1932

Abstract

Multicellularity has emerged multiple times in evolution, enabling groups of cells to share a living space and reducing the burden of solitary tasks. While unicellular organisms exhibit individuality and independence, cooperation among cells in multicellular organisms brings specialization and flexibility. However, multicellularity also necessitates intercellular dependence and relies on intercellular communication. In plants, this communication is facilitated by plasmodesmata: intercellular bridges that allow the direct (cytoplasm-to-cytoplasm) transfer of information between cells. Plasmodesmata transport essential molecules that regulate plant growth, development, and stress responses. They are embedded in the extracellular matrix but exhibit flexibility, adapting intercellular flux to meet the plant's needs.

In this review, we delve into the formation and functionality of plasmodesmata and examine the capacity of the plant communication network to respond to developmental and environmental cues. We illustrate how environmental pressure shapes cellular interactions and aids the plant in adapting its growth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070623-093110
2024-07-22
2025-02-08
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070623-093110.html?itemId=/content/journals/10.1146/annurev-arplant-070623-093110&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abou-Saleh RH, Hernandez-Gomez MC, Amsbury S, Paniagua C, Bourdon M, et al. 2018.. Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures. . Nat. Commun. 9::4538 1. Investigates for the first time the physicomechanical properties of callose analogs in cellulosic mixture.
    [Crossref] [Google Scholar]
  2. 2.
    Amsbury S, Kirk P, Benitez-Alfonso Y. 2017.. Emerging models on the regulation of intercellular transport by plasmodesmata-associated callose. . J. Exp. Bot. 69::10515
    [Crossref] [Google Scholar]
  3. 3.
    Anisimov AV, Suslov MA. 2023.. Measuring of water transport selectively along the plant root plasmodesmata using gradient nuclear magnetic resonance with paramagnetic doping. . Plant Physiol. Biochem. 194::26370
    [Crossref] [Google Scholar]
  4. 4.
    Aung K, Kim P, Li Z, Joe A, Kvitko B, et al. 2020.. Pathogenic bacteria target plant plasmodesmata to colonize and invade surrounding tissues. . Plant Cell 32::595611
    [Crossref] [Google Scholar]
  5. 5.
    Band LR. 2021.. Auxin fluxes through plasmodesmata. . New Phytol. 231::168692
    [Crossref] [Google Scholar]
  6. 6.
    Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, et al. 2006.. Arabidopsis cell wall proteome defined using multidimensional protein identification technology. . Proteomics 6::30111
    [Crossref] [Google Scholar]
  7. 7.
    Benitez-Alfonso Y. 2019.. The role of abscisic acid in the regulation of plasmodesmata and symplastic intercellular transport. . Plant Cell Physiol. 60::71314
    [Crossref] [Google Scholar]
  8. 8.
    Benitez-Alfonso Y, Cano-Delgado AI. 2023.. Brassinosteroids en route. . Nat. Chem. Biol. 19::129495
    [Crossref] [Google Scholar]
  9. 9.
    Benitez-Alfonso Y, Cilia M, San Roman A, Thomas C, Maule A, et al. 2009.. Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. . PNAS 106::361520
    [Crossref] [Google Scholar]
  10. 10.
    Benitez-Alfonso Y, Faulkner C, Pendle A, Miyashima S, Helariutta Y, Maule A. 2013.. Symplastic intercellular connectivity regulates lateral root patterning. . Dev. Cell 26::13647
    [Crossref] [Google Scholar]
  11. 11.
    Bilska A, Sowinski P. 2010.. Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition of photosynthesis. . Ann. Bot. 106::67586
    [Crossref] [Google Scholar]
  12. 12.
    Bourdon M, Lyczakowski JJ, Cresswell R, Amsbury S, Vilaplana F, et al. 2023.. Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils. . Nat. Plants 9::153046
    [Crossref] [Google Scholar]
  13. 13.
    Brault ML, Petit JD, Immel F, Nicolas WJ, Glavier M, et al. 2019.. Multiple C2 domains and transmembrane region proteins (MCTPs) tether membranes at plasmodesmata. . EMBO Rep. 20::e47182 13. Identified plasmodesmata-specific ER-PM tether candidates, suggesting a function of membrane contacts in regulating molecular flow.
    [Crossref] [Google Scholar]
  14. 14.
    Brunkard JO, Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, et al. 2020.. TOR dynamically regulates plant cell–cell transport. . PNAS 117::504958
    [Crossref] [Google Scholar]
  15. 15.
    Brunkard JO, Zambryski PC. 2017.. Plasmodesmata enable multicellularity: new insights into their evolution, biogenesis, and functions in development and immunity. . Curr. Opin. Plant Biol. 35::7683
    [Crossref] [Google Scholar]
  16. 16.
    Caillaud MC, Wirthmueller L, Sklenar J, Findlay K, Piquerez SJ, et al. 2014.. The plasmodesmal protein PDLP1 localises to haustoria-associated membranes during downy mildew infection and regulates callose deposition. . PLOS Pathog. 10::e1004496
    [Crossref] [Google Scholar]
  17. 17.
