1932

Abstract

C perennial bioenergy grasses are an economically and ecologically important group whose responses to climate change will be important to the future bioeconomy. These grasses are highly productive and frequently possess large geographic ranges and broad environmental tolerances, which may contribute to the evolution of ecotypes that differ in physiological acclimation capacity and the evolution of distinct functional strategies. C perennial bioenergy grasses are predicted to thrive under climate change—C photosynthesis likely evolved to enhance photosynthetic efficiency under stressful conditions of low [CO], high temperature, and drought—although few studies have examined how these species will respond to combined stresses or to extremes of temperature and precipitation. Important targets for C perennial bioenergy production in a changing world, such as sustainability and resilience, can benefit from combining knowledge of C physiology with recent advances in crop improvement, especially genomic selection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070623-093952
2024-07-22
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070623-093952.html?itemId=/content/journals/10.1146/annurev-arplant-070623-093952&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adam NR, Owensby CE, Ham JM. 2000.. The effect of CO2 enrichment on leaf photosynthetic rates and instantaneous water use efficiency of Andropogon gerardii in the tallgrass prairie. . Photosynth. Res. 65::12129
    [Crossref] [Google Scholar]
  2. 2.
    Agrawal AA, Conner JK, Rasmann S. 2010.. Tradeoffs and negative correlations in evolutionary ecology. . In Evolution Since Darwin: The First 150 Years, ed. MA Bell, DJ Futuyma, WF Eanes, JS Levinton , pp. 24368. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  3. 3.
    Aidoo MK, Bdolach E, Fait A, Lazarovitch N, Rachmilevitch S. 2016.. Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism. . Plant Physiol. Biochem. 106::7381
    [Crossref] [Google Scholar]
  4. 4.
    Ainsworth EA, Long SP. 2005.. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. . New Phytol. 165::35172
    [Crossref] [Google Scholar]
  5. 5.
    Ainsworth EA, Rogers A. 2007.. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. . Plant Cell Environ. 30::25870
    [Crossref] [Google Scholar]
  6. 6.
    Anderegg WRL, Plavcová L, Anderegg LDL, Hacke UG, Berry JA, Field CB. 2013.. Drought's legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. . Glob. Change Biol. 19::118896
    [Crossref] [Google Scholar]
  7. 7.
    Anderson JT, Willis JH, Mitchell-Olds T. 2011.. Evolutionary genetics of plant adaptation. . Trends Genet. 27::25866
    [Crossref] [Google Scholar]
  8. 8.
    Anderson-Teixeira KJ, Masters MD, Black CK, Zeri M, Hussain MZ, et al. 2013.. Altered belowground carbon cycling following land-use change to perennial bioenergy crops. . Ecosystems 16::50820
    [Crossref] [Google Scholar]
  9. 9.
    Araus JL, Cairns JE. 2014.. Field high-throughput phenotyping: the new crop breeding frontier. . Trends Plant Sci. 19::5261
    [Crossref] [Google Scholar]
  10. 10.
    Aspinwall MJ, Chieppa J, Gray E, Golden-Ebanks M, Davidson L. 2022.. Warming impacts on photosynthetic processes in dominant plant species in a subtropical forest. . Physiol. Plant. 174::e13654
    [Crossref] [Google Scholar]
  11. 11.
    Aspinwall MJ, Drake JE, Campany C, Vårhammar A, Ghannoum O, et al. 2016.. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis. . New Phytol. 212::35467
    [Crossref] [Google Scholar]
  12. 12.
    Aspinwall MJ, Fay PA, Hawkes CV, Lowry DB, Khasanova A, et al. 2017.. Intraspecific variation in precipitation responses of a widespread C4 grass depends on site water limitation. . J. Plant Ecol. 10:(2):31021
    [Google Scholar]
  13. 13.
    Aspinwall MJ, Lowry DB, Taylor SH, Juenger TE, Hawkes CV, et al. 2013.. Genotypic variation in traits linked to climate and aboveground productivity in a widespread C4 grass: evidence for a functional trait syndrome. . New Phytol. 199::96680
    [Crossref] [Google Scholar]
  14. 14.
    Avolio ML, Hoffman AM, Smith MD. 2018.. Linking gene regulation, physiology, and plant biomass allocation in Andropogon gerardii in response to drought. . Plant Ecol. 219::115
    [Crossref] [Google Scholar]
  15. 15.
    Barney JN, Mann JJ, Kyser GB, Blumwald E, Van Deynze A, DiTomaso JM. 2009.. Tolerance of switchgrass to extreme soil moisture stress: ecological implications. . Plant Sci. 177::72432
    [Crossref] [Google Scholar]
  16. 16.
    Bartlett MK, Scoffoni C, Sack L. 2012.. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. . Ecol. Lett. 15::393405
    [Crossref] [Google Scholar]
  17. 17.
    Baruch Z. 1994.. Responses to drought and flooding in tropical forage grasses. . Plant Soil 164::8796
    [Crossref] [Google Scholar]
  18. 18.
    Beckett HAA, Neeman T, Fuenzalida TI, Bryant C, Latorre SC, et al. 2023.. Ghosts of dry seasons past: Legacy of severe drought enhances mangrove salinity tolerance through coordinated cellular osmotic and elastic adjustments. . Plant Cell Environ. 46::203145
    [Crossref] [Google Scholar]
  19. 19.
