1932

Abstract

Photosynthesis has been using energy from sunlight to assimilate atmospheric CO for at least 3.5 billion years. Through evolution and natural selection, photosynthetic organisms have flourished in almost all aquatic and terrestrial environments. This is partly due to the diversity of light-harvesting complex (LHC) proteins, which facilitate photosystem assembly, efficient excitation energy transfer, and photoprotection. Structural advances have provided angstrom-level structures of many of these proteins and have expanded our understanding of the pigments, lipids, and residues that drive LHC function. In this review, we compare and contrast recently observed cryo-electron microscopy structures across photosynthetic eukaryotes to identify structural motifs that underlie various light-harvesting strategies. We discuss subtle monomer changes that result in macroscale reorganization of LHC oligomers. Additionally, we find recurring patterns across diverse LHCs that may serve as evolutionary stepping stones for functional diversification. Advancing our understanding of LHC protein–environment interactions will improve our capacity to engineer more productive crops.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070623-015519
2024-07-22
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070623-015519.html?itemId=/content/journals/10.1146/annurev-arplant-070623-015519&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ago H, Adachi H, Umena Y, Tashiro T, Kawakami K, et al. 2016.. Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. . J. Biol. Chem. 291:(11):567687
    [Crossref] [Google Scholar]
  2. 2.
    Agostini A, Nicol L, Da Roit N, Bortolus M, Croce R, Carbonera D. 2021.. Altering the exciton landscape by removal of specific chlorophylls in monomeric LHCII provides information on the sites of triplet formation and quenching by means of ODMR and EPR spectroscopies. . Biochim. Biophys. Acta Bioenerg. 1862:(11):148481
    [Crossref] [Google Scholar]
  3. 3.
    Alboresi A, Caffarri S, Nogue F, Bassi R, Morosinotto T. 2008.. In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: identification of subunits which evolved upon land adaptation. . PLOS ONE 3:(4):e2033
    [Crossref] [Google Scholar]
  4. 4.
    Alboresi A, Gerotto C, Giacometti GM, Bassi R, Morosinotto T. 2010.. Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. . PNAS 107:(24):1112833
    [Crossref] [Google Scholar]
  5. 5.
    Allorent G, Lefebvre-Legendre L, Chappuis R, Kuntz M, Truong TB, et al. 2016.. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. . PNAS 113:(51):1486469
    [Crossref] [Google Scholar]
  6. 6.
    Allorent G, Tokutsu R, Roach T, Peers G, Cardol P, et al. 2013.. A dual strategy to cope with high light in Chlamydomonas reinhardtii. . Plant Cell 25:(2):54557
    [Crossref] [Google Scholar]
  7. 7.
    Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, et al. 2004.. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. . Science 306:(5693):7986
    [Crossref] [Google Scholar]
  8. 8.
    Aso M, Matsumae R, Tanaka A, Tanaka R, Takabayashi A. 2021.. Unique peripheral antennas in the photosystems of the streptophyte alga Mesostigma viride. . Plant Cell Physiol. 62:(3):43646
    [Crossref] [Google Scholar]
  9. 9.
    Bailleul B, Rogato A, de Martino A, Coesel S, Cardol P, et al. 2010.. An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. . PNAS 107:(42):1821419
    [Crossref] [Google Scholar]
  10. 10.
    Ballottari M, Truong TB, De Re E, Erickson E, Stella GR, et al. 2016.. Identification of pH-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in Chlamydomonas reinhardtii. . J. Biol. Chem. 291:(14):733446
    [Crossref] [Google Scholar]
  11. 11.
    Bassi R, Croce R, Cugini D, Sandonà D. 1999.. Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. . PNAS 96:(18):1005661
    [Crossref] [Google Scholar]
  12. 12.
    Bassi R, Dall'Osto L. 2021.. Dissipation of light energy absorbed in excess: the molecular mechanisms. . Annu. Rev. Plant Biol. 72::4776
    [Crossref] [Google Scholar]
  13. 13.
    Beer A, Gundermann K, Beckmann J, Büchel C. 2006.. Subunit composition and pigmentation of fucoxanthin−chlorophyll proteins in diatoms:evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. . Biochemistry 45:(43):1304653
    [Crossref] [Google Scholar]
  14. 14.
    Belgio E, Duffy CDP, Ruban AV. 2013.. Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop. . Phys. Chem. Chem. Phys. 15:(29):1225361
    [Crossref] [Google Scholar]
  15. 15.
    Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, et al. 2009.. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. . J. Biol. Chem. 284:(22):1525566
    [Crossref] [Google Scholar]
  16. 16.
    Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, et al. 2011.. Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. . PLOS Biol. 9:(1):e1000577
    [Crossref] [Google Scholar]
  17. 17.
    Bonente G, Howes BD, Caffarri S, Smulevich G, Bassi R. 2008.. Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro. . J. Biol. Chem. 283:(13):843445
    [Crossref] [Google Scholar]
  18. 18.
    Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, et al. 2008.. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. . Nature 456:(7219):23944
    [Crossref] [Google Scholar]
  19. 19.
    Büchel C. 2020.. Light harvesting complexes in chlorophyll c-containing algae. . Biochim. Biophys. Acta Bioenerg. 1861:(4):148027
    [Crossref] [Google Scholar]
  20. 20.
    Buck JM, Kroth PG, Lepetit B. 2021.. Identification of sequence motifs in Lhcx proteins that confer qE-based photoprotection in the diatom Phaeodactylum tricornutum. . Plant J. 108:(6):172134
    [Crossref] [Google Scholar]
  21. 21.
    Buck JM, Sherman J, Bártulos CR, Serif M, Halder M, et al. 2019.. Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum. . Nat. Commun. 10:(1):4167
    [Crossref] [Google Scholar]
  22. 22.
    Caffarri S, Croce R, Breton J, Bassi R. 2001.. The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. . J. Biol. Chem. 276:(38):3592433
    [Crossref] [Google Scholar]
  23. 23.
    Caffarri S, Kouřil R, Kereïche S, Boekema EJ, Croce R. 2009.. Functional architecture of higher plant photosystem II supercomplexes. . EMBO J. 28:(19):305263
    [Crossref] [Google Scholar]
  24. 24.
    Cao P, Cao D, Si L, Su X, Tian L, et al. 2020.. Structural basis for energy and electron transfer of the photosystem I–IsiA–flavodoxin supercomplex. . Nat. Plants 6::16776
    [Crossref] [Google Scholar]
  25. 25.
    Carbonera D, Agostini A, Bortolus M, Dall'Osto L, Bassi R. 2022.. Violaxanthin and zeaxanthin may replace lutein at the L1 site of LHCII, conserving the interactions with surrounding chlorophylls and the capability of triplet–triplet energy transfer. . Int. J. Mol. Sci. 23:(9):4812
    [Crossref] [Google Scholar]
  26. 26.
    Carbonera D, Agostini A, Di Valentin M, Gerotto C, Basso S, et al. 2014.. Photoprotective sites in the violaxanthin-chlorophyll a binding protein (VCP) from Nannochloropsis gaditana. . Biochim. Biophys. Acta Bioenerg. 1837:(8):123546
    [Crossref] [Google Scholar]
  27. 27.