    Cao L, Blekemolen MC, Tintor N, Cornelissen BJC, Takken FLW. 2018.. The Fusarium oxysporum Avr2-Six5 effector pair alters plasmodesmatal exclusion selectivity to facilitate cell-to-cell movement of Avr2. . Mol. Plant 11::691705
    [Crossref] [Google Scholar]
  18. 18.
    Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, et al. 2010.. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. . Nature 465::31621
    [Crossref] [Google Scholar]
  19. 19.
    Chaigne A, Brunet T. 2022.. Incomplete abscission and cytoplasmic bridges in the evolution of eukaryotic multicellularity. . Curr. Biol. 32::R38597
    [Crossref] [Google Scholar]
  20. 20.
    Chen C, Vanneste S, Chen X. 2021.. Review: Membrane tethers control plasmodesmal function and formation. . Plant Sci. 304::110800
    [Crossref] [Google Scholar]
  21. 21.
    Cheval C, Faulkner C. 2018.. Plasmodesmal regulation during plant–pathogen interactions. . New Phytol. 217::6267
    [Crossref] [Google Scholar]
  22. 22.
    Cheval C, Samwald S, Johnston MG, de Keijzer J, Breakspear A, et al. 2020.. Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants. . PNAS 117::962129
    [Crossref] [Google Scholar]
  23. 23.
    Cho SK, Kang IH, Carr T, Hannapel DJ. 2012.. Using the yeast three-hybrid system to identify proteins that interact with a phloem-mobile mRNA. . Front. Plant Sci. 3::189
    [Crossref] [Google Scholar]
  24. 24.
    Christensen AH, Stone HA, Jensen KH. 2021.. Diffusion and flow across shape-perturbed plasmodesmata nanopores in plants. . Eur. Phys. J. Plus 136::872
    [Crossref] [Google Scholar]
  25. 25.
    Combarnous Y, Nguyen TMD. 2020.. Cell communications among microorganisms, plants, and animals: origin, evolution, and interplays. . Int. J. Mol. Sci. 21::8052
    [Crossref] [Google Scholar]
  26. 26.
    Complainville A, Brocard L, Roberts I, Dax E, Sever N, et al. 2003.. Nodule initiation involves the creation of a new symplasmic field in specific root cells of Medicago species. . Plant Cell 15::277891
    [Crossref] [Google Scholar]
  27. 27.
    Cosgrove DJ. 2022.. Building an extensible cell wall. . Plant Physiol. 189::124677
    [Crossref] [Google Scholar]
  28. 28.
    Couvreur V, Faget M, Lobet G, Javaux M, Chaumont F, Draye X. 2018.. Going with the flow: multiscale insights into the composite nature of water transport in roots. . Plant Physiol. 178::1689703
    [Crossref] [Google Scholar]
  29. 29.
    Cui W, Lee JY. 2016.. Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. . Nat. Plants 2::16034
    [Crossref] [Google Scholar]
  30. 30.
    Cui Y, He M, Liu D, Liu J, Liu J, Yan D. 2023.. Intercellular communication during stomatal development with a focus on the role of symplastic connection. . Int. J. Mol. Sci. 24::2593
    [Crossref] [Google Scholar]
  31. 31.
    Daum G, Medzihradszky A, Suzaki T, Lohmann JU. 2014.. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. . PNAS 111::1461924
    [Crossref] [Google Scholar]
  32. 32.
    Deinum EE, Mulder BM, Benitez-Alfonso Y. 2019.. From plasmodesma geometry to effective symplasmic permeability through biophysical modelling. . eLife 8::e4900 32. Built a theoretical framework for modeling cell–cell movement from experimentally extracted geometrical properties of plasmodesmata.
    [Crossref] [Google Scholar]
  33. 33.
    Demchenko KN, Voitsekhovskaja OV, Pawlowski K. 2014.. Plasmodesmata without callose and calreticulin in higher plants—open channels for fast symplastic transport?. Front. Plant Sci. 5::74
    [Crossref] [Google Scholar]
  34. 34.
    Devers EA, Brosnan CA, Sarazin A, Schott G, Lim P, et al. 2023.. In planta dynamics, transport biases, and endogenous functions of mobile siRNAs in Arabidopsis. . Plant J. 115::137793
    [Crossref] [Google Scholar]
  35. 35.
    Ding Y, Yang S. 2022.. Surviving and thriving: how plants perceive and respond to temperature stress. . Dev. Cell 57::94758
    [Crossref] [Google Scholar]
  36. 36.
    Du Y, Scheres B. 2017.. PLETHORA transcription factors orchestrate de novo organ patterning during Arabidopsis lateral root outgrowth. . PNAS 114::1170914
    [Crossref] [Google Scholar]
  37. 37.
    Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K. 2008.. Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. . Plant Cell 20::150418
    [Crossref] [Google Scholar]
  38. 38.
    Faulkner C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S, et al. 2013.. LYM2-dependent chitin perception limits molecular flux via plasmodesmata. . PNAS 110::916670
    [Crossref] [Google Scholar]
  39. 39.
