1932

Abstract

My research career started with an ambition to work out how genes are regulated in plants. I tried out various experimental systems—artichoke tissue culture in Edinburgh; soybean root nodules in Montreal; soybean hypocotyls in Athens, Georgia; and cereal aleurones in Cambridge—but eventually I discovered plant viruses. Viral satellite RNAs were my first interest, but I then explored transgenic and natural disease resistance and was led by curiosity into topics beyond virology, including RNA silencing, epigenetics, and more recently, genome evolution. On the way, I have learned about approaches to research, finding tractable systems, and taking academic research into the real world. I have always tried to consider the broader significance of our work, and my current projects address the definition of epigenetics, the arms race concept of disease resistance, and Darwin's abominable mystery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070622-021021
2023-05-22
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-070622-021021.html?itemId=/content/journals/10.1146/annurev-arplant-070622-021021&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alizon S, Hurford A, Mideo N, Van Baalen M. 2009. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22:2245–59
    [Google Scholar]
  2. 2.
    Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Smith TH, Vance VB. 1998. A viral suppressor of gene silencing in plants. PNAS 95:2213079–84
    [Google Scholar]
  3. 3.
    Auger S, Baulcombe DC, Verma DPS. 1979. Sequence complexities of the poly(A)-containing RNA in uninfected soybean root and the nodule tissue developed due to infection by Rhizobium. Biochim. Biophys. Acta Nucleic Acids Protein Synth. 563:496–507
    [Google Scholar]
  4. 4.
    Baulcombe D. 2004. RNA silencing in plants. Nature 431:356–63
    [Google Scholar]
  5. 5.
    Baulcombe DC. 2015. VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts. Curr. Opin. Plant Biol. 26:141–46
    [Google Scholar]
  6. 6.
    Baulcombe DC. 2022. The role of viruses in identifying and analyzing RNA silencing. Annu. Rev. Virol. 9:353–73
    [Google Scholar]
  7. 7.
    Baulcombe DC, Barker RF, Jarvis MG. 1987. A gibberellin responsive wheat gene has homology to yeast carboxypeptidase Y. J. Biol. Chem. 262:13726–35
    [Google Scholar]
  8. 8.
    Baulcombe DC, Buffard D. 1983. Gibberellic acid regulated expression of α-amylase and six other genes in wheat aleurone layers. Planta 157:493–501
    [Google Scholar]
  9. 9.
    Baulcombe DC, Flavell RB, Boulton RE, Jellis GJ. 1984. The sensitivity and specificity of a rapid nucleic acid hybridization method for the detection of potato virus X in crude sap samples. Plant Pathol. 33:3361–70
    [Google Scholar]
  10. 10.
    Baulcombe DC, Huttly AK, Martienssen RA, Barker RF, Jarvis MG. 1987. A novel wheat α-amylase gene (α-Amy3). Mol. Gen. Genet. 209:133–40
    [Google Scholar]
  11. 11.
    Baulcombe DC, Key JL. 1980. Polyadenylated RNA sequences which are reduced in concentration following auxin treatment of soybean hypocotyls. J. Biol. Chem. 255:8907–13
    [Google Scholar]
  12. 12.
    Baulcombe DC, Saunders GR, Bevan MW, Mayo MA, Harrison BD. 1986. Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321:6068446–49
    [Google Scholar]
  13. 13.
    Baulcombe DC, Verma DPS. 1978. Preparation of a complementary DNA for leghaemoglobin and direct demonstration that leghaemoglobin is encoded by the soybean genome. Nucleic Acids Res. 5:4141–53
    [Google Scholar]
  14. 14.
    Bäurle I, Smith L, Baulcombe DC, Dean C. 2007. Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science 318:5847109–12
    [Google Scholar]
  15. 15.
    Bendahmane A, Kanyuka K, Baulcombe DC. 1999. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:5781–91
    [Google Scholar]
  16. 16.
    Bendahmane A, Köhm BA, Dedi C, Baulcombe DC. 1995. The coat protein of potato virus X is a strain-specific elicitor of Rx1-mediated virus resistance in potato. Plant J. 8:6933–41
    [Google Scholar]
  17. 17.