    Caspy I, Malavath T, Klaiman D, Fadeeva M, Shkolnisky Y, Nelson N. 2020.. Structure and energy transfer pathways of the Dunaliella salina photosystem I supercomplex. . Biochim. Biophys. Acta Bioenerg. 1861:(10):148253
    [Crossref] [Google Scholar]
  28. 28.
    Caspy I, Neumann E, Fadeeva M, Liveanu V, Savitsky A, et al. 2021.. Cryo-EM photosystem I structure reveals adaptation mechanisms to extreme high light in Chlorella ohadii. . Nat. Plants 7::131422
    [Crossref] [Google Scholar]
  29. 29.
    Chen M, Perez-Boerema A, Zhang L, Li Y, Yang M, et al. 2020.. Distinct structural modulation of photosystem I and lipid environment stabilizes its tetrameric assembly. . Nat. Plants 6::31420
    [Crossref] [Google Scholar]
  30. 30.
    Chen M, Schliep M, Willows RD, Cai Z-L, Neilan BA, Scheer H. 2010.. A red-shifted chlorophyll. . Science 329:(5997):131819
    [Crossref] [Google Scholar]
  31. 31.
    Chidgey JW, Linhartová M, Komenda J, Jackson PJ, Dickman MJ, et al. 2014.. A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. . Plant Cell 26:(3):126779
    [Crossref] [Google Scholar]
  32. 32.
    Chukhutsina VU, Liu X, Xu P, Croce R. 2020.. Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants. . Nat. Plants 6::86068
    [Crossref] [Google Scholar]
  33. 33.
    Correa-Galvis V, Redekop P, Guan K, Griess A, Truong TB, et al. 2016.. Photosystem II subunit PsbS is involved in the induction of LHCSR protein-dependent energy dissipation in Chlamydomonas reinhardtii. . J. Biol. Chem. 291:(33):1747887
    [Crossref] [Google Scholar]
  34. 34.
    Çoruh O, Frank A, Tanaka H, Kawamoto A, El-Mohsnawy E, et al. 2021.. Cryo-EM structure of a functional monomeric photosystem I from Thermosynechococcus elongatus reveals red chlorophyll cluster. . Commun. Biol. 4:(1):304
    [Crossref] [Google Scholar]
  35. 35.
    Crepin A, Kučerová Z, Kosta A, Durand E, Caffarri S. 2020.. Isolation and characterization of a large photosystem I–light-harvesting complex II supercomplex with an additional Lhca1–a4 dimer in Arabidopsis. . Plant J. 102:(2):398409
    [Crossref] [Google Scholar]
  36. 36.
    Croce R, Chojnicka A, Morosinotto T, Ihalainen JA, van Mourik F, et al. 2007.. The low-energy forms of photosystem I light-harvesting complexes: spectroscopic properties and pigment-pigment interaction characteristics. . Biophys. J. 93:(7):241828
    [Crossref] [Google Scholar]
  37. 37.
    Croce R, Muller MG, Bassi R, Holzwarth AR. 2001.. Carotenoid-to-chlorophyll energy transfer in recombinant major light-harvesting complex (LHCII) of higher plants. I. Femtosecond transient absorption measurements. . Biophys. J. 80:(2):90115
    [Crossref] [Google Scholar]
  38. 38.
    Crooks GE, Hon G, Chandonia J-M, Brenner SE. 2004.. WebLogo: a sequence logo generator. . Genome Res. 14::118890
    [Crossref] [Google Scholar]
  39. 39.
    Dall'Osto L, Bressan M, Bassi R. 2015.. Biogenesis of light harvesting proteins. . Biochim. Biophys. Acta 1847:(9):86171
    [Crossref] [Google Scholar]
  40. 40.
    Dall'Osto L, Cazzaniga S, Bressan M, Palecek D, Zidek K, et al. 2017.. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. . Nat. Plants 3::17033
    [Crossref] [Google Scholar]
  41. 41.
    Dall'Osto L, Cazzaniga S, North H, Marion-Poll A, Bassi R. 2007.. The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress. . Plant Cell 19:(3):104864
    [Crossref] [Google Scholar]
  42. 42.
    Damkjær JT, Kereïche S, Johnson MP, Kovacs L, Kiss AZ, et al. 2009.. The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. . Plant Cell 21:(10):324556
    [Crossref] [Google Scholar]
  43. 43.
    Danielsson R, Suorsa M, Paakkarinen V, Albertsson P-Å, Styring S, et al. 2006.. Dimeric and monomeric organization of photosystem II: distribution of five distinct complexes in the different domains of the thylakoid membrane. . J. Biol. Chem. 281:(20):1424149
    [Crossref] [Google Scholar]
  44. 44.
    Daskalakis V. 2018.. Protein–protein interactions within photosystem II under photoprotection: the synergy between CP29 minor antenna, subunit S (PsbS) and zeaxanthin at all-atom resolution. . Phys. Chem. Chem. Phys. 20:(17):1184355
    [Crossref] [Google Scholar]
  45. 45.
    Daskalakis V, Maity S, Hart CL, Stergiannakos T, Duffy CDP, Kleinekathöfer U. 2019.. Structural basis for allosteric regulation in the major antenna trimer of photosystem II. . J. Phys. Chem. B 123:(45):960915
    [Crossref] [Google Scholar]
  46. 46.
    Davidi L, Gallaher SD, Ben-David E, Purvine SO, Fillmore TL, et al. 2023.. Pumping iron: a multi-omics analysis of two extremophilic algae reveals iron economy management. . PNAS 120:(30):e2305495120
    [Crossref] [Google Scholar]
  47. 47.
    de Bianchi S, Betterle N, Kouril R, Cazzaniga S, Boekema E, et al. 2011.. Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection. . Plant Cell 23:(7):265979
    [Crossref] [Google Scholar]
  48. 48.
    de Bianchi S, Dall'Osto L, Tognon G, Morosinotto T, Bassi R. 2008.. Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. . Plant Cell 20:(4):101228
    [Crossref] [Google Scholar]
  49. 49.
    De Souza AP, Burgess SJ, Doran L, Hansen J, Manukyan L, et al. 2022.. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. . Science 377:(6608):85154
    [Crossref] [Google Scholar]
  50. 50.
    Dittami SM, Michel G, Collén J, Boyen C, Tonon T. 2010.. Chlorophyll-binding proteins revisited—a multigenic family of light-harvesting and stress proteins from a brown algal perspective. . BMC Evol. Biol. 10:(1):365
    [Crossref] [Google Scholar]
  51. 51.
    Dockter C, Müller AH, Dietz C, Volkov A, Polyhach Y, et al. 2012.. Rigid core and flexible terminus: structure of solubilized light-harvesting chlorophyll a/b complex (LHCII) measured by EPR. . J. Biol. Chem. 287:(4):291525
    [Crossref] [Google Scholar]
  52. 52.
    Dolganov NA, Bhaya D, Grossman AR. 1995.. Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. . PNAS 92:(2):63640
    [Crossref] [Google Scholar]
  53. 53.
    Domínguez-Martín MA, Sauer PV, Kirst H, Sutter M, Bína D, et al. 2022.. Structures of a phycobilisome in light-harvesting and photoprotected states. . Nature 609:(7928):83545
    [Crossref] [Google Scholar]
  54. 54.
    Drop B, Webber-Birungi M, Yadav SKN, Filipowicz-Szymanska A, Fusetti F, et al. 2014.. Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. . Biochim. Biophys. Acta 1837:(1):6372
    [Crossref] [Google Scholar]
  55. 55.
