 36:(3):63237
    [Crossref] [Google Scholar]
  77. 77.
    Hamann A, Roberts DR, Barber QE, Carroll C, Nielsen SE. 2015.. Velocity of climate change algorithms for guiding conservation and management. . Glob. Change Biol. 21:(2):9971004
    [Crossref] [Google Scholar]
  78. 78.
    Hargreaves AL, Germain RM, Bontrager M, Persi J, Angert AL. 2020.. Local adaptation to biotic interactions: a meta-analysis across latitudes. . Am. Nat. 195:(3):395411
    [Crossref] [Google Scholar]
  79. 79.
    Heuertz M, Carvalho SB, Galindo J, Rinkevich B, Robakowski P, et al. 2023.. The application gap: genomics for biodiversity and ecosystem service management. . Biol. Conserv. 278::109883 79. Framework outlining how genomics can support conservation management, from individual species through to ecosystem services.
    [Crossref] [Google Scholar]
  80. 80.
    Hoban S, Archer FI, Bertola LD, Bragg JG, Breed MF, et al. 2022.. Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition. . Biol. Rev. 97::151138
    [Crossref] [Google Scholar]
  81. 81.
    Hoban S, Bruford MW, da Silva JM, Funk WC, Frankham R, et al. 2023.. Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. . Conserv. Genet. 24:(2):18191
    [Crossref] [Google Scholar]
  82. 82.
    Hoban S, Bruford MW, D'Urban Jackson J, Lopes-Fernandes M, Heuertz M, et al. 2020.. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. . Biol. Conserv. 248::108654
    [Crossref] [Google Scholar]
  83. 83.
    Hoban S, Bruford MW, Funk WC, Galbusera P, Griffith MP, et al. 2021.. Global commitments to conserving and monitoring genetic diversity are now necessary and feasible. . Bioscience 71:(9):96476
    [Crossref] [Google Scholar]
  84. 84.
    Hoban S, Campbell CD, da Silva JM, Ekblom R, Funk WC, et al. 2021.. Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on Biological Diversity: Current actions and indicators are insufficient. . Biol. Conserv. 261::109233
    [Crossref] [Google Scholar]
  85. 85.
    Hoffmann AA, Miller AD, Weeks AR. 2020.. Genetic mixing for population management: from genetic rescue to provenancing. . Evol. Appl. 14::63452 85. Evaluates the potential benefits and risks of translocations and population mixing for conservation.
    [Crossref] [Google Scholar]
  86. 86.
    Hoffmann AA, Weeks AR, Sgrò CM. 2021.. Opportunities and challenges in assessing climate change vulnerability through genomics. . Cell 184:(6):142025
    [Crossref] [Google Scholar]
  87. 87.
    Holderegger R, Buehler D, Gugerli F, Manel S. 2010.. Landscape genetics of plants. . Trends Plant Sci. 15:(12):67583
    [Crossref] [Google Scholar]
  88. 88.
    Hung TH, So T, Thammavong B, Chamchumroon V, Theilade I, et al. 2023.. Range-wide differential adaptation and genomic offset in critically endangered Asian rosewoods. . PNAS 120::e2301603120
    [Crossref] [Google Scholar]
  89. 89.
    Intl. Union. Conserv. Nat. (IUCN) Red List. 2022.. Table 1b: numbers of threatened species by major groups of organisms (1996–2022). . Int. Union. Conserv. Nat. https://www.iucnredlist.org/resources/summary-statistics#Summary%20Tables
    [Google Scholar]
  90. 90.
    Jamieson IG, Allendorf FW. 2012.. How does the 50/500 rule apply to MVPs?. Trends Ecol. Evol. 27:(10):57884
    [Crossref] [Google Scholar]
  91. 91.
    Janes JK, Hamilton JA. 2017.. Mixing it up: the role of hybridization in forest management and conservation under climate change. . Forests 8:(7):237
    [Crossref] [Google Scholar]
  92. 92.
    Jia KH, Zhao W, Maier PA, Hu XG, Jin Y, et al. 2020.. Landscape genomics predicts climate change-related genetic offset for the widespread Platycladus orientalis (Cupressaceae). . Evol. Appl. 13:(4):66576
    [Crossref] [Google Scholar]
  93. 93.