    Fernandez-Calvino L, Faulkner C, Walshaw J, Saalbach G, Bayer E, et al. 2011.. Arabidopsis plasmodesmal proteome. . PLOS ONE 6::e18880
    [Crossref] [Google Scholar]
  40. 40.
    Fitzgibbon J, Beck M, Zhou J, Faulkner C, Robatzek S, Oparka K. 2013.. A developmental framework for complex plasmodesmata formation revealed by large-scale imaging of the Arabidopsis leaf epidermis. . Plant Cell 25::5770
    [Crossref] [Google Scholar]
  41. 41.
    Gao C, Liu X, De Storme N, Jensen KH, Xu Q, et al. 2020.. Directionality of plasmodesmata-mediated transport in Arabidopsis leaves supports auxin channeling. . Curr. Biol. 30::197077.e4
    [Crossref] [Google Scholar]
  42. 42.
    Gao X, Yuan Y, Liu Z, Liu C, Xin H, et al. 2021.. Chilling and gibberellin acids hyperinduce β-1,3-glucanases to reopen transport corridor and break endodormancy in tree peony (Paeonia suffruticosa). . Plant Physiol. Biochem. 167::77184
    [Crossref] [Google Scholar]
  43. 43.
    Gaudioso-Pedraza R, Beck M, Frances L, Kirk P, Ripodas C, et al. 2018.. Callose-regulated symplastic communication coordinates symbiotic root nodule development. . Curr. Biol. 28::356277.e6
    [Crossref] [Google Scholar]
  44. 44.
    Gerlitz N, Gerum R, Sauer N, Stadler R. 2018.. Photoinducible DRONPA-s: a new tool for investigating cell–cell connectivity. . Plant J. 94::75166
    [Crossref] [Google Scholar]
  45. 45.
    German L, Yeshvekar R, Benitez-Alfonso Y. 2023.. Callose metabolism and the regulation of cell walls and plasmodesmata during plant mutualistic and pathogenic interactions. . Plant Cell Environ. 46::391404
    [Crossref] [Google Scholar]
  46. 46.
    Godel-Jedrychowska K, Kulinska-Lukaszek K, Kurczynska E. 2021.. Similarities and differences in the GFP movement in the zygotic and somatic embryos of Arabidopsis. . Front. Plant Sci. 12::649806
    [Crossref] [Google Scholar]
  47. 47.
    Gombos S, Miras M, Howe V, Xi L, Pottier M, et al. 2023.. A high-confidence Physcomitrium patens plasmodesmata proteome by iterative scoring and validation reveals diversification of cell wall proteins during evolution. . New Phytol. 238::63753 47. Experimentally dissected the plasmodesmata proteome in moss, validated new PD proteins, and established a scoring algorithm.
    [Crossref] [Google Scholar]
  48. 48.
    Grison MS, Kirk P, Brault ML, Wu XN, Schulze WX, et al. 2019.. Plasma membrane-associated receptor-like kinases relocalize to plasmodesmata in response to osmotic stress. . Plant Physiol. 181::14260
    [Crossref] [Google Scholar]
  49. 49.
    Guerra T, Schilling S, Hake K, Gorzolka K, Sylvester FP, et al. 2020.. Calcium-dependent protein kinase 5 links calcium signaling with N-hydroxy-l-pipecolic acid- and SARD1-dependent immune memory in systemic acquired resistance. . New Phytol. 225::31025
    [Crossref] [Google Scholar]
  50. 50.
    Guseman JM, Lee JS, Bogenschutz NL, Peterson KM, Virata RE, et al. 2010.. Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASE-LIKE 8). . Development 137::173141
    [Crossref] [Google Scholar]
  51. 51.
    Hake K, Romeis T. 2019.. Protein kinase-mediated signalling in priming: immune signal initiation, propagation, and establishment of long-term pathogen resistance in plants. . Plant Cell Environ. 42::90417
    [Crossref] [Google Scholar]
  52. 52.
    Ham BK, Li G, Kang BH, Zeng F, Lucas WJ. 2012.. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development. . Plant Cell 24::363048
    [Crossref] [Google Scholar]
  53. 53.
    Han X, Hyun TK, Zhang M, Kumar R, Koh EJ, et al. 2014.. Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. . Dev. Cell 28::13246
    [Crossref] [Google Scholar]
  54. 54.
    Hawes CR, Juniper BE, Horne JC. 1981.. Low and high voltage electron microscopy of mitosis and cytokinesis in maize roots. . Planta 152::397407
    [Crossref] [Google Scholar]
  55. 55.
    Haywood V, Yu TS, Huang NC, Lucas WJ. 2005.. Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. . Plant J. 42::4968
    [Crossref] [Google Scholar]
  56. 56.
    Heeney M, Frank MH. 2023.. The mRNA mobileome: challenges and opportunities for deciphering signals from the noise. . Plant Cell 35::181733
    [Crossref] [Google Scholar]
  57. 57.