    Elias E, Liguori N, Croce R. 2023.. At the origin of the selectivity of the chlorophyll-binding sites in Light Harvesting Complex II (LHCII). . Int. J. Biol. Macromol. 243::125069
    [Crossref] [Google Scholar]
  56. 56.
    Elias E, Liguori N, Saga Y, Schäfers J, Croce R. 2021.. Harvesting far-red light with plant antenna complexes incorporating chlorophyll d. . Biomacromolecules 22:(8):331322
    [Crossref] [Google Scholar]
  57. 57.
    Elrad D, Niyogi KK, Grossman AR. 2002.. A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. . Plant Cell 14:(8):180116
    [Crossref] [Google Scholar]
  58. 58.
    Engelken J, Brinkmann H, Adamska I. 2010.. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. . BMC Evol. Biol. 10:(1):233
    [Crossref] [Google Scholar]
  59. 59.
    Fan M, Li M, Liu Z, Cao P, Pan X, et al. 2015.. Crystal structures of the PsbS protein essential for photoprotection in plants. . Nat. Struct. Mol. Biol. 22:(9):72935
    [Crossref] [Google Scholar]
  60. 60.
    Fehr N, Dietz C, Polyhach Y, von Hagens T, Jeschke G, Paulsen H. 2015.. Modeling of the N-terminal section and the lumenal loop of trimeric light harvesting complex II (LHCII) by using EPR. . J. Biol. Chem. 290:(43):2600720
    [Crossref] [Google Scholar]
  61. 61.
    Formaggio E, Cinque G, Bassi R. 2001.. Functional architecture of the major light-harvesting complex from higher plants. . J. Mol. Biol. 314:(5):115766
    [Crossref] [Google Scholar]
  62. 62.
    García-Cerdán JG, Kovács L, Tóth T, Kereïche S, Aseeva E, et al. 2011.. The PsbW protein stabilizes the supramolecular organization of photosystem II in higher plants. . Plant J. 65:(3):36881
    [Crossref] [Google Scholar]
  63. 63.
    Giovagnetti V, Jaubert M, Shukla MK, Ungerer P, Bouly J-P, et al. 2021.. Biochemical and molecular properties of LHCX1, the essential regulator of dynamic photoprotection in diatoms. . Plant Physiol. 188:(1):50925
    [Crossref] [Google Scholar]
  64. 64.
    Goral TK, Johnson MP, Duffy CD, Brain APR, Ruban AV, Mullineaux CW. 2012.. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. . Plant J. 69:(2):289301
    [Crossref] [Google Scholar]
  65. 65.
    Gorski C, Riddle R, Toporik H, Da Z, Dobson Z, et al. 2022.. The structure of the Physcomitrium patens photosystem I reveals a unique Lhca2 paralogue replacing Lhca4. . Nat. Plants 8::30716
    [Crossref] [Google Scholar]
  66. 66.
    Grimm B, Kloppstech K. 1987.. The early light-inducible proteins of Barley. Characterization of two families of 2-h-specific nuclear-coded chloroplast proteins. . Eur. J. Biochem. 167:(3):49399
    [Crossref] [Google Scholar]
  67. 67.
    Guo J, Zhang Z, Bi Y, Yang W, Xu Y, Zhang L. 2005.. Decreased stability of photosystem I in dgd1 mutant of Arabidopsis thaliana. . FEBS Lett. 579:(17):361924
    [Crossref] [Google Scholar]
  68. 68.
    Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H. 2002.. Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. . Plant Cell Physiol. 43:(12):145664
    [Crossref] [Google Scholar]
  69. 69.
    Hamaguchi T, Kawakami K, Shinzawa-Itoh K, Inoue-Kashino N, Itoh S, et al. 2021.. Structure of the far-red light utilizing photosystem I of Acaryochloris marina. . Nat. Commun. 12:(1):2333
    [Crossref] [Google Scholar]
  70. 70.
    Havaux M, Niyogi KK. 1999.. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. . PNAS 96:(15):876267
    [Crossref] [Google Scholar]
  71. 71.
    Hey D, Grimm B. 2018.. ONE-HELIX PROTEIN2 (OHP2) is required for the stability of OHP1 and assembly factor HCF244 and is functionally linked to PSII biogenesis. . Plant Physiol. 177:(4):145372
    [Crossref] [Google Scholar]
  72. 72.
    Hey D, Grimm B. 2020.. ONE-HELIX PROTEIN1 and 2 form heterodimers to bind chlorophyll in photosystem II biogenesis. . Plant Physiol. 183:(1):17993
    [Crossref] [Google Scholar]
  73. 73.
    Hey D, Rothbart M, Herbst J, Wang P, Müller J, et al. 2017.. LIL3, a light-harvesting complex protein, links terpenoid and tetrapyrrole biosynthesis in Arabidopsis thaliana. . Plant Physiol. 174:(2):103750
    [Crossref] [Google Scholar]
  74. 74.
    Hirashima M, Satoh S, Tanaka R, Tanaka A. 2006.. Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis. . J. Biol. Chem. 281:(22):1538593
    [Crossref] [Google Scholar]
  75. 75.
    Hobe S, Förster R, Klingler J, Paulsen H. 1995.. N-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. . Biochemistry 34:(32):1022428
    [Crossref] [Google Scholar]
  76. 76.
    Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K. 1996.. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. . Science 272:(5269):178891
    [Crossref] [Google Scholar]
  77. 77.
    Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR. 2005.. Carotenoid cation formation and the regulation of photosynthetic light harvesting. . Science 307:(5708):43336
    [Crossref] [Google Scholar]
  78. 78.
    Huang Z, Shen L, Wang W, Mao Z, Yi X, et al. 2021.. Structure of photosystem I-LHCI-LHCII from the green alga Chlamydomonas reinhardtii in State 2. . Nat. Commun. 12:(1):1100
    [Crossref] [Google Scholar]
  79. 79.
    Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, Havaux M. 2003.. Early light-induced proteins protect Arabidopsis from photooxidative stress. . PNAS 100:(8):492126
    [Crossref] [Google Scholar]
  80. 80.
    Ilíková I, Ilík P, Opatíková M, Arshad R, Nosek L, et al. 2021.. Towards spruce-type photosystem II: consequences of the loss of light-harvesting proteins LHCB3 and LHCB6 in Arabidopsis. . Plant Physiol. 187:(4):2691715
    [Crossref] [Google Scholar]
  81. 81.
    Ishii A, Shan J, Sheng X, Kim E, Watanabe A, et al. 2023.. The photosystem I supercomplex from a primordial green alga Ostreococcus tauri harbors three light-harvesting complex trimers. . eLife 12::e84488
    [Crossref] [Google Scholar]
  82. 82.
    Iwai M, Grob P, Iavarone AT, Nogales E, Niyogi KK. 2018.. A unique supramolecular organization of photosystem I in the moss Physcomitrella patens. . Nat. Plants 4::9049
    [Crossref] [Google Scholar]
  83. 83.
    Iwai M, Yokono M. 2017.. Light-harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants. . Curr. Opin. Plant Biol. 37::94101
    [Crossref] [Google Scholar]
  84. 84.
    Iwai M, Yokono M, Kono M, Noguchi K, Akimoto S, Nakano A. 2015.. Light-harvesting complex Lhcb9 confers a green alga-type photosystem I supercomplex to the moss Physcomitrella patens. . Nat. Plants 1::14008
    [Crossref] [Google Scholar]
  85. 85.