    Johnson LC, Galliart MB, Alsdurf JD, Maricle BR, Baer SG, et al. 2022.. Reciprocal transplant gardens as gold standard to detect local adaptation in grassland species: new opportunities moving into the 21st century. . J. Ecol. 110:(5):105471
    [Crossref] [Google Scholar]
  94. 94.
    Johnson MTJ, Munshi-South J. 2017.. Evolution of life in urban environments. . Science 358:(6363):eaam8327
    [Crossref] [Google Scholar]
  95. 95.
    Jordan R, Breed MF, Prober SM, Miller AD, Hoffmann AA. 2019.. How well do revegetation plantings capture genetic diversity?. Biol. Lett. 15:(10):20190460
    [Crossref] [Google Scholar]
  96. 96.
    Jordan R, Hoffmann AA, Dillon SK, Prober SM. 2017.. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: implications for adaptive potential to projected climate change. . Mol. Ecol. 26:(21):600220
    [Crossref] [Google Scholar]
  97. 97.
    Kardos M, Armstrong E, Fitzpatrick S, Hauser S, Hedrick P, et al. 2021.. The crucial role of genome-wide genetic variation in conservation. . PNAS 118:(48):e2104642118 97. Justification for continued conservation focus on genome-wide diversity and not only adaptive genetic diversity.
    [Crossref] [Google Scholar]
  98. 98.
    Kardos M, Shafer ABA. 2018.. The peril of gene-targeted conservation. . Trends Ecol. Evol. 33:(11):82739
    [Crossref] [Google Scholar]
  99. 99.
    Kawecki TJ, Ebert D. 2004.. Conceptual issues in local adaptation. . Ecol. Lett. 7:(12):122541
    [Crossref] [Google Scholar]
  100. 100.
    Kirkpatrick M, Barton N. 1997.. Evolution of a species’ range. . Am. Nat. 150::123
    [Crossref] [Google Scholar]
  101. 101.
    Kling MM, Auer SL, Comer PJ, Ackerly DD, Hamilton H. 2020.. Multiple axes of ecological vulnerability to climate change. . Glob. Change Biol. 26:(5):2798813
    [Crossref] [Google Scholar]
  102. 102.
    Kottler EJ, Dickman EE, Sexton JP, Emery NC, Franks SJ. 2021.. Draining the swamping hypothesis: little evidence that gene flow reduces fitness at range edges. . Trends Ecol. Evol. 36:(6):53344
    [Crossref] [Google Scholar]
  103. 103.
    Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, et al. 2012.. Long-distance gene flow and adaptation of forest trees to rapid climate change. . Ecol. Lett. 15:(4):37892
    [Crossref] [Google Scholar]
  104. 104.
    Landguth EL, Bearlin A, Day CC, Dunham J. 2017.. CDMetaPOP: an individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics. . Methods Ecol. Evol. 8:(1):411
    [Crossref] [Google Scholar]
  105. 105.
    Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G. 2010.. Quantifying the lag time to detect barriers in landscape genetics. . Mol. Ecol. 19:(19):417991
    [Crossref] [Google Scholar]
  106. 106.
    Landguth EL, Holden ZA, Mahalovich MF, Cushman SA. 2017.. Using landscape genetics simulations for planting blister rust resistant whitebark pine in the US Northern Rocky Mountains. . Front. Genet. 8::9
    [Crossref] [Google Scholar]
  107. 107.
    Láruson ÁJ, Fitzpatrick MC, Keller SR, Haller BC, Lotterhos KE. 2022.. Seeing the forest for the trees: assessing genetic offset predictions from gradient forest. . Evol. Appl. 15:(3):40316
    [Crossref] [Google Scholar]
  108. 108.
    Lawler JJ, Olden JD. 2011.. Reframing the debate over assisted colonization. . Front. Ecol. Environ. 9:(10):56974
    [Crossref] [Google Scholar]
  109. 109.
    Leempoel K, Parisod C, Geiser C, Joost S. 2018.. Multiscale landscape genomic models to detect signatures of selection in the alpine plant Biscutella laevigata. . Ecol. Evol. 8:(3):1794806
    [Crossref] [Google Scholar]
  110. 110.
    Leimu R, Fischer M. 2008.. A meta-analysis of local adaptation in plants. . PLOS ONE 3:(12):e4010
    [Crossref] [Google Scholar]
  111. 111.