    Benton MJ, Wilf P, Sauquet H. 2022. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. New Phytol. 233:52017–35
    [Google Scholar]
  18. 18.
    Benton TG, Harwatt H. 2022. Sustainable agriculture and food systems Res. Pap. Chatham House London, UK: https://www.chathamhouse.org/2022/05/sustainable-agriculture-and-food-systems
    [Google Scholar]
  19. 19.
    Brewster D. 1855. Memoirs of the Life, Writings, and Discoveries of Sir Isaac Newton Edinburgh, UK: Thomas Constable and Co https://quod.lib.umich.edu/g/genpub/aat0604.0002.001?rgn=main;view=fulltext;q1=unitarian
    [Google Scholar]
  20. 20.
    Britten RJ, Davidson EH. 1969. Gene regulation for higher cells: a theory. Science 165:3891349–57
    [Google Scholar]
  21. 21.
    Brown JKM. 2015. Durable resistance of crops to disease: a Darwinian perspective. Annu. Rev. Phytopathol. 53:513–39
    [Google Scholar]
  22. 22.
    Cai Q, He B, Wang S, Fletcher S, Niu D et al. 2021. Message in a bubble: shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles. Annu. Rev. Plant Biol. 72:497–524
    [Google Scholar]
  23. 23.
    Canto-Pastor A, Santos BAMC, Valli AA, Summers W, Schornack S, Baulcombe DC. 2019. Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. PNAS 116:72755–60
    [Google Scholar]
  24. 24.
    Chrispeels MJ, Varner JE. 1967. Gibberellic acid-enhanced synthesis and release of α-amylase and ribonuclease by isolated barley and aleurone layers. Plant Physiol. 42:3398–406
    [Google Scholar]
  25. 25.
    Cornford CA, Black M, Chapman JM, Baulcombe DC. 1986. Expression of α-amylase and other GA-regulated genes in aleurone tissue of developing wheat grains. Planta 169:420–28
    [Google Scholar]
  26. 26.
    Csorba T, Kontra L, Burgyán J. 2015. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480:85–103
    [Google Scholar]
  27. 27.
    Dalmay T, Hamilton AJ, Rudd S, Angell S, Baulcombe DC. 2000. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:5543–53
    [Google Scholar]
  28. 28.
    Dalmay TD, Horsefield R, Braunstein TH, Baulcombe DC. 2001. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J. 20:82069–78
    [Google Scholar]
  29. 29.
    De Haan P, Gielen JJL, Prins M, Wijkamp IG, van Schepen A et al. 1992. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio/Technology 10:1133–37
    [Google Scholar]
  30. 30.
    de Lange P, de Boer G-J, Mol JNM, Kooter JM. 1993. Conditional inhibition of β-glucuronidase expression by antisense gene fragments in petunia protoplasts. Plant Mol. Biol. 23:45–55
    [Google Scholar]
  31. 31.
    de Ronde D, Pasquier A, Ying S, Butterbach P, Lohuis D, Kormelink R. 2014. Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression. Mol. Plant Pathol. 15:2185–95
    [Google Scholar]
  32. 32.
    de Vries S, Kloesges T, Rose LE. 2015. Evolutionarily dynamic, but robust, targeting of resistance genes by the miR482/2118 gene family in the Solanaceae. Genome Biol. Evol. 7:123307–21
    [Google Scholar]
  33. 33.
    Devers EA, Brosnan CA, Sarazin A, Albertini D, Amsler AC et al. 2020. Movement and differential consumption of short interfering RNA duplexes underlie mobile RNA interference. Nat. Plants 6:7789–99
    [Google Scholar]
  34. 34.
    Devic M, Jaegle M, Baulcombe DC. 1989. Symptom production on tobacco and tomato is determined by two distinct domains of the satellite RNA of cucumber mosaic virus (strain Y). J. Gen. Virol. 70:2765–74
    [Google Scholar]
  35. 35.