    Jansson S. 1999.. A guide to the Lhc genes and their relatives in Arabidopsis. . Trends Plant Sci. 4:(6):23640
    [Crossref] [Google Scholar]
  86. 86.
    Jensen PE, Haldrup A, Zhang S, Scheller HV. 2004.. The PSI-O subunit of plant photosystem I is involved in balancing the excitation pressure between the two photosystems. . J. Biol. Chem. 279:(23):2421217
    [Crossref] [Google Scholar]
  87. 87.
    Jinkerson RE, Poveda-Huertes D, Cooney EC, Cho A, Ochoa-Fernandez R, et al. 2024.. Biosynthesis of chlorophyll c in a dinoflagellate and heterologous production in planta. . Curr. Biol. 34:(3):594605.e4
    [Crossref] [Google Scholar]
  88. 88.
    Johnson MP, Goral TK, Duffy CD, Brain AP, Mullineaux CW, Ruban AV. 2011.. Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. . Plant Cell 23:(4):146879
    [Crossref] [Google Scholar]
  89. 89.
    Johnson MP, Ruban AV. 2011.. Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced ΔpH. . J. Biol. Chem. 286:(22):1997381
    [Crossref] [Google Scholar]
  90. 90.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596:(7873):58389
    [Crossref] [Google Scholar]
  91. 91.
    Kato K, Shinoda T, Nagao R, Akimoto S, Suzuki T, et al. 2020.. Structural basis for the adaptation and function of chlorophyll f in photosystem I. . Nat. Commun. 11:(1):238
    [Crossref] [Google Scholar]
  92. 92.
    Kawakami K, Umena Y, Iwai M, Kawabata Y, Ikeuchi M, et al. 2011.. Roles of PsbI and PsbM in photosystem II dimer formation and stability studied by deletion mutagenesis and X-ray crystallography. . Biochim. Biophys. Acta Bioenerg. 1807:(3):31925
    [Crossref] [Google Scholar]
  93. 93.
    Keşan G, Litvín R, Bína D, Durchan M, Šlouf V, Polívka T. 2016.. Efficient light-harvesting using non-carbonyl carotenoids: energy transfer dynamics in the VCP complex from Nannochloropsis oceanica. . Biochim. Biophys. Acta Bioenerg. 1857:(4):37079
    [Crossref] [Google Scholar]
  94. 94.
    Kim E, Watanabe A, Duffy CDP, Ruban AV, Minagawa J. 2020.. Multimeric and monomeric photosystem II supercomplexes represent structural adaptations to low- and high-light conditions. . J. Biol. Chem. 295:(43):1453745
    [Crossref] [Google Scholar]
  95. 95.
    Klimmek F, Ganeteg U, Ihalainen JA, van Roon H, Jensen PE, et al. 2005.. Structure of the higher plant light harvesting complex I:in vivo characterization and structural interdependence of the Lhca proteins. . Biochemistry 44:(8):306573
    [Crossref] [Google Scholar]
  96. 96.
    Knoppová J, Sobotka R, Tichý M, Yu J, Konik P, et al. 2014.. Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. . Plant Cell 26:(3):120012
    [Crossref] [Google Scholar]
  97. 97.
    Konert MM, Wysocka A, Koník P, Sobotka R. 2022.. High-light-inducible proteins HliA and HliB: pigment binding and protein–protein interactions. . Photosynth. Res. 152:(3):31732
    [Crossref] [Google Scholar]
  98. 98.
    Kosugi M, Kawasaki M, Shibata Y, Hara K, Takaichi S, et al. 2023.. Uphill energy transfer mechanism for photosynthesis in an Antarctic alga. . Nat. Commun. 14:(1):730
    [Crossref] [Google Scholar]
  99. 99.
    Kouřil R, Nosek L, Bartoš J, Boekema EJ, Ilík P. 2016.. Evolutionary loss of light-harvesting proteins Lhcb6 and Lhcb3 in major land plant groups—break-up of current dogma. . New Phytol. 210:(3):80814
    [Crossref] [Google Scholar]
  100. 100.
    Kouřil R, Nosek L, Opatíková M, Arshad R, Semchonok DA, et al. 2020.. Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce. . Plant J. 104:(1):21525
    [Crossref] [Google Scholar]
  101. 101.
    Kovács L, Damkjaer J, Kereïche S, Ilioaia C, Ruban AV, et al. 2006.. Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. . Plant Cell 18:(11):310620
    [Crossref] [Google Scholar]
  102. 102.
    Koziol AG, Borza T, Ishida K-I, Keeling P, Lee RW, Durnford DG. 2007.. Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. . Plant Physiol. 143:(4):180216
    [Crossref] [Google Scholar]
  103. 103.
    Krishnan-Schmieden M, Konold PE, Kennis JTM, Pandit A. 2021.. The molecular pH-response mechanism of the plant light-stress sensor PsbS. . Nat. Commun. 12:(1):2291
    [Crossref] [Google Scholar]
  104. 104.
    Król M, Spangfort MD, Huner NPA, Öquist G, Gustafsson P, Jansson S. 1995.. Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant. . Plant Physiol. 107:(3):87383
    [Crossref] [Google Scholar]
  105. 105.
    Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, et al. 2016.. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. . Science 354:(6314):85761
    [Crossref] [Google Scholar]
  106. 106.
    Kumazawa M, Nishide H, Nagao R, Inoue-Kashino N, Shen J-R, et al. 2022.. Molecular phylogeny of fucoxanthin-chlorophyll a/c proteins from Chaetoceros gracilis and Lhcq/Lhcf diversity. . Physiol. Plant. 174:(1):e13598
    [Crossref] [Google Scholar]
  107. 107.
    Kuttkat A, Hartmann A, Hobe S, Paulsen H. 1996.. The C-terminal domain of light-harvesting chlorophyll-a/b-binding protein is involved in the stabilisation of trimeric light-harvesting complex. . Eur. J. Biochem. 242:(2):28892
    [Crossref] [Google Scholar]
  108. 108.
    Levin G, Yasmin M, Liveanu V, Burstein C, Hanna R, et al. 2023.. A desert Chlorella sp. that thrives at extreme high-light intensities using a unique photoinhibition protection mechanism. . Plant J. 115::51028
    [Crossref] [Google Scholar]
  109. 109.
    Li M, Calteau A, Semchonok DA, Witt TA, Nguyen JT, et al. 2019.. Physiological and evolutionary implications of tetrameric photosystem I in cyanobacteria. . Nat. Plants 5::130919
    [Crossref] [Google Scholar]
  110. 110.
    Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, et al. 2000.. A pigment-binding protein essential for regulation of photosynthetic light harvesting. . Nature 403:(6768):39195
    [Crossref] [Google Scholar]
  111. 111.
    Li X-P, Gilmore AM, Caffarri S, Bassi R, Golan T, et al. 2004.. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. . J. Biol. Chem. 279:(22):2286674
    [Crossref] [Google Scholar]
  112. 112.
    Li X-P, Gilmore AM, Niyogi KK. 2002.. Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II. . J. Biol. Chem. 277:(37):3359097
    [Crossref] [Google Scholar]
  113. 113.