    Heinlein M. 2015.. Plasmodesmata: channels for viruses on the move. . Methods Mol. Biol. 1217::2552
    [Crossref] [Google Scholar]
  58. 58.
    Hepler PK. 1982.. Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. . Protoplasma 111::12133
    [Crossref] [Google Scholar]
  59. 59.
    Hernandez-Hernandez V, Benitez M, Boudaoud A. 2020.. Interplay between turgor pressure and plasmodesmata during plant development. . J. Exp. Bot. 71::76877
    [Crossref] [Google Scholar]
  60. 60.
    Hong JH, Savina M, Du J, Devendran A, Kannivadi Ramakanth K, et al. 2017.. A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. . Cell 170::10213.e14
    [Crossref] [Google Scholar]
  61. 61.
    Horner W, Brunkard JO. 2021.. Cytokinins stimulate plasmodesmatal transport in leaves. . Front. Plant Sci. 12::674128
    [Crossref] [Google Scholar]
  62. 62.
    Huang C, Heinlein M. 2022.. Function of plasmodesmata in the interaction of plants with microbes and viruses. . Methods Mol. Biol. 2457::2354
    [Crossref] [Google Scholar]
  63. 63.
    Ishikawa K, Tamura K, Fukao Y, Shimada T. 2020.. Structural and functional relationships between plasmodesmata and plant endoplasmic reticulum–plasma membrane contact sites consisting of three synaptotagmins. . New Phytol. 226::798808
    [Crossref] [Google Scholar]
  64. 64.
    Iswanto ABB, Vu MH, Pike S, Lee J, Kang H, et al. 2022.. Pathogen effectors: What do they do at plasmodesmata?. Mol. Plant Pathol. 23::795804
    [Crossref] [Google Scholar]
  65. 65.
    Johnston MG, Breakspear A, Samwald S, Zhang D, Papp D, et al. 2023.. Comparative phyloproteomics identifies conserved plasmodesmal proteins. . J. Exp. Bot. 74::182135
    [Crossref] [Google Scholar]
  66. 66.
    Kalmbach L, Bourdon M, Belevich I, Safran J, Lemaire A, et al. 2023.. Putative pectate lyase PLL12 and callose deposition through polar CALS7 are necessary for long-distance phloem transport in Arabidopsis. . Curr. Biol. 33::92639.e9
    [Crossref] [Google Scholar]
  67. 67.
    Kehr J, Morris RJ, Kragler F. 2022.. Long-distance transported RNAs: from identity to function. . Annu. Rev. Plant Biol. 73::45774
    [Crossref] [Google Scholar]
  68. 68.
    Kim JY, Rim Y, Wang J, Jackson D. 2005.. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. . Genes Dev. 19::78893
    [Crossref] [Google Scholar]
  69. 69.
    Kirk P, Amsbury S, German L, Gaudioso-Pedraza R, Benitez-Alfonso Y. 2022.. A comparative meta-proteomic pipeline for the identification of plasmodesmata proteins and regulatory conditions in diverse plant species. . BMC Biol. 20::128
    [Crossref] [Google Scholar]
  70. 70.
    Kirk P, Benitez-Alfonso Y. 2022.. Plasmodesmata structural components and their role in signaling and plant development. . Methods Mol. Biol. 2457::322
    [Crossref] [Google Scholar]
  71. 71.
    Kitagawa M, Jackson D. 2017.. Plasmodesmata-mediated cell-to-cell communication in the shoot apical meristem: how stem cells talk. . Plants 6::12
    [Crossref] [Google Scholar]
  72. 72.
    Kitagawa M, Tran TM, Jackson D. 2024.. Traveling with purpose: cell-to-cell transport of plant mRNAs. . Trends Cell Biol. 34::4857
    [Crossref] [Google Scholar]
  73. 73.
    Kitagawa M, Wu P, Balkunde R, Cunniff P, Jackson D. 2022.. An RNA exosome subunit mediates cell-to-cell trafficking of a homeobox mRNA via plasmodesmata. . Science 375::17782
    [Crossref] [Google Scholar]
  74. 74.
    Knoblauch M, Peters WS, Bell K, Ross-Elliott TJ, Oparka KJ. 2018.. Sieve-element differentiation and phloem sap contamination. . Curr. Opin. Plant Biol. 43::4349
    [Crossref] [Google Scholar]
  75. 75.
    Knox K, Wang P, Kriechbaumer V, Tilsner J, Frigerio L, et al. 2015.. Putting the squeeze on plasmodesmata: a role for reticulons in primary plasmodesmata formation. . Plant Physiol. 168::156372
    [Crossref] [Google Scholar]
  76. 76.
    Kondhare KR, Patil NS, Banerjee AK. 2021.. A historical overview of long-distance signalling in plants. . J. Exp. Bot. 72::421836
    [Crossref] [Google Scholar]
  77. 77.
    Kong D, Karve R, Willet A, Chen MK, Oden J, Shpak ED. 2012.. Regulation of plasmodesmatal permeability and stomatal patterning by the glycosyltransferase-like protein KOBITO1. . Plant Physiol. 159::15668
    [Crossref] [Google Scholar]
  78. 78.