    Doumayrou J, Avellan A, Froissart R, Michalakis Y. 2013. An experimental test of the transmission-virulence trade-off hypothesis in a plant virus. Evolution 67:2477–86
    [Google Scholar]
  36. 36.
    English JJ, Mueller E, Baulcombe DC. 1996. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8:179–88
    [Google Scholar]
  37. 37.
    Fedoroff N. 1983. Notes on cloning maize DNA. Maize Genet. Corp. Newsl. 57:154–55
    [Google Scholar]
  38. 38.
    Fedoroff NV. 2012. Transposable elements, epigenetics, and genome evolution. Science 338:758–67
    [Google Scholar]
  39. 39.
    Friedman WE. 2009. The meaning of Darwin's “abominable mystery. .” Am. J. Bot. 96:15–21
    [Google Scholar]
  40. 40.
    González VM, Müller SY, Baulcombe DC, Puigdoménech P. 2015. Evolution of NBS-LRR gene copies among dicot plants and its regulation by members of the miR482/2118 superfamily of miRNAs. Mol. Plant 8:329–31
    [Google Scholar]
  41. 41.
    Gouil Q, Baulcombe DC. 2016. DNA methylation signatures of the plant chromomethyltransferases. PLOS Genet. 12:12e1006526
    [Google Scholar]
  42. 42.
    Gouil Q, Baulcombe DC. 2018. Paramutation-like features of multiple natural epialleles in tomato. BMC Genom. 19:203
    [Google Scholar]
  43. 43.
    Guilfoyle TJ, Lin CY, Chen YM, Nagao RT, Key JL. 1975. Enhancement of soybean RNA polymerase I by auxin. PNAS 72:169–72
    [Google Scholar]
  44. 44.
    Hamilton AJ, Baulcombe DC. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:5441950–52
    [Google Scholar]
  45. 45.
    Hamilton AJ, Voinnet O, Chappell L, Baulcombe DC. 2002. Two classes of short interfering RNA in RNA silencing. EMBO J. 21:174671–79
    [Google Scholar]
  46. 46.
    Harrison BD. 1994. Frederick Charles Bawden: plant pathologist and pioneer in plant virus research. Annu. Rev. Phytopathol. 32:39–47
    [Google Scholar]
  47. 47.
    Harrison BD, Mayo MA, Baulcombe DC. 1987. Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA. Nature 328:6133799–802
    [Google Scholar]
  48. 48.
    Hastie ND, Bishop JO. 1976. The expression of three abundance classes of messenger RNA in mouse tissues. Cell 9:761–74
    [Google Scholar]
  49. 49.
    Heard E, Martienssen RA. 2014. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:195–109
    [Google Scholar]
  50. 50.
    Hernandez-Pinzon I, Yelina NE, Schwach F, Studholme DJ, Baulcombe DC, Dalmay T. 2007. SDE5, the putative homologue of a human mRNA export factor, is required for transgene silencing and accumulation of trans-acting endogenous siRNA. Plant J. 50:1140–48
    [Google Scholar]
  51. 51.
    Herr AJ, Jensen MB, Dalmay T, Baulcombe DC. 2005. RNA polymerase IV directs silencing of endogenous DNA. Science 308:5718118–20
    [Google Scholar]
  52. 52.
    Herr AJ, Molnàr A, Jones A, Baulcombe DC. 2006. Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. PNAS 103:4114994–5001
    [Google Scholar]
  53. 53.
    Hough BR, Smith MJ, Britten RJ, Davidson EH. 1975. Sequence complexity of heterogeneous nuclear RNA in sea urchin embryos. Cell 5:3291–99
    [Google Scholar]
  54. 54.
    Huang LF, Jones AME, Searle I, Patel K, Vogler H et al. 2009. An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat. Struct. Mol. Biol. 16:191–93
    [Google Scholar]
  55. 55.
    Hudzik C, Hou Y, Ma W, Axtell MJ. 2020. Exchange of small regulatory RNAs between plants and their pests. Plant Physiol. 182:151–62
    [Google Scholar]
  56. 56.