    Li Y, Liu B, Zhang J, Kong F, Zhang L, et al. 2019.. OHP1, OHP2, and HCF244 form a transient functional complex with the photosystem II reaction center. . Plant Physiol. 179:(1):195208
    [Crossref] [Google Scholar]
  114. 114.
    Liguori N, Campos SRR, Baptista AM, Croce R. 2019.. Molecular anatomy of plant photoprotective switches: the sensitivity of PsbS to the environment, residue by residue. . J. Phys. Chem. Lett. 10:(8):173742
    [Crossref] [Google Scholar]
  115. 115.
    Liguori N, Periole X, Marrink SJ, Croce R. 2015.. From light-harvesting to photoprotection: structural basis of the dynamic switch of the major antenna complex of plants (LHCII). . Sci. Rep. 5:(1):15661
    [Crossref] [Google Scholar]
  116. 116.
    Liguori N, Roy LM, Opacic M, Durand G, Croce R. 2013.. Regulation of light harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch. . J. Am. Chem. Soc. 135:(49):1833942
    [Crossref] [Google Scholar]
  117. 117.
    Litvín R, Bína D, Herbstová M, Gardian Z. 2016.. Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica. . Photosynth. Res. 130:(1):13750
    [Crossref] [Google Scholar]
  118. 118.
    Liu L-N, Bracun L, Li M. 2024.. Structural diversity and modularity of photosynthetic RC−LH1 complexes. . Trends Microbiol. 32::3852
    [Crossref] [Google Scholar]
  119. 119.
    Liu X, Nawrocki WJ, Croce R. 2023.. The role of the pigment–protein complex LHCBM1 in nonphotochemical quenching in Chlamydomonas reinhardtii. . Plant Physiol. 2023::kiad555
    [Google Scholar]
  120. 120.
    Liu Z, Yan H, Wang K, Kuang T, Zhang J, et al. 2004.. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. . Nature 428:(6980):28792
    [Crossref] [Google Scholar]
  121. 121.
    Lunde C, Jensen PE, Haldrup A, Knoetzel J, Scheller HV. 2000.. The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. . Nature 408:(6812):61315
    [Crossref] [Google Scholar]
  122. 122.
    Makita Y, Suzuki S, Fushimi K, Shimada S, Suehisa A, et al. 2021.. Identification of a dual orange/far-red and blue light photoreceptor from an oceanic green picoplankton. . Nat. Commun. 12:(1):3593
    [Crossref] [Google Scholar]
  123. 123.
    Mascoli V, Liguori N, Cupellini L, Elias E, Mennucci B, Croce R. 2021.. Uncovering the interactions driving carotenoid binding in light-harvesting complexes. . Chem. Sci. 12:(14):511322
    [Crossref] [Google Scholar]
  124. 124.
    Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, e t al. 2023.. UCSF ChimeraX: tools for structure building and analysis. . Protein Sci. 32:(11):e4792
    [Crossref] [Google Scholar]
  125. 125.
    Mishra RK, Ghanotakis DF. 1994.. Selective extraction of CP 26 and CP 29 proteins without affecting the binding of the extrinsic proteins (33, 23 and 17 kDa) and the DCMU sensitivity of a Photosystem II core complex. . Photosynth. Res. 42:(1):3742
    [Crossref] [Google Scholar]
  126. 126.
    Montané M-H, Kloppstech K. 2000.. The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): Was the harvesting of light their primary function?. Gene 258:(1):18
    [Crossref] [Google Scholar]
  127. 127.
    Mozzo M, Mantelli M, Passarini F, Caffarri S, Croce R, Bassi R. 2010.. Functional analysis of Photosystem I light-harvesting complexes (Lhca) gene products of Chlamydomonas reinhardtii. . Biochim. Biophys. Acta 1797:(2):21221
    [Crossref] [Google Scholar]
  128. 128.
    Myouga F, Takahashi K, Tanaka R, Nagata N, Kiss AZ, et al. 2018.. Stable accumulation of photosystem II requires ONE-HELIX PROTEIN1 (OHP1) of the light harvesting-like family. . Plant Physiol. 176:(3):227791
    [Crossref] [Google Scholar]
  129. 129.
    Nagao R, Kato K, Hamaguchi T, Ueno Y, Tsuboshita N, et al. 2023.. Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120. . Nat. Commun. 14:(1):920
    [Crossref] [Google Scholar]
  130. 130.
    Nagao R, Kato K, Ifuku K, Suzuki T, Kumazawa M, et al. 2020.. Structural basis for assembly and function of a diatom photosystem I-light-harvesting supercomplex. . Nat. Commun. 11:(1):2481
    [Crossref] [Google Scholar]
  131. 131.
    Nagao R, Kato K, Suzuki T, Ifuku K, Uchiyama I, et al. 2019.. Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII supercomplex. . Nat. Plants 5::890901
    [Crossref] [Google Scholar]
  132. 132.
    Naschberger A, Mosebach L, Tobiasson V, Kuhlgert S, Scholz M, et al. 2022.. Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex. . Nat. Plants 8::1191201
    [Crossref] [Google Scholar]
  133. 133.
    Naumann B, Stauber EJ, Busch A, Sommer F, Hippler M. 2005.. N-terminal processing of Lhca3 is a key step in remodeling of the photosystem I-light-harvesting complex under iron deficiency in Chlamydomonas reinhardtii. . J. Biol. Chem. 280:(21):2043141
    [Crossref] [Google Scholar]
  134. 134.
    Nicol L, Croce R. 2021.. The PsbS protein and low pH are necessary and sufficient to induce quenching in the light-harvesting complex of plants LHCII. . Sci. Rep. 11:(1):7415
    [Crossref] [Google Scholar]
  135. 135.
    Nicol L, Nawrocki WJ, Croce R. 2019.. Disentangling the sites of non-photochemical quenching in vascular plants. . Nat. Plants 5::117783
    [Crossref] [Google Scholar]
  136. 136.
    Niyogi KK, Björkman O, Grossman AR. 1997.. Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. . Plant Cell 9:(8):136980
    [Crossref] [Google Scholar]
  137. 137.
    Niyogi KK, Björkman O, Grossman AR. 1997.. The roles of specific xanthophylls in photoprotection. . PNAS 94:(25):1416267
    [Crossref] [Google Scholar]
  138. 138.
    Niyogi KK, Grossman AR, Björkman O. 1998.. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. . Plant Cell 10:(7):112134
    [Crossref] [Google Scholar]
  139. 139.
    Nymark M, Valle KC, Hancke K, Winge P, Andresen K, et al. 2013.. Molecular and photosynthetic responses to prolonged darkness and subsequent acclimation to re-illumination in the diatom Phaeodactylum tricornutum. . PLOS Biol. 8:(3):e58722
    [Google Scholar]
  140. 140.
    Ozawa S-I, Bald T, Onishi T, Xue H, Matsumura T, et al. 2018.. Configuration of ten light-harvesting chlorophyll a/b complex I subunits in Chlamydomonas reinhardtii photosystem I. . Plant Physiol. 178:(2):58395
    [Crossref] [Google Scholar]
  141. 141.
    Palm DM, Agostini A, Averesch V, Girr P, Werwie M, et al. 2018.. Chlorophyll a/b binding-specificity in water-soluble chlorophyll protein. . Nat. Plants 4::92029
    [Crossref] [Google Scholar]
  142. 142.