    Leites L, Benito Garzón M. 2023.. Forest tree species adaptation to climate across biomes: building on the legacy of ecological genetics to anticipate responses to climate change. . Glob. Change Biol. 29::471130
    [Crossref] [Google Scholar]
  112. 112.
    Leitwein M, Duranton M, Rougemont Q, Gagnaire PA, Bernatchez L. 2020.. Using haplotype information for conservation genomics. . Trends Ecol. Evol. 35:(3):24558
    [Crossref] [Google Scholar]
  113. 113.
    Lenormand T. 2002.. Gene flow and the limits to natural selection. . Trends Ecol. Evol. 17::18389
    [Crossref] [Google Scholar]
  114. 114.
    Li Y, Zhang X-X, Mao R-L, Yang J, Miao C-Y, et al. 2017.. Ten years of landscape genomics: challenges and opportunities. . Front. Plant Sci. 8::2136
    [Crossref] [Google Scholar]
  115. 115.
    Liddell E, Sunnucks P, Cook CN. 2021.. To mix or not to mix gene pools for threatened species management? Few studies use genetic data to examine the risks of both actions, but failing to do so leads disproportionately to recommendations for separate management. . Biol. Conserv. 256::109072
    [Crossref] [Google Scholar]
  116. 116.
    Lin N, Landis JB, Sun Y, Huang X, Zhang X, et al. 2021.. Demographic history and local adaptation of Myripnois dioica (Asteraceae) provide insight on plant evolution in northern China flora. . Ecol. Evol. 11:(12):800013
    [Crossref] [Google Scholar]
  117. 117.
    Lind BM, Candido-Ribeiro R, Singh P, Lu M, Vidakovic DO, et al. 2024.. How useful is genomic data for predicting maladaptation to future climate?. New Phytol. In press
    [Google Scholar]
  118. 118.
    Liukkonen M, Kronholm I, Ketola T. 2021.. Evolutionary rescue at different rates of environmental change is affected by trade-offs between short-term performance and long-term survival. . J. Evol. Biol. 34:(7):117784
    [Crossref] [Google Scholar]
  119. 119.
    Lotterhos KE. 2023.. The paradox of adaptive trait clines with nonclinal patterns in the underlying genes. . PNAS 120::e2220313120 119. Highlights the challenges of identifying nonclinal genotype-environment associations through simulation modeling.
    [Crossref] [Google Scholar]
  120. 120.
    Lotterhos KE, Fitzpatrick MC, Blackmon H. 2022.. Simulation tests of methods in evolution, ecology, and systematics: pitfalls, progress, and principles. . Annu. Rev. Ecol. Evol. Syst. 53::11336
    [Crossref] [Google Scholar]
  121. 121.
    Lotterhos KE, Whitlock MC. 2014.. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. . Mol. Ecol. 23:(9):217892
    [Crossref] [Google Scholar]
  122. 122.
    Luyssaert S, Jammet M, Stoy PC, Estel S, Pongratz J, et al. 2014.. Land management and land-cover change have impacts of similar magnitude on surface temperature. . Nat. Clim. Change 4:(5):38993
    [Crossref] [Google Scholar]
  123. 123.
    Ma Y, Liu D, Wariss HM, Zhang R, Tao L, et al. 2022.. Demographic history and identification of threats revealed by population genomic analysis provide insights into conservation for an endangered maple. . Mol. Ecol. 31:(3):76779
    [Crossref] [Google Scholar]
  124. 124.
    Mahony CR, Cannon AJ, Wang T, Aitken SN. 2017.. A closer look at novel climates: new methods and insights at continental to landscape scales. . Glob. Change Biol. 23:(9):393455
    [Crossref] [Google Scholar]
  125. 125.
    Mahony CR, MacLachlan IR, Lind BM, Yoder JB, Wang T, Aitken SN. 2020.. Evaluating genomic data for management of local adaptation in a changing climate: a lodgepole pine case study. . Evol. Appl. 13::11631
    [Crossref] [Google Scholar]
  126. 126.
    Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, et al. 2012.. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. . Mol. Ecol. 21:(15):372938
    [Crossref] [Google Scholar]
  127. 127.
    Manel S, Schwartz MK, Luikart G, Taberlet P. 2003.. Landscape genetics: combining landscape ecology and population genetics. . Trends Ecol. Evol. 18:(4):18997 127. Flagship paper on landscape genetics and a precursor to landscape genomics.
    [Crossref] [Google Scholar]
  128. 128.