    Ingle J, Key JL, Holm RE. 1965. Demonstration and characterization of a DNA-like RNA in excised plant tissue. J. Mol. Biol. 11:4730–46
    [Google Scholar]
  57. 57.
    Jaegle M, Devic M, Longstaff M, Baulcombe DC. 1990. Cucumber mosaic virus satellite RNA (Y strain): analysis of sequences which affect yellow mosaic symptoms on tobacco. J. Gen. Virol. 71:1905–12
    [Google Scholar]
  58. 58.
    Jiang N, Meng J, Cui J, Sun G, Luan Y. 2018. Function identification of miR482b, a negative regulator during tomato resistance to Phytophthora infestans. Horticult. Res. 5:9
    [Google Scholar]
  59. 59.
    Jones AM, Chory J, Dangl JL, Estelle M, Jacobsen SE et al. 2008. The impact of Arabidopsis on human health: diversifying our portfolio. Cell 133:6939–43
    [Google Scholar]
  60. 60.
    Jones JD, Dangl JL. 2006. The plant immune system. Nature 444:7117323–29
    [Google Scholar]
  61. 61.
    Jones L, Ratcliff F, Baulcombe DC. 2001. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr. Biol. 11:10747–57
    [Google Scholar]
  62. 62.
    Jorgensen RA. 1995. Cosuppression, flower color patterns and metastable gene expression states. Science 268:686–91
    [Google Scholar]
  63. 63.
    Karasov TL, Chae E, Herman JJ, Bergelson J 2017. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell 29:4666–80
    [Google Scholar]
  64. 64.
    Kasschau KD, Carrington JC. 1998. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:4461–70
    [Google Scholar]
  65. 65.
    Kohm BA, Goulden MG, Gilbert JE, Kavanagh TA, Baulcombe DC. 1993. A potato virus x resistance gene mediates an induced, nonspecific resistance in protoplasts. Plant Cell 5:8913–20
    [Google Scholar]
  66. 66.
    Kuhn TS. 1962. The Structure of Scientific Revolutions Chicago, IL: Univ. Chicago Press
    [Google Scholar]
  67. 67.
    Lazarus CM, Baulcombe DC, Martienssen RA. 1985. α-Amylase genes of wheat are two multi-gene families which are differentially expressed. Plant Mol. Biol. 5:13–24
    [Google Scholar]
  68. 68.
    Lepère G, Bétermier M, Meyer E, Duharcourt S 2008. Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia. Genes Dev. 22:111501–12
    [Google Scholar]
  69. 69.
    Lewsey MG, Hardcastle TJ, Melnyk CW, Molnar A, Valli A et al. 2016. Mobile small RNAs regulate genome-wide DNA methylation. PNAS 113:6E801–10
    [Google Scholar]
  70. 70.
    Li Z, McKibben MTW, Finch GS, Blischak PD, Sutherland BL, Barker MS. 2021. Patterns and processes of diploidization in land plants. Annu. Rev. Plant Biol. 72:387–410
    [Google Scholar]
  71. 71.
    Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG. 1993. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5:121749–59
    [Google Scholar]
  72. 72.
    Longstaff M, Brigneti G, Boccard F, Chapman SN, Baulcombe DC. 1993. Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase. EMBO J. 12:379–86
    [Google Scholar]
  73. 73.
    Lopez-Gomollon S, Baulcombe DC. 2022. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat. Rev. Mol. Cell Biol. 23:645–62
    [Google Scholar]
  74. 74.
    Lopez-Gomollon S, Müller SY, Baulcombe DC. 2022. Interspecific hybridization in tomato influences endogenous viral sRNAs and alters gene expression. Genome Biol. 23:120
    [Google Scholar]
  75. 75.
    Martinho C, Wang Z, Ghigi A, Buddle S, Barbour F et al. 2022. CHROMOMETHYLTRANSFERASE3/KRYPTONITE maintain the sulfurea paramutation in Solanum lycopersicum. PNAS 119:e2112240119
    [Google Scholar]
  76. 76.