    Pan X, Ma J, Su X, Cao P, Chang W, et al. 2018.. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. . Science 360:(6393):110913
    [Crossref] [Google Scholar]
  143. 143.
    Pan X, Tokutsu R, Li A, Takizawa K, Song C, et al. 2021.. Structural basis of LhcbM5-mediated state transitions in green algae. . Nat. Plants 7::111931
    [Crossref] [Google Scholar]
  144. 144.
    Park S, Fischer AL, Steen CJ, Iwai M, Morris JM, et al. 2018.. Chlorophyll-carotenoid excitation energy transfer in high-light-exposed thylakoid membranes investigated by snapshot transient absorption spectroscopy. . J. Am. Chem. Soc. 140:(38):1196573
    [Crossref] [Google Scholar]
  145. 145.
    Park S, Steen CJ, Lyska D, Fischer AL, Endelman B, et al. 2019.. Chlorophyll–carotenoid excitation energy transfer and charge transfer in Nannochloropsis oceanica for the regulation of photosynthesis. . PNAS 116:(9):338590
    [Crossref] [Google Scholar]
  146. 146.
    Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, et al. 2009.. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. . Nature 462:(7272):51821
    [Crossref] [Google Scholar]
  147. 147.
    Petrou K, Belgio E, Ruban AV. 2014.. pH sensitivity of chlorophyll fluorescence quenching is determined by the detergent/protein ratio and the state of LHCII aggregation. . Biochim. Biophys. Acta 1837:(9):153339
    [Crossref] [Google Scholar]
  148. 148.
    Pi X, Tian L, Dai HE, Qin X, Cheng L, et al. 2018.. Unique organization of photosystem I–light-harvesting supercomplex revealed by cryo-EM from a red alga. . PNAS 115:(17):442328
    [Crossref] [Google Scholar]
  149. 149.
    Pi X, Zhao S, Wang W, Liu D, Xu C, et al. 2019.. The pigment-protein network of a diatom photosystem II–light-harvesting antenna supercomplex. . Science 365:(6452):eaax4406
    [Crossref] [Google Scholar]
  150. 150.
    Pinnola A, Alboresi A, Nosek L, Semchonok D, Rameez A, et al. 2018.. A LHCB9-dependent photosystem I megacomplex induced under low light in Physcomitrella patens. . Nat. Plants 4::91019
    [Crossref] [Google Scholar]
  151. 151.
    Pinnola A, Cazzaniga S, Alboresi A, Nevo R, Levin-Zaidman S, et al. 2015.. Light-harvesting complex stress-related proteins catalyze excess energy dissipation in both photosystems of Physcomitrella patens. . Plant Cell 27:(11):321327
    [Crossref] [Google Scholar]
  152. 152.
    Pinnola A, Dall'Osto L, Gerotto C, Morosinotto T, Bassi R, Alboresi A. 2013.. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens. . Plant Cell 25:(9):351934
    [Crossref] [Google Scholar]
  153. 153.
    Qin X, Pi X, Wang W, Han G, Zhu L, et al. 2019.. Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. . Nat. Plants 5::26372
    [Crossref] [Google Scholar]
  154. 154.
    Qin X, Suga M, Kuang T, Shen J-R. 2015.. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. . Science 348:(6238):98995
    [Crossref] [Google Scholar]
  155. 155.
    Rahmatpour N, Hauser DA, Nelson JM, Chen PY, Villarreal A JC, et al. 2021.. A novel thylakoid-less isolate fills a billion-year gap in the evolution of Cyanobacteria. . Curr. Biol. 31:(13):28572867.e4
    [Crossref] [Google Scholar]
  156. 156.
    Rathbone HW, Michie KA, Landsberg MJ, Green BR, Curmi PMG. 2021.. Scaffolding proteins guide the evolution of algal light harvesting antennas. . Nat. Commun. 12:(1):1890
    [Crossref] [Google Scholar]
  157. 157.
    Redekop P, Rothhausen N, Rothhausen N, Melzer M, Mosebach L, et al. 2020.. PsbS contributes to photoprotection in Chlamydomonas reinhardtii independently of energy dissipation. . Biochim. Biophys. Acta Bioenerg. 1861:(5):148183
    [Crossref] [Google Scholar]
  158. 158.
    Röding A, Boekema E, Büchel C. 2018.. The structure of FCPb, a light-harvesting complex in the diatom Cyclotella meneghiniana. . Photosynth. Res. 135:(1):20311
    [Crossref] [Google Scholar]
  159. 159.
    Rossini S, Casazza AP, Engelmann ECM, Havaux M, Jennings RC, Soave C. 2006.. Suppression of both ELIP1 and ELIP2 in Arabidopsis does not affect tolerance to photoinhibition and photooxidative stress. . Plant Physiol. 141:(4):126473
    [Crossref] [Google Scholar]
  160. 160.
    Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, et al. 2007.. Identification of a mechanism of photoprotective energy dissipation in higher plants. . Nature 450:(7169):57578
    [Crossref] [Google Scholar]
  161. 161.
    Ruban AV, Saccon F. 2022.. Chlorophyll a de-excitation pathways in the LHCII antenna. . J. Chem. Phys. 156:(7):070902
    [Crossref] [Google Scholar]
  162. 162.
    Ruban AV, Wentworth M, Yakushevska AE, Andersson J, Lee PJ, et al. 2003.. Plants lacking the main light-harvesting complex retain photosystem II macro-organization. . Nature 421:(6923):64852
    [Crossref] [Google Scholar]
  163. 163.
    Ruban AV, Young A, Horton P. 1994.. Modulation of chlorophyll fluorescence quenching in isolated light harvesting complex of Photosystem II. . Biochim. Biophys. Acta Bioenerg. 1186:(1):12327
    [Crossref] [Google Scholar]
  164. 164.
    Saccon F, Durchan M, Kaňa R, Prášil O, Ruban AV, Polívka T. 2019.. Spectroscopic properties of violaxanthin and lutein triplet states in LHCII are independent of carotenoid composition. . J. Phys. Chem. B 123:(44):931220
    [Crossref] [Google Scholar]
  165. 165.
    Schaller S, Latowski D, Jemiola-Rzeminska M, Dawood A, Wilhelm C, et al. 2011.. Regulation of LHCII aggregation by different thylakoid membrane lipids. . Biochim. Biophys. Acta 1807:(3):32635
    [Crossref] [Google Scholar]
  166. 166.
    Schneider TD, Stephens RM. 1990.. Sequence logos: a new way to display consensus sequences. . Nucleic Acids Res. 18::6097100
    [Crossref] [Google Scholar]
  167. 167.
    Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R. 2011.. Lessons from nature about solar light harvesting. . Nat. Chem. 3:(10):76374
    [Crossref] [Google Scholar]
  168. 168.
    Seiwert D, Witt H, Janshoff A, Paulsen H. 2017.. The non-bilayer lipid MGDG stabilizes the major light-harvesting complex (LHCII) against unfolding. . Sci. Rep. 7:(1):5158
    [Crossref] [Google Scholar]
  169. 169.
    Seki S, Nakaniwa T, Castro-Hartmann P, Sader K, Kawamoto A, et al. 2022.. Structural insights into blue-green light utilization by marine green algal light harvesting complex II at 2.78 Å. . BBA Adv. 2::100064
    [Crossref] [Google Scholar]
  170. 170.