    Beguería S, Vicente-Serrano SM, Reig F, Latorre B. 2014.. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. . Int. J. Climatol. 34::300123
    [Crossref] [Google Scholar]
  20. 20.
    Beierkuhnlein C, Thiel D, Jentsch A, Willner E, Kreyling J. 2011.. Ecotypes of European grass species respond differently to warming and extreme drought. . J. Ecol. 99::70313
    [Crossref] [Google Scholar]
  21. 21.
    Benson EJ, Hartnett DC, Mann KH. 2004.. Belowground bud banks and meristem limitation in tallgrass prairie plant populations. . Am. J. Bot. 91::41621
    [Crossref] [Google Scholar]
  22. 22.
    Berry J, Farquhar G. 1978.. The CO2 concentration function of C4 photosynthesis: a biochemical model. . In Proceedings of the Fourth International Congress on Photosynthesis, ed. DO Hall, J Coombs, TW Goodwin , pp. 11931. London:: Biochem. Soc.
    [Google Scholar]
  23. 23.
    Billings WD, Godfrey PJ, Chabot BF, Bourque DP. 1971.. Metabolic acclimation to temperature in arctic and alpine ecotypes of Oxyria digyna. . Arctic Alpine Res. 3::27789
    [Google Scholar]
  24. 24.
    Bilska-Kos A, Panek P, Szulc-Głaz A, Ochodzki P, Cisło A, Zebrowski J. 2018.. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.). . J. Plant Physiol. 228::17888
    [Crossref] [Google Scholar]
  25. 25.
    Blonder BW, Aparecido LMT, Hultine KR, Lombardozzi D, Michaletz ST, et al. 2023.. Plant water use theory should incorporate hypotheses about extreme environments, population ecology, and community ecology. . New Phytol. 238::227183
    [Crossref] [Google Scholar]
  26. 26.
    Bloom AJ, Chapin FS III, Mooney HA. 1985.. Resource limitation in plants—an economic analogy. . Annu. Rev. Ecol. Syst. 16::36392
    [Crossref] [Google Scholar]
  27. 27.
    Boe A, Beck DL. 2008.. Yield components of biomass in switchgrass. . Crop Sci. 48::130611
    [Crossref] [Google Scholar]
  28. 28.
    Bolstad PV, Reich P, Lee T. 2003.. Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. . Tree Physiol. 23::96976
    [Crossref] [Google Scholar]
  29. 29.
    Boyd RA, Gandin A, Cousins AB. 2015.. Temperature responses of C4 photosynthesis: biochemical analysis of Rubisco, phosphoenolpyruvate carboxylase, and carbonic anhydrase in Setaria viridis. . Plant Physiol. 169::185061
    [Google Scholar]
  30. 30.
    Bruce TJA, Matthes MC, Napier JA, Pickett JA. 2007.. Stressful “memories” of plants: evidence and possible mechanisms. . Plant Sci. 173::6038
    [Crossref] [Google Scholar]
  31. 31.
    Burner DM, Hale AL, Viator RP, Belesky DP, Houx JH, et al. 2017.. Ratoon cold tolerance of Pennisetum, Erianthus, and Saccharum bioenergy feedstocks. . Ind. Crops Products 109::32734
    [Crossref] [Google Scholar]
  32. 32.
    Capblancq T, Fitzpatrick MC, Bay RA, Exposito-Alonso M, Keller SR. 2020.. Genomic prediction of (mal)adaptation across current and future climatic landscapes. . Annu. Rev. Ecol. Evol. Syst. 51::24569
    [Crossref] [Google Scholar]
  33. 33.
    Cardoso JA, Pineda M, Jiménez JdlC, Vergara MF, Rao IM. 2015.. Contrasting strategies to cope with drought conditions by two tropical forage C4 grasses. . AoB Plants 7::plv107
    [Crossref] [Google Scholar]
  34. 34.
    Carroll CJW, Slette IJ, Griffin-Nolan RJ, Baur LE, Hoffman AM, et al. 2021.. Is a drought a drought in grasslands? Productivity responses to different types of drought. . Oecologia 197::101726
    [Crossref] [Google Scholar]
  35. 35.
    Casler MD. 2012.. Switchgrass breeding, genetics, and genomics. . In Switchgrass: A Valuable Biomass Crop for Energy, ed. A Monti , pp. 2953. London:: Springer
    [Google Scholar]
  36. 36.
    Casler MD. 2020.. Selection for flowering time as a mechanism to increase biomass yield of upland switchgrass. . BioEnergy Res. 13::1008
    [Crossref] [Google Scholar]
  37. 37.
    Casler MD. 2021.. Biomass yield evaluation for switchgrass breeding: seeded swards versus transplanted plots yield different results. . BioEnergy Res. 14::1093105
    [Crossref] [Google Scholar]
  38. 38.
    Casler MD, Ramstein GP. 2018.. Breeding for biomass yield in switchgrass using surrogate measures of yield. . BioEnergy Res. 11::112
    [Crossref] [Google Scholar]
  