    Matzke MA, Mosher RA. 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15:6394–408
    [Google Scholar]
  77. 77.
    Meagher RB, Shepherd RJ, Boyer HW. 1977. The structure of cauliflower mosaic virus: I. A restriction endonuclease map of cauliflower mosaic virus DNA. Virology 80:2362–75
    [Google Scholar]
  78. 78.
    Melnyk CW, Molnar A, Bassett A, Baulcombe DC. 2011. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr. Biol. 21:191678–83
    [Google Scholar]
  79. 79.
    Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC. 2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:5980872–75
    [Google Scholar]
  80. 80.
    Mosher RA, Schwach F, Studhollme D, Baulcombe DC. 2008. PolIVb influences RNA-directed DNA-methylation independently of its role in siRNA biogenesis. PNAS 105:83145–50
    [Google Scholar]
  81. 81.
    Mueller E, Gilbert J, Davenport G, Brigneti G, Baulcombe DC. 1995. Homology-dependent resistance: transgenic virus resistance in plants related to homology-dependent gene silencing. Plant J. 7:61001–13
    [Google Scholar]
  82. 82.
    Murray K, Murray NE. 1975. Phage lambda receptor chromosomes for DNA fragments made with restriction endonuclease III of Haemophilus influenzae and restriction endonuclease I of Escherichia coli. J. Mol. Biol. 98:3551–64
    [Google Scholar]
  83. 83.
    Napoli C, Lemieux C, Jorgensen RA. 1990. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–89
    [Google Scholar]
  84. 84.
    Natl. Acad. Sci. Eng. Med 2016. Genetically Engineered Crops: Experiences and Prospects Washington, DC: Natl. Acad. Press
    [Google Scholar]
  85. 85.
    Ngou BPM, Ahn H-K, Ding P, Jones JDG. 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592:7852110–15
    [Google Scholar]
  86. 86.
    Onodera Y, Haag JR, Ream T, Nunes PC, Pontes O, Pikaard CS. 2005. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120:5613–22
    [Google Scholar]
  87. 87.
    Otagaki S, Kawai M, Masuta C, Kanazawa A. 2011. Size and positional effects of promoter RNA segments on virus-induced RNA-directed DNA methylation and transcriptional gene silencing. Epigenetics 6:6681–91
    [Google Scholar]
  88. 88.
    Palmer LE, Rabinowicz PD, O'Shaughnessy AL, Balija VS, Nascimento LU et al. 2003. Maize genome sequencing by methylation filtration. Science 302:56532115–17
    [Google Scholar]
  89. 89.
    Ptashne M. 2007. On the use of the word “epigenetic. .” Curr. Biol. 17:7R233–36
    [Google Scholar]
  90. 90.
    Ptashne M. 2013. Epigenetics: core misconcept. PNAS 110:187101–3
    [Google Scholar]
  91. 91.
    Qiao Y, Liu L, Xiong Q, Flores C, Wong J et al. 2013. Oomycete pathogens encode RNA silencing suppressors. Nat. Genet. 45:330–33
    [Google Scholar]
  92. 92.
    R. Soc 2009. Reaping the benefits: science and the sustainable intensification of global agriculture. Rep. R. Soc. London, UK: https://royalsociety.org/topics-policy/publications/2009/reaping-benefits/
    [Google Scholar]
  93. 93.
    Ratcliff F, Harrison BD, Baulcombe DC. 1997. A similarity between viral defense and gene silencing in plants. Science 276:1558–60
    [Google Scholar]
  94. 94.
    Ratcliff FG, MacFarlane SA, Baulcombe DC. 1999. Gene silencing without DNA: RNA-mediated cross-protection between viruses. Plant Cell 11:71207–15
    [Google Scholar]
  95. 95.
    Ren T, Qu F, Morris TJ. 2000. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12:101917–26
    [Google Scholar]
  96. 96.
    Sanford JC, Johnston SA. 1985. The concept of parasite-derived resistance—deriving resistance genes from the parasite's own genome. J. Theor. Biol. 113:2395–405
    [Google Scholar]
  97. 97.