    Shen L, Huang Z, Chang S, Wang W, Wang J, et al. 2019.. Structure of a C2S2M2N2-type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii. . PNAS 116:(42):2124655
    [Crossref] [Google Scholar]
  171. 171.
    Shen L, Tang K, Wang W, Wang C, Wu H, et al. 2022.. Architecture of the chloroplast PSI–NDH supercomplex in Hordeum vulgare. . Nature 601:(7894):64954
    [Crossref] [Google Scholar]
  172. 172.
    Sheng X, Liu Z, Kim E, Minagawa J. 2021.. Plant and algal PSII–LHCII supercomplexes: structure, evolution and energy transfer. . Plant Cell Physiol. 62:(7):110820
    [Crossref] [Google Scholar]
  173. 173.
    Sheng X, Watanabe A, Li A, Kim E, Song C, et al. 2019.. Structural insight into light harvesting for photosystem II in green algae. . Nat. Plants 5::132030
    [Crossref] [Google Scholar]
  174. 174.
    Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, et al. 2013.. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. . PNAS 110:(3):105358
    [Crossref] [Google Scholar]
  175. 175.
    Shukla MK, Watanabe A, Wilson S, Giovagnetti V, Moustafa EI, et al. 2020.. A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching. . J. Biol. Chem. 295:(51):1781626
    [Crossref] [Google Scholar]
  176. 176.
    Simidjiev I, Stoylova S, Amenitsch H, Javorfi T, Mustardy L, et al. 2000.. Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. . PNAS 97:(4):147376
    [Crossref] [Google Scholar]
  177. 177.
    Skotnicová P, Staleva-Musto H, Kuznetsova V, Bína D, Konert MM, et al. 2021.. Plant LHC-like proteins show robust folding and static non-photochemical quenching. . Nat. Commun. 12:(1):6890
    [Crossref] [Google Scholar]
  178. 178.
    Sobotka R, Tichy M, Wilde A, Hunter CN. 2011.. Functional assignments for the carboxyl-terminal domains of the ferrochelatase from Synechocystis PCC 6803: The CAB domain plays a regulatory role, and region II is essential for catalysis. . Plant Physiol. 155:(4):173547
    [Crossref] [Google Scholar]
  179. 179.
    Staleva H, Komenda J, Shukla MK, Šlouf V, Kaňa R, et al. 2015.. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. . Nat. Chem. Biol. 11:(4):28791
    [Crossref] [Google Scholar]
  180. 180.
    Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kuhlbrandt W. 2005.. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. . EMBO J. 24:(5):91928
    [Crossref] [Google Scholar]
  181. 181.
    Stengel KF, Holdermann I, Cain P, Robinson C, Wild K, Sinning I. 2008.. Structural basis for specific substrate recognition by the chloroplast signal recognition particle protein cpSRP43. . Science 321:(5886):25356
    [Crossref] [Google Scholar]
  182. 182.
    Su X, Cao D, Pan X, Shi L, Liu Z, et al. 2022.. Supramolecular assembly of chloroplast NADH dehydrogenase-like complex with photosystem I from Arabidopsis thaliana. . Mol. Plant 15:(3):45467
    [Crossref] [Google Scholar]
  183. 183.
    Su X, Ma J, Pan X, Zhao X, Chang W, et al. 2019.. Antenna arrangement and energy transfer pathways of a green algal photosystem-I–LHCI supercomplex. . Nat. Plants 5::27381
    [Crossref] [Google Scholar]
  184. 184.
    Su X, Ma J, Wei X, Cao P, Zhu D, et al. 2017.. Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. . Science 357:(6353):81520
    [Crossref] [Google Scholar]
  185. 185.
    Suga M, Ozawa S-I, Yoshida-Motomura K, Akita F, Miyazaki N, Takahashi Y. 2019.. Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. . Nat. Plants 5::62636
    [Crossref] [Google Scholar]
  186. 186.
    Sun H, Shang H, Pan X, Li M. 2023.. Structural insights into the assembly and energy transfer of the Lhcb9-dependent photosystem I from moss Physcomitrium patens. . Nat. Plants 9::134758
    [Crossref] [Google Scholar]
  187. 187.
    Sundell D, Mannapperuma C, Netotea S, Delhomme N, Lin Y-C, et al. 2015.. The plant genome integrative explorer resource: PlantGenIE.org. . New Phytol. 208:(4):114956
    [Crossref] [Google Scholar]
  188. 188.
    Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J, et al. 2001.. The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. . Plant Cell 13:(6):134768
    [Crossref] [Google Scholar]
  189. 189.
    Swingley WD, Iwai M, Chen Y, Ozawa S, Takizawa K, et al. 2010.. Characterization of photosystem I antenna proteins in the prasinophyte Ostreococcus tauri. . Biochim. Biophys. Acta 1797:(8):145864
    [Crossref] [Google Scholar]
  190. 190.
    Taddei L, Stella GR, Rogato A, Bailleul B, Fortunato AE, et al. 2016.. Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum. . J. Exp. Bot. 67:(13):393951
    [Crossref] [Google Scholar]
  191. 191.
    Takahashi H, Iwai M, Takahashi Y, Minagawa J. 2006.. Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. . PNAS 103:(2):47782
    [Crossref] [Google Scholar]
  192. 192.
    Takahashi K, Takabayashi A, Tanaka A, Tanaka R. 2014.. Functional analysis of light-harvesting-like protein 3 (LIL3) and its light-harvesting chlorophyll-binding motif in Arabidopsis. . J. Biol. Chem. 289:(2):98799
    [Crossref] [Google Scholar]
  193. 193.
    Tanaka R, Rothbart M, Oka S, Takabayashi A, Takahashi K, et al. 2010.. LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis. . PNAS 107:(38):1672125
    [Crossref] [Google Scholar]
  194. 194.
    Thornber JP, Highkin HR. 1974.. Composition of the photosynthetic apparatus of normal barley leaves and a mutant lacking chlorophyll b. . Eur. J. Biochem. 41:(1):10916 194. Coined the term light-harvesting by differentiating the function between photosynthetic antenna proteins and reaction centers.
    [Crossref] [Google Scholar]
  195. 195.
    Tian L, Nawrocki WJ, Liu X, Polukhina I, van Stokkum IHM, Croce R. 2019.. pH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in Chlamydomonas. . PNAS 116:(17):832025
    [Crossref] [Google Scholar]
  196. 196.
    Tikkanen M, Mekala NR, Aro E-M. 2014.. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. . Biochim. Biophys. Acta 1837:(1):21015
    [Crossref] [Google Scholar]
  197. 197.
    Tikkanen M, Nurmi M, Suorsa M, Danielsson R, Mamedov F, et al. 2008.. Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. . Biochim. Biophys. Acta 1777:(5):42532
    [Crossref] [Google Scholar]
  198. 198.
    Toporik H, Li J, Williams D, Chiu P-L, Mazor Y. 2019.. The structure of the stress-induced photosystem I-IsiA antenna supercomplex. . Nat. Struct. Mol. Biol. 26:(6):44349
    [Crossref] [Google Scholar]
  199. 199.
    Tsujimura M, Sugano M, Ishikita H, Saito K. 2023.. Mechanism of absorption wavelength shift depending on the protonation state of the acrylate group in chlorophyll c. . J. Phys. Chem. B 127:(2):50513
    [Crossref] [Google Scholar]
  200. 200.