    Massatti R, Prendeville HR, Larson S, Richardson BA, Waldron B, Kilkenny FF. 2018.. Population history provides foundational knowledge for utilizing and developing native plant restoration materials. . Evol. Appl. 11:(10):202539
    [Crossref] [Google Scholar]
  129. 129.
    McKay JK, Christian CE, Harrison S, Rice KJ. 2005.. “ How local is local?”—A review of practical and conceptual issues in the genetics of restoration. . Restor. Ecol. 13:(3):43240
    [Crossref] [Google Scholar]
  130. 130.
    McLane SC, Aitken SN. 2012.. Whitebark pine (Pinus albicaulis) assisted migration potential: testing establishment north of the species range. . Ecol. Appl. 22:(1):14253
    [Crossref] [Google Scholar]
  131. 131.
    McLean EH, Prober SM, Stock WD, Steane DA, Potts BM, et al. 2014.. Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. . Plant Cell Environ. 37:(6):144051
    [Crossref] [Google Scholar]
  132. 132.
    Merric L, Bank C. 2023.. Evolutionary rescue in a fluctuating environment: periodic versus quasi-periodic environmental change. . Proc. R. Soc. B 290::20230770
    [Crossref] [Google Scholar]
  133. 133.
    Neel MC, McKelvey K, Ryman N, Lloyd MW, Short Bull R, et al. 2013.. Estimation of effective population size in continuously distributed populations: There goes the neighborhood. . Heredity 111:(3):18999
    [Crossref] [Google Scholar]
  134. 134.
    Nevo E, Fu Y-B, Pavlicek T, Khalifa S, Tavasi M, Beiles A. 2012.. Evolution of wild cereals during 28 years of global warming in Israel. . PNAS 109:(9):341215
    [Crossref] [Google Scholar]
  135. 135.
    O'Neill G, Wang T, Ukrainetz N, Charleson L, McAuley L, et al. 2017.. A proposed climate-based seed transfer system for British Columbia. Tech. Rep. 099 . Prov. BC, Victoria, BC:. http://www.for.gov.bc.ca/hfd/pubs/Docs/Tr/Tr099.htm
    [Google Scholar]
  136. 136.
    Ottewell KM, Bickerton DC, Byrne M, Lowe AJ. 2016.. Bridging the gap: a genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. . Divers. Distrib. 22:(2):17488
    [Crossref] [Google Scholar]
  137. 137.
    Peterman WE, Pope NS. 2021.. The use and misuse of regression models in landscape genetic analyses. . Mol. Ecol. 30:(1):3747
    [Crossref] [Google Scholar]
  138. 138.
    Peterman WE, Winiarski KJ, Moore CE, da Silva Carvalho C, Gilbert AL, Spear SF. 2019.. A comparison of popular approaches to optimize landscape resistance surfaces. . Landsc. Ecol. 34:(9):2197208
    [Crossref] [Google Scholar]
  139. 139.
    Peterson St-Laurent G, Hagerman S, Findlater KM, Kozak R. 2019.. Public trust and knowledge in the context of emerging climate-adaptive forestry policies. . J. Environ. Manag. 242::47486
    [Crossref] [Google Scholar]
  140. 140.
    Peterson St-Laurent G, Oakes LE, Cross M, Hagerman S. 2021.. R–R–T (resistance–resilience–transformation) typology reveals differential conservation approaches across ecosystems and time. . Commun. Biol. 4:(1):39
    [Crossref] [Google Scholar]
  141. 141.
    Pina-Martins F, Baptista J, Pappas G Jr., Paulo OS. 2019.. New insights into adaptation and population structure of cork oak using genotyping by sequencing. . Glob. Change Biol. 25:(1):33750
    [Crossref] [Google Scholar]
  142. 142.
    Plue J, Aavik T, Cousins SAO. 2019.. Grazing networks promote plant functional connectivity among isolated grassland communities. . Divers. Distrib. 25:(1):10215
    [Crossref] [Google Scholar]
  143. 143.
    Pritchard J, Stephens M, Donnelly P. 2000.. Inference of population structure using multilocus genotype data. . Genetics 155::94559
    [Crossref] [Google Scholar]
  144. 144.
    Prober SM, Doerr VAJ, Broadhurst LM, Williams KJ, Dickson F. 2019.. Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. . Ecol. Monogr. 89:(1):e01333
    [Crossref] [Google Scholar]
  145. 145.