    Kraner ME, Muller C, Sonnewald U. 2017.. Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves. . Plant J. 92::696709
    [Crossref] [Google Scholar]
  79. 78a.
    Kumari P, Ballone P, Paniagua C, Abou-Saleh RH, Benitez-Alfonso Y. 2024.. Cellulose–callose hydrogels: computational exploration of their nanostructure and mechanical properties. . Biomacromolecules 25::19892006
    [Crossref] [Google Scholar]
  80. 79.
    Laub MT. 2016.. Keeping signals straight: how cells process information and make decisions. . PLOS Biol. 14::e1002519
    [Crossref] [Google Scholar]
  81. 80.
    Lee JY, Wang X, Cui W, Sager R, Modla S, et al. 2011.. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. . Plant Cell 23::335373
    [Crossref] [Google Scholar]
  82. 81.
    Leijon F, Melzer M, Zhou Q, Srivastava V, Bulone V. 2018.. Proteomic analysis of plasmodesmata from populus cell suspension cultures in relation with callose biosynthesis. . Front. Plant Sci. 9::1681
    [Crossref] [Google Scholar]
  83. 82.
    Levy A, Zheng JY, Lazarowitz SG. 2015.. Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement. . Curr. Biol. 25::201825
    [Crossref] [Google Scholar]
  84. 83.
    Li M, Wang MX, Lin QY, Wang MY, Niu XF, et al. 2022.. Symplastic communication in the root cap directs auxin distribution to modulate root development. . J. Integr. Plant Biol. 64::85970
    [Crossref] [Google Scholar]
  85. 84.
    Li ZP, Paterlini A, Glavier M, Bayer EM. 2021.. Intercellular trafficking via plasmodesmata: molecular layers of complexity. . Cell Mol. Life Sci. 78::799816
    [Crossref] [Google Scholar]
  86. 85.
    Lim GH, Shine MB, de Lorenzo L, Yu K, Cui W, et al. 2016.. Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. . Cell Host Microbe 19::54149
    [Crossref] [Google Scholar]
  87. 86.
    Linh NM, Scarpella E. 2022.. Leaf vein patterning is regulated by the aperture of plasmodesmata intercellular channels. . PLOS Biol. 20::e3001781 86. Showed that vein patterning relies on auxin movement through highly permeable plasmodesmata in forming veins.
    [Crossref] [Google Scholar]
  88. 87.
    Liu J, Liu Y, Wang S, Cui Y, Yan D. 2022.. Heat stress reduces root meristem size via induction of plasmodesmal callose accumulation inhibiting phloem unloading in Arabidopsis. . Int. J. Mol. Sci. 23::2063
    [Crossref] [Google Scholar]
  89. 88.
    Liu J, Zhang L, Yan D. 2021.. Plasmodesmata-involved battle against pathogens and potential strategies for strengthening hosts. . Front. Plant Sci. 12::644870
    [Crossref] [Google Scholar]
  90. 89.
    Liu N, Shen G, Xu Y, Liu H, Zhang J, et al. 2020.. Extensive inter-plant protein transfer between Cuscuta parasites and their host plants. . Mol. Plant 13::57385
    [Crossref] [Google Scholar]
  91. 90.
    Liu N-J, Zhang T, Liu Z-H, Chen X, Guo H-S, et al. 2020.. Phytosphinganine affects plasmodesmata permeability via facilitating PDLP5-stimulated callose accumulation in Arabidopsis. . Mol. Plant 13::12843
    [Crossref] [Google Scholar]
  92. 91.
    Liu Y, Xu M, Liang N, Zheng Y, Yu Q, Wu S. 2017.. Symplastic communication spatially directs local auxin biosynthesis to maintain root stem cell niche in Arabidopsis. . PNAS 114::400510
    [Crossref] [Google Scholar]
  93. 92.
    Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, et al. 2001.. A molecular link between stem cell regulation and floral patterning in Arabidopsis. . Cell 105::793803
    [Crossref] [Google Scholar]
  94. 93.
    Lu K-J, Huang N-C, Liu Y-S, Lu C-A, Yu T-S. 2012.. Long-distance movement of Arabidopsis FLOWERING LOCUS T RNA participates in systemic floral regulation. . RNA Biol. 9::65362
    [Crossref] [Google Scholar]
  95. 94.
    Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, et al. 1995.. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. . Science 270::198083
    [Crossref] [Google Scholar]
  96. 95.
    Luna GR, Li J, Wang X, Liao L, Lee JY. 2023.. Targeting of plasmodesmal proteins requires unconventional signals. . Plant Cell 35::303552
    [Crossref] [Google Scholar]
  97. 96.
    Luo K-R, Huang N-C, Chang Y-H, Jan Y-W, Yu T-S. 2024.. Arabidopsis cyclophilins direct intracellular transport of mobile mRNA via organelle hitchhiking. . Nat. Plants 10::16171
    [Crossref] [Google Scholar]
  98. 97.