    Searle IR, Pontes O, Melnyk CW, Smith LM, Baulcombe DC. 2010. JMJ14, a JmjC domain protein, is required for RNA silencing and cell-to-cell movement of an RNA silencing signal in Arabidopsis. Genes Dev. 24:10986–91
    [Google Scholar]
  98. 98.
    Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J et al. 2011. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLOS Pathog. 7:5e1002021
    [Google Scholar]
  99. 99.
    Shivaprasad PV, Chen H-M, Patel K, Bond DM, Santos BACM, Baulcombe DC. 2012. A microRNA superfamily regulates nucleotide binding site–leucine-rich repeats and other mRNAs. Plant Cell 24:3859–74
    [Google Scholar]
  100. 100.
    Shivaprasad PV, Dunn RM, Santos BACM, Bassett A, Baulcombe DC. 2012. Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J. 31:2257–66
    [Google Scholar]
  101. 101.
    Smith LM, Pontes O, Searle I, Yelina N, Yousafzai FK et al. 2007. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19:51507–21
    [Google Scholar]
  102. 102.
    Smith NA, Eamens AL, Wang M-B. 2011. Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLOS Pathog. 7:5e1002022
    [Google Scholar]
  103. 103.
    Southern EM. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–17
    [Google Scholar]
  104. 104.
    Timmis JN, Ingle J. 1974. The nature of the variable DNA associated with environmental induction in flax. Heredity 33:3339–46
    [Google Scholar]
  105. 105.
    Van Blokland R, Van der Geest N, Mol JNM, Kooter JM. 1994. Transgene-mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover. Plant J. 6:861–77
    [Google Scholar]
  106. 106.
    Voinnet O, Baulcombe DC. 1997. Systemic signalling in gene silencing. Nature 389:553
    [Google Scholar]
  107. 107.
    Voinnet O, Lederer C, Baulcombe DC. 2000. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103:157–67
    [Google Scholar]
  108. 108.
    Voinnet O, Pinto YM, Baulcombe DC. 1999. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. PNAS 96:2414147–52
    [Google Scholar]
  109. 109.
    Voinnet O, Vain P, Angell S, Baulcombe DC. 1998. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:2177–87
    [Google Scholar]
  110. 110.
    Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA. 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:55881833–37
    [Google Scholar]
  111. 111.
    Wang Z, Baulcombe DC. 2020. Transposon age and non-CG methylation. Nat. Commun. 11:11221
    [Google Scholar]
  112. 112.
    Watson JD. 1991. Salvador E. Luria (1912–1991). Nature 350:6314113
    [Google Scholar]
  113. 113.
    Wingard SA. 1928. Hosts and symptoms of ring spot, a virus disease of plants. J. Agric. Res. 37:127–53
    [Google Scholar]
  114. 114.
    Yelina NE, Smith LM, Jones AME, Patel K, Kelly KA, Baulcombe DC. 2010. Putative Arabidopsis THO/TREX mRNA export complex is involved in transgene and endogenous siRNA biosynthesis. PNAS 107:3113948–53
    [Google Scholar]
  115. 115.
    Yin C, Ramachandran SR, Zhai Y, Bu C, Pappu HR, Hulbert SH. 2019. A novel fungal effector from Puccinia graminis suppressing RNA silencing and plant defense responses. New Phytol. 222:31561–72
    [Google Scholar]
  116. 116.
    Yuan M, Jiang Z, Bi G, Nomura K, Liu M et al. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592:105–9
    [Google Scholar]
  117. 117.
    Zamore PD. 2006. RNA interference: big applause for silencing in Stockholm. Cell 127:61083–86
    [Google Scholar]
  118. 118.
    Zhang Y, Xia R, Kuang H, Meyers BC. 2016. The diversification of plant NBS-LRR defense genes directs the evolution of microRNAs that target them. Mol. Biol. Evol. 33:102692–705
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-070622-021021
Loading
/content/journals/10.1146/annurev-arplant-070622-021021
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error