    Rehfeldt G, Jaquish B. 2010.. Ecological impacts and management strategies for western larch in the face of climate-change. . Mitig. Adapt. Strateg. Glob. Change 15::283306
    [Crossref] [Google Scholar]
  146. 146.
    Rellstab C, Dauphin B, Exposito-Alonso M. 2021.. Prospects and limitations of genomic offset in conservation management. . Evol. Appl. 14:(5):120212
    [Crossref] [Google Scholar]
  147. 147.
    Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. 2015.. A practical guide to environmental association analysis in landscape genomics. . Mol. Ecol. 24:(17):434870
    [Crossref] [Google Scholar]
  148. 148.
    Rellstab C, Zoller S, Walthert L, Lesur I, Pluess AR, et al. 2016.. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. . Mol. Ecol. 25:(23):590724
    [Crossref] [Google Scholar]
  149. 149.
    Ricciardi A, Simberloff D. 2009.. Assisted colonization is not a viable conservation strategy. . Trends Ecol. Evol. 24:(5):24853
    [Crossref] [Google Scholar]
  150. 150.
    Rivera HE, Aichelman HE, Fifer JE, Kriefall NG, Wuitchik DM, et al. 2021.. A framework for understanding gene expression plasticity and its influence on stress tolerance. . Mol. Ecol. 30:(6):138197
    [Crossref] [Google Scholar]
  151. 151.
    Robuchon M, da Silva J, Dubois G, Gumbs R, Hoban S, et al. 2023.. Conserving species’ evolutionary potential and history: opportunities under the Kunming–Montreal Global Biodiversity Framework. . Conserv. Sci. Pract. 5::e12929
    [Crossref] [Google Scholar]
  152. 152.
    Rossetto M, Bragg J, Kilian A, McPherson H, van der Merwe M, Wilson PD. 2019.. Restore and Renew: a genomics-era framework for species provenance delimitation. . Restor. Ecol. 27::53848
    [Crossref] [Google Scholar]
  153. 153.
    Sáenz-Romero C, Mendoza-Maya E, Gómez-Pineda E, Blanco-García A, Endara-Agramont AR, et al. 2020.. Recent evidence of Mexican temperate forest decline and the need for ex situ conservation, assisted migration, and translocation of species ensembles as adaptive management to face projected climatic change impacts in a megadiverse country. . Can. J. Forest Res. 50:(9):84354
    [Crossref] [Google Scholar]
  154. 154.
    Sáenz-Romero C, O'Neill G, Aitken SN, Lindig-Cisneros R. 2021.. Assisted migration field tests in Canada and Mexico: lessons, limitations, and challenges. . Forests 12:(1):9
    [Crossref] [Google Scholar]
  155. 155.
    Savolainen O, Lascoux M, Merilä J. 2013.. Ecological genomics of local adaptation. . Nat. Rev. Genet. 14:(11):80720
    [Crossref] [Google Scholar]
  156. 156.
    Schiffers K, Bourne EC, Thuiller W, Travis JMJ. 2013.. Limited evolutionary rescue of locally adapted populations facing climate change. . Philos. Trans. R. Soc. B 368::20120083
    [Crossref] [Google Scholar]
  157. 157.
    Schmidt C, Hoban S, Hunter M, Paz-Vinas I, Garroway CJ. 2023.. Genetic diversity and IUCN Red List status. . Conserv. Biol. 37::e14064
    [Crossref] [Google Scholar]
  158. 158.
    Schmidt-Lebuhn AN, Marshall DJ, Dreis B, Young AG. 2018.. Genetic rescue in a plant polyploid complex: case study on the importance of genetic and trait data for conservation management. . Ecol. Evol. 8:(10):515363
    [Crossref] [Google Scholar]
  159. 159.
    Seaborn T, Andrews KR, Applestein CV, Breech TM, Garrett MJ, et al. 2021.. Integrating genomics in population models to forecast translocation success. . Restor. Ecol. 29:(4):e13395
    [Crossref] [Google Scholar]
  160. 160.
    Selmoni O, Vajana E, Guillaume A, Rochat E, Joost S. 2020.. Sampling strategy optimization to increase statistical power in landscape genomics: a simulation-based approach. . Mol. Ecol. Resour. 20:(1):15469
    [Crossref] [Google Scholar]
  161. 161.