    Mathieu J, Michel-Hissier P, Boucherit V, Huynh JR. 2022.. The deubiquitinase USP8 targets ESCRT-III to promote incomplete cell division. . Science 376::81823
    [Crossref] [Google Scholar]
  99. 98.
    Maule AJ, Gaudioso-Pedraza R, Benitez-Alfonso Y. 2013.. Callose deposition and symplastic connectivity are regulated prior to lateral root emergence. . Commun. Integr. Biol. 6::e26531
    [Crossref] [Google Scholar]
  100. 99.
    Maurya JP, Bhalerao RP. 2017.. Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective. . Ann. Bot. 120::35160
    [Crossref] [Google Scholar]
  101. 100.
    Mehra P, Pandey BK, Melebari D, Banda J, Leftley N, et al. 2022.. Hydraulic flux-responsive hormone redistribution determines root branching. . Science 378::76268 100. Showed that lateral root development is controlled by auxin movement via plasmodesmata in response to soil–water conditions.
    [Crossref] [Google Scholar]
  102. 101.
    Mellor NL, Voß U, Janes G, Bennett MJ, Wells DM, Band LR. 2020.. Auxin fluxes through plasmodesmata modify root-tip auxin distribution. . Development 147::dev181669
    [Crossref] [Google Scholar]
  103. 102.
    Miyashima S, Roszak P, Sevilem I, Toyokura K, Blob B, et al. 2019.. Mobile PEAR transcription factors integrate positional cues to prime cambial growth. . Nature 565::49094
    [Crossref] [Google Scholar]
  104. 103.
    Nakajima K, Sena G, Nawy T, Benfey PN. 2001.. Intercellular movement of the putative transcription factor SHR in root patterning. . Nature 413::30711
    [Crossref] [Google Scholar]
  105. 104.
    Nicolas M, Torres-Perez R, Wahl V, Cruz-Oro E, Rodriguez-Buey ML, et al. 2022.. Spatial control of potato tuberization by the TCP transcription factor BRANCHED1b. . Nat. Plants 8::28194
    [Crossref] [Google Scholar]
  106. 105.
    Nicolas WJ, Grison MS, Trepout S, Gaston A, Fouche M, et al. 2017.. Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves. . Nat. Plants 3::17082
    [Crossref] [Google Scholar]
  107. 106.
    Okawa R, Hayashi Y, Yamashita Y, Matsubayashi Y, Ogawa-Ohnishi M. 2023.. Arabinogalactan protein polysaccharide chains are required for normal biogenesis of plasmodesmata. . Plant J. 113::493503
    [Crossref] [Google Scholar]
  108. 107.
    O'Lexy R, Kasai K, Clark N, Fujiwara T, Sozzani R, Gallagher KL. 2018.. Exposure to heavy metal stress triggers changes in plasmodesmatal permeability via deposition and breakdown of callose. . J. Exp. Bot. 69::371528
    [Crossref] [Google Scholar]
  109. 108.
    Orman-Ligeza B, Morris EC, Parizot B, Lavigne T, Babe A, et al. 2018.. The xerobranching response represses lateral root formation when roots are not in contact with water. . Curr. Biol. 28::316573.e5
    [Crossref] [Google Scholar]
  110. 109.
    Ormenese S, Bernier G, Périlleux C. 2006.. Cytokinin application to the shoot apical meristem of Sinapis alba enhances secondary plasmodesmata formation. . Planta 224::148184
    [Crossref] [Google Scholar]
  111. 110.
    Ostendorp A, Pahlow S, Krussel L, Hanhart P, Garbe MY, et al. 2017.. Functional analysis of Brassica napus phloem protein and ribonucleoprotein complexes. . New Phytol. 214::118897
    [Crossref] [Google Scholar]
  112. 111.
    Ostermeyer GP, Jensen KH, Franzen AR, Peters WS, Knoblauch M. 2022.. Diversity of funnel plasmodesmata in angiosperms: the impact of geometry on plasmodesmal resistance. . Plant J. 110::70719
    [Crossref] [Google Scholar]
  113. 112.
    Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M. 2019.. Quantitative analysis of plant ER architecture and dynamics. . Nat. Commun. 10::984
    [Crossref] [Google Scholar]
  114. 113.
    Park K, Knoblauch J, Oparka K, Jensen KH. 2019.. Controlling intercellular flow through mechanosensitive plasmodesmata nanopores. . Nat. Commun. 10::3564 113. Proposed a new model for the regulation of intercellular flow by changes in desmotubule positioning.
    [Crossref] [Google Scholar]
  115. 114.
    Park S-H, Li F, Renaud J, Shen W, Li Y, et al. 2017.. NbEXPA1, an α-expansin, is plasmodesmata-specific and a novel host factor for potyviral infection. . Plant J. 92::84661
    [Crossref] [Google Scholar]
  116. 115.
    Paterlini A, Sechet J, Immel F, Grison MS, Pilard S, et al. 2022.. Enzymatic fingerprinting reveals specific xyloglucan and pectin signatures in the cell wall purified with primary plasmodesmata. . Front. Plant Sci. 13::1020506
    [Crossref] [Google Scholar]
  117. 116.