    Tzvetkova-Chevolleau T, Franck F, Alawady AE, Dall'Osto L, Carrière F, et al. 2007.. The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. . Plant J. 50:(5):795809
    [Crossref] [Google Scholar]
  201. 201.
    Varotto C, Pesaresi P, Jahns P, Leßnick A, Tizzano M, et al. 2002.. Single and double knockouts of the genes for photosystem I subunits G, K, and H of Arabidopsis. Effects on photosystem I composition, photosynthetic electron flow, and state transitions. . Plant Physiol. 129:(2):61624
    [Crossref] [Google Scholar]
  202. 202.
    Varsano T, Wolf SG, Pick U. 2006.. A chlorophyll a/b-binding protein homolog that is induced by iron deficiency is associated with enlarged photosystem I units in the eucaryotic alga Dunaliella salina. . J. Biol. Chem. 281:(15):1030515
    [Crossref] [Google Scholar]
  203. 203.
    Wang W, Yu L-J, Xu C, Tomizaki T, Zhao S, et al. 2019.. Structural basis for blue-green light harvesting and energy dissipation in diatoms. . Science 363:(6427):eaav0365
    [Crossref] [Google Scholar]
  204. 204.
    Wei X, Su X, Cao P, Liu X, Chang W, et al. 2016.. Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. . Nature 534:(7605):6974
    [Crossref] [Google Scholar]
  205. 205.
    Wientjes E, Croce R. 2011.. The light-harvesting complexes of higher-plant photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers. . Biochem. J. 433:(3):47785
    [Crossref] [Google Scholar]
  206. 206.
    Wientjes E, Oostergetel GT, Jansson S, Boekema EJ, Croce R. 2009.. The role of Lhca complexes in the supramolecular organization of higher plant photosystem I. . J. Biol. Chem. 284:(12):780310
    [Crossref] [Google Scholar]
  207. 207.
    Wientjes E, van Stokkum IH, van Amerongen H, Croce R. 2011.. The role of the individual Lhcas in photosystem I excitation energy trapping. . Biophys. J. 101:(3):74554
    [Crossref] [Google Scholar]
  208. 208.
    Wietrzynski W, Schaffer M, Tegunov D, Albert S, Kanazawa A, et al. 2020.. Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. . eLife 9::e53740
    [Crossref] [Google Scholar]
  209. 209.
    Wolfe GR, Cunningham FX, Durnfordt D, Green BR, Gantt E. 1994.. Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. . Nature 367:(6463):56668
    [Crossref] [Google Scholar]
  210. 210.
    Xiao Y, Huang G, You X, Zhu Q, Wang W, et al. 2021.. Structural insights into cyanobacterial photosystem II intermediates associated with Psb28 and Tsl0063. . Nat. Plants 7::113242
    [Crossref] [Google Scholar]
  211. 211.
    Xie H, Lyratzakis A, Khera R, Koutantou M, Welsch S, et al. 2023.. Cryo-EM structure of the whole photosynthetic reaction center apparatus from the green sulfur bacterium Chlorobaculum tepidum. . PNAS 120:(5):e2216734120
    [Crossref] [Google Scholar]
  212. 212.
    Xu C, Pi X, Huang Y, Han G, Chen X, et al. 2020.. Structural basis for energy transfer in a huge diatom PSI-FCPI supercomplex. . Nat. Commun. 11:(1):5081
    [Crossref] [Google Scholar]
  213. 213.
    Xu P, Tian L, Kloz M, Croce R. 2015.. Molecular insights into zeaxanthin-dependent quenching in higher plants. . Sci. Rep. 5:(1):13679
    [Crossref] [Google Scholar]
  214. 214.
    Yakushevska AE, Keegstra W, Boekema EJ, Dekker JP, Andersson J, et al. 2003.. The structure of photosystem II in Arabidopsis: localization of the CP26 and CP29 antenna complexes. . Biochemistry 42:(3):60813
    [Crossref] [Google Scholar]
  215. 215.
    Yang D, Qing Y, Min C. 2010.. Incorporation of the chlorophyll d-binding light-harvesting protein from Acaryochloris marina and its localization within the photosynthetic apparatus of Synechocystis sp. PCC6803. . Biochim. Biophys. Acta 1797:(2):20411
    [Crossref] [Google Scholar]
  216. 216.
    Yeremenko N, Kouřil R, Ihalainen JA, D'Haene S, van Oosterwijk N, et al. 2004.. Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria. . Biochemistry 43:(32):1030813
    [Crossref] [Google Scholar]
  217. 217.
    Yokono M, Takabayashi A, Kishimoto J, Fujita T, Iwai M, et al. 2019.. The PSI–PSII megacomplex in green plants. . Plant Cell Physiol. 60:(5):1098108
    [Crossref] [Google Scholar]
  218. 218.
    Yoshihara A, Kobayashi K. 2022.. Lipids in photosynthetic protein complexes in the thylakoid membrane of plants, algae, and cyanobacteria. . J. Exp. Bot. 73:(9):273550
    [Crossref] [Google Scholar]
  219. 219.
    You X, Zhang X, Cheng J, Xiao Y, Ma J, et al. 2023.. In situ structure of the red algal phycobilisome–PSII–PSI–LHC megacomplex. . Nature 616::199206
    [Crossref] [Google Scholar]
  220. 220.
    Zabret J, Bohn S, Schuller SK, Arnolds O, Möller M, et al. 2021.. Structural insights into photosystem II assembly. . Nat. Plants 7::52438
    [Crossref] [Google Scholar]
  221. 221.
    Zhang S, Tang K, Yan Q, Li X, Shen L, et al. 2023.. Structural insights into a unique PSI–LHCI–LHCII–Lhcb9 supercomplex from moss Physcomitrium patens. . Nat. Plants 9::83246
    [Crossref] [Google Scholar]
  222. 222.
    Zhao L, Cheng D, Huang X, Chen M, Dall'Osto L, et al. 2017.. A light harvesting complex-like protein in maintenance of photosynthetic components in Chlamydomonas. . Plant Physiol. 174:(4):241933
    [Crossref] [Google Scholar]
  223. 223.
    Zhao L-S, Wang P, Li K, Zhang Q-B, He F-Y, et al. 2023.. Structural basis and evolution of the photosystem I–light-harvesting supercomplex of cryptophyte algae. . Plant Cell 35:(7):244963
    [Crossref] [Google Scholar]
  224. 224.
    Zhao S, Shen L, Li X, Tao Q, Li Z, et al. 2023.. Structural insights into photosystem II supercomplex and trimeric FCP antennae of a centric diatom Cyclotella meneghiniana. . Nat. Commun. 14:(1):8164
    [Crossref] [Google Scholar]
  225. 225.
    Zheng L, Li Y, Li X, Zhong Q, Li N, et al. 2019.. Structural and functional insights into the tetrameric photosystem I from heterocyst-forming cyanobacteria. . Nat. Plants 5::108797
    [Crossref] [Google Scholar]
  226. 226.
    Zhou F, Liu S, Hu Z, Kuang T, Paulsen H, Yang C. 2009.. Effect of monogalactosyldiacylglycerol on the interaction between photosystem II core complex and its antenna complexes in liposomes of thylakoid lipids. . Photosynth. Res. 99:(3):18593
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070623-015519
Loading
/content/journals/10.1146/annurev-arplant-070623-015519
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article