    Sexton JP, Strauss SY, Rice KJ. 2011.. Gene flow increases fitness at the warm edge of a species’ range. . PNAS 108:(28):117049
    [Crossref] [Google Scholar]
  162. 162.
    Shryock DF, Washburn LK, DeFalco LA, Esque TC. 2021.. Harnessing landscape genomics to identify future climate resilient genotypes in a desert annual. . Mol. Ecol. 30:(3):698717
    [Crossref] [Google Scholar]
  163. 163.
    Siljamo P, Sofiev M, Severova E, Ranta H, Kukkonen J, et al. 2008.. Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. . Aerobiologia 24:(4):21130
    [Crossref] [Google Scholar]
  164. 164.
    Slatkin M. 1985.. Gene flow in natural populations. . Annu. Rev. Ecol. Syst. 16::393430
    [Crossref] [Google Scholar]
  165. 165.
    Sork VL. 2016.. Gene flow and natural selection shape spatial patterns of genes in tree populations: implications for evolutionary processes and applications. . Evol. Appl. 9:(1):291310
    [Crossref] [Google Scholar]
  166. 166.
    Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB. 2013.. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. . Tree Genet. Genomes 9:(4):90111
    [Crossref] [Google Scholar]
  167. 167.
    Sork VL, Waits L. 2010.. Contributions of landscape genetics—approaches, insights, and future potential. . Mol. Ecol. 19:(17):348995
    [Crossref] [Google Scholar]
  168. 168.
    Srivastava DS, Coristine L, Angert AL, Bontrager M, Amundrud SL, et al. 2021.. Wildcards in climate change biology. . Ecol. Monogr. 91:(4):e01471
    [Crossref] [Google Scholar]
  169. 169.
    Steiner KC, Westbrook JW, Hebard FV, Georgi LL, Powell WA, Fitzsimmons SF. 2017.. Rescue of American chestnut with extraspecific genes following its destruction by a naturalized pathogen. . New For. 48:(2):31736
    [Crossref] [Google Scholar]
  170. 170.
    Stewart GS, Morris MR, Genis AB, Szűcs M, Melbourne BA, et al. 2017.. The power of evolutionary rescue is constrained by genetic load. . Evol. Appl. 10:(7):73141
    [Crossref] [Google Scholar]
  171. 171.
    Thomas CD. 2020.. The development of Anthropocene biotas. . Philos. Trans. R. Soc. B 375:(1794):20190113
    [Crossref] [Google Scholar]
  172. 172.
    Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV. 2010.. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. . Nat. Genet. 42:(3):26063
    [Crossref] [Google Scholar]
  173. 173.
    Van Daele F, Honnay O, De Kort H. 2022.. Genomic analyses point to a low evolutionary potential of prospective source populations for assisted migration in a forest herb. . Evol. Appl. 15:(11):185974
    [Crossref] [Google Scholar]
  174. 174.
    Van Rossum F, Hardy OJ, Le Pajolec S, Raspé O. 2020.. Genetic monitoring of translocated plant populations in practice. . Mol. Ecol. 29:(21):404058
    [Crossref] [Google Scholar]
  175. 175.
    VanWallendael A, Lowry DB, Hamilton JA. 2022.. One hundred years into the study of ecotypes, new advances are being made through large-scale field experiments in perennial plant systems. . Curr. Opin. Plant Biol. 66::102152
    [Crossref] [Google Scholar]
  176. 176.
    von Takach B, Ahrens CW, Lindenmayer DB, Banks SC. 2021.. Scale-dependent signatures of local adaptation in a foundation tree species. . Mol. Ecol. 30:(10):224861
    [Crossref] [Google Scholar]
  177. 177.
    Wadgymar SM, Demarche ML, Josephs EB, Sheth SN, Anderson JT. 2022.. Local adaptation: causal agents of selection and adaptive trait divergence. . Annu. Rev. Ecol. Evol. Syst. 53::87111 177. In-depth review of methods for studying local adaptation and identifying environmental drivers.
    [Crossref] [Google Scholar]
  178. 178.
    Wang J, Santiago E, Caballero A. 2016.. Prediction and estimation of effective population size. . Heredity 117:(4):193206
    [Crossref] [Google Scholar]
  179. 179.
    Wang SQ. 2020.. Genetic diversity and population structure of the endangered species Paeonia decomposita endemic to China and implications for its conservation. . BMC Plant Biol. 20:(1):510
    [Crossref] [Google Scholar]
  180. 180.