    Peters WS, Jensen KH, Stone HA, Knoblauch M. 2021.. Plasmodesmata and the problems with size: interpreting the confusion. . J. Plant Physiol. 257::153341
    [Crossref] [Google Scholar]
  118. 117.
    Petit JD, Li ZP, Nicolas WJ, Grison MS, Bayer EM. 2020.. Dare to change, the dynamics behind plasmodesmata-mediated cell-to-cell communication. . Curr. Opin. Plant Biol. 53::8089
    [Crossref] [Google Scholar]
  119. 118.
    Ramirez-Prado JS, Abulfaraj AA, Rayapuram N, Benhamed M, Hirt H. 2018.. Plant immunity: from signaling to epigenetic control of defense. . Trends Plant Sci. 23::83344
    [Crossref] [Google Scholar]
  120. 119.
    Rinne PL, Kaikuranta PM, van der Schoot C. 2001.. The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. . Plant J. 26::24964
    [Crossref] [Google Scholar]
  121. 120.
    Rinne PL, Paul LK, Vahala J, Kangasjarvi J, van der Schoot C. 2016.. Axillary buds are dwarfed shoots that tightly regulate GA pathway and GA-inducible 1,3-β-glucanase genes during branching in hybrid aspen. . J. Exp. Bot. 67::597591
    [Crossref] [Google Scholar]
  122. 121.
    Rinne PLH, Paul LK, van der Schoot C. 2018.. Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus. . BMC Plant Biol. 18::220
    [Crossref] [Google Scholar]
  123. 122.
    Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, et al. 2017.. Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. . eLife 6::e24125
    [Crossref] [Google Scholar]
  124. 123.
    Sager R, Wang X, Hill K, Yoo BC, Caplan J, et al. 2020.. Auxin-dependent control of a plasmodesmal regulator creates a negative feedback loop modulating lateral root emergence. . Nat. Commun. 11::364
    [Crossref] [Google Scholar]
  125. 124.
    Sagi G, Katz A, Guenoune-Gelbart D, Epel BL. 2005.. Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the Golgi apparatus. . Plant Cell 17::1788800
    [Crossref] [Google Scholar]
  126. 125.
    Samuels AL, Giddings TH Jr., Staehelin LA. 1995.. Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. . J. Cell Biol. 130::134557
    [Crossref] [Google Scholar]
  127. 126.
    Sankoh AF, Burch-Smith TM. 2021.. Plasmodesmata and hormones: pathways for plant development. . Am. J. Bot. 108::158083
    [Crossref] [Google Scholar]
  128. 127.
    Santuari L, Sanchez-Perez GF, Luijten M, Rutjens B, Terpstra I, et al. 2016.. The PLETHORA gene regulatory network guides growth and cell differentiation in Arabidopsis roots. . Plant Cell 28::293751
    [Crossref] [Google Scholar]
  129. 128.
    Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T. 2000.. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. . Cell 100::63544
    [Crossref] [Google Scholar]
  130. 129.
    Schreier TB, Müller KH, Eicke S, Faulkner C, Zeeman SC, Hibberd JM. 2024.. Plasmodesmal connectivity in C4Gynandropsis gynandra is induced by light and dependent on photosynthesis. . New Phytol. 241::298313 129. Determined that plasmodesmata frequency in the mesophyll–bundle sheath interface is induced by light and C4 plants.
    [Crossref] [Google Scholar]
  131. 130.
    Segui-Simarro JM, Austin JR 2nd, White EA, Staehelin LA. 2004.. Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. . Plant Cell 16::83656
    [Crossref] [Google Scholar]
  132. 131.
    Simpson C, Thomas C, Findlay K, Bayer E, Maule AJ. 2009.. An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. . Plant Cell 21::58194
    [Crossref] [Google Scholar]
  133. 132.
    Singh A, Lim GH, Kachroo P. 2017.. Transport of chemical signals in systemic acquired resistance. . J. Integr. Plant Biol. 59::33644
    [Crossref] [Google Scholar]
  134. 133.
    Singh RK, Miskolczi P, Maurya JP, Bhalerao RP. 2019.. A tree ortholog of SHORT VEGETATIVE PHASE floral repressor mediates photoperiodic control of bud dormancy. . Curr. Biol. 29::12833.e2
    [Crossref] [Google Scholar]
  135. 134.
    Smertenko A, Assaad F, Baluska F, Bezanilla M, Buschmann H, et al. 2017.. Plant cytokinesis: terminology for structures and processes. . Trends Cell Biol. 27::88594
    [Crossref] [Google Scholar]
  136. 135.
    Tee EE, Johnston MG, Papp D, Faulkner C. 2023.. A PDLP-NHL3 complex integrates plasmodesmal immune signaling cascades. . PNAS 120::e2216397120 135. Discovered that the PDLP-NHL3 complex is a key node for integrating multiple immunity signals and regulating plasmodesmata.
    [Crossref] [Google Scholar]
  137. 136.