    Wang T, O'Neill GA, Aitken SN. 2010.. Integrating environmental and genetic effects to predict responses of tree populations to climate. . Ecol. Appl. 20:(1):15363
    [Crossref] [Google Scholar]
  181. 181.
    Wang T, Smets P, Chourmouzis C, Aitken SN, Kolotelo D. 2020.. Conservation status of native tree species in British Columbia. . Glob. Ecol. Conserv. 24::e01362
    [Google Scholar]
  182. 182.
    Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, et al. 2011.. Assessing the benefits and risks of translocations in changing environments: a genetic perspective. . Evol. Appl. 4:(6):70925
    [Crossref] [Google Scholar]
  183. 183.
    Wegier A, Piñeyro-Nelson A, Alarcón J, Gálvez-Mariscal A, Álvarez-Buylla ER, Piñero D. 2011.. Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin. . Mol. Ecol. 20:(19):418294
    [Crossref] [Google Scholar]
  184. 184.
    Whiteley A, Fitzpatrick S, Funk W, Tallmon D. 2015.. Genetic rescue to the rescue. . Trends Ecol. Evol. 30::4249
    [Crossref] [Google Scholar]
  185. 185.
    Whitham TG, Allan GJ, Cooper HF, Shuster SM. 2020.. Intraspecific genetic variation and species interactions contribute to community evolution. . Annu. Rev. Ecol. Evol. Syst. 51::587612
    [Crossref] [Google Scholar]
  186. 186.
    Whitlock MC, Guillaume F. 2009.. Testing for spatially divergent selection: comparing QST to FST. . Genetics 183::105563
    [Crossref] [Google Scholar]
  187. 187.
    Whitlock MC, Mccauley DE. 1999.. Indirect measures of gene flow and migration: FST 1/(4Nm + 1). . Heredity 82:(2):11725
    [Crossref] [Google Scholar]
  188. 188.
    Willi Y, Kristensen TN, Sgro CM, Weeks AR, Ørsted M, Hoffmann AA. 2022.. Conservation genetics as a management tool: the five best-supported paradigms to assist the management of threatened species. . PNAS 119:(1):e2105076119
    [Crossref] [Google Scholar]
  189. 189.
    Willi Y, Van Buskirk J, Hoffmann AA. 2006.. Limits to the adaptive potential of small populations. . Annu. Rev. Ecol. Evol. Syst. 37:(1):43358
    [Crossref] [Google Scholar]
  190. 190.
    Wilson GA, Rannala B. 2003.. Bayesian inference of recent migration rates using multilocus genotypes. . Genetics 163:(3):117791
    [Crossref] [Google Scholar]
  191. 191.
    Wood G, Marzinelli EM, Campbell AH, Steinberg PD, Vergés A, Coleman MA. 2021.. Genomic vulnerability of a dominant seaweed points to future-proofing pathways for Australia's underwater forests. . Glob. Change Biol. 27:(10):220012
    [Crossref] [Google Scholar]
  192. 192.
    Yakub M, Tiffin P. 2017.. Living in the city: Urban environments shape the evolution of a native annual plant. . Glob. Change Biol. 23:(5):208289
    [Crossref] [Google Scholar]
  193. 193.
    Yan W, Wang B, Chan E, Mitchell-Olds T. 2021.. Genetic architecture and adaptation of flowering time among environments. . New Phytol. 230:(3):121427
    [Crossref] [Google Scholar]
  194. 194.
    Yeaman S. 2022.. Evolution of polygenic traits under global versus local adaptation. . Genetics 220:(1):iyab134
    [Crossref] [Google Scholar]
  195. 195.
    Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, et al. 2016.. Convergent local adaptation to climate in distantly related conifers. . Science 353:(6306):2326
    [Crossref] [Google Scholar]
  196. 196.
    Yu Y, Aitken SN, Rieseberg LH, Wang T. 2022.. Using landscape genomics to delineate seed and breeding zones for lodgepole pine. . New Phytol. 235:(4):165364
    [Crossref] [Google Scholar]
  197. 197.
    Zeller KA, McGarigal K, Whiteley AR. 2012.. Estimating landscape resistance to movement: a review. . Landsc. Ecol. 27:(6):77797
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070523-044239
Loading
/content/journals/10.1146/annurev-arplant-070523-044239
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error