    Tena G. 2021.. PTI and ETI are one. . Nat. Plants 7::1527
    [Crossref] [Google Scholar]
  138. 137.
    Tilsner J, Nicolas W, Rosado A, Bayer EM. 2016.. Staying tight: plasmodesmal membrane contact sites and the control of cell-to-cell connectivity in plants. . Annu. Rev. Plant Biol. 67::33764
    [Crossref] [Google Scholar]
  139. 138.
    Tomczynska I, Stumpe M, Doan TG, Mauch F. 2020.. A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by physical interaction with plasmodesmata-localised callose synthases. . New Phytol. 227::146778
    [Crossref] [Google Scholar]
  140. 139.
    Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, et al. 2018.. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. . Science 360::21215
    [Crossref] [Google Scholar]
  141. 140.
    Vaten A, Dettmer J, Wu S, Stierhof YD, Miyashima S, et al. 2011.. Callose biosynthesis regulates symplastic trafficking during root development. . Dev. Cell 21::114455
    [Crossref] [Google Scholar]
  142. 141.
    Veerabagu M, van der Schoot C, Turečková V, Tarkowská D, Strnad M, Rinne PLH. 2023.. Light on perenniality: Para-dormancy is based on ABA-GA antagonism and endo-dormancy on the shutdown of GA biosynthesis. . Plant Cell Environ. 46::1785804
    [Crossref] [Google Scholar]
  143. 142.
    Voxeur A, Fry SC. 2014.. Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II. . Plant J. 79::13949
    [Crossref] [Google Scholar]
  144. 143.
    Wang C, Lyu Y, Zhang Q, Guo H, Chen D, Chen X. 2023.. Disruption of BG14 results in enhanced callose deposition in developing seeds and decreases seed longevity and seed dormancy in Arabidopsis. . Plant J. 113::108094
    [Crossref] [Google Scholar]
  145. 144.
    Wang Y, Perez-Sancho J, Platre MP, Callebaut B, Smokvarska M, et al. 2023.. Plasmodesmata mediate cell-to-cell transport of brassinosteroid hormones. . Nat. Chem. Biol. 19::133141 144. Showed that brassinosteroid precursors move short distances cell to cell through plasmodesmata and fine-tune plasmodesmata permeability.
    [Crossref] [Google Scholar]
  146. 145.
    Wu J, Sun W, Sun C, Xu C, Li S, et al. 2023.. Cold stress induces malformed tomato fruits by breaking the feedback loops of stem cell regulation in floral meristem. . New Phytol. 237::226883
    [Crossref] [Google Scholar]
  147. 146.
    Xu B, Cheval C, Laohavisit A, Hocking B, Chiasson D, et al. 2017.. A calmodulin-like protein regulates plasmodesmal closure during bacterial immune responses. . New Phytol. 215::7784
    [Crossref] [Google Scholar]
  148. 147.
    Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PG, et al. 2011.. Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. . Science 333::114144
    [Crossref] [Google Scholar]
  149. 148.
    Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, Reddy GV. 2011.. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. . Genes Dev. 25::202530
    [Crossref] [Google Scholar]
  150. 149.
    Yan D, Yadav SR, Paterlini A, Nicolas WJ, Petit JD, et al. 2019.. Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem unloading. . Nat. Plants 5::60415
    [Crossref] [Google Scholar]
  151. 150.
    Yang L, Perrera V, Saplaoura E, Apelt F, Bahin M, et al. 2019.. m5C Methylation guides systemic transport of messenger RNA over graft junctions in plants. . Curr. Biol. 29::246576.e5
    [Crossref] [Google Scholar]
  152. 151.
    Yoo S-C, Chen C, Rojas M, Daimon Y, Ham B-K, et al. 2013.. Phloem long-distance delivery of FLOWERING LOCUS T (FT) to the apex. . Plant J. 75::45668
    [Crossref] [Google Scholar]
  153. 152.
    Zarebanadkouki M, Trtik P, Hayat F, Carminati A, Kaestner A. 2019.. Root water uptake and its pathways across the root: quantification at the cellular scale. . Sci. Rep. 9::12979
    [Crossref] [Google Scholar]
  154. 153.
    Zavaliev R, Levy A, Gera A, Epel BL. 2013.. Subcellular dynamics and role of Arabidopsis β-1,3-glucanases in cell-to-cell movement of tobamoviruses. . Mol. Plant Microbe Interact. 26::101630
    [Crossref] [Google Scholar]
  155. 154.
    Zhang Y, Wang S, Wang L, Chang X, Fan Y, et al. 2022.. Sphingolipids at plasmodesmata: structural components and functional modulators. . Int. J. Mol. Sci. 23::5677
    [Crossref] [Google Scholar]
  156. 155.
    Zhu T, O'Quinn RL, Lucas WJ, Rost TL. 1998.. Directional cell-to-cell communication in the Arabidopsis root apical meristem II. Dynamics of plasmodesmatal formation. . Protoplasma 204::8493
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070623-093110
Loading
/content/journals/10.1146/annurev-arplant-070623-093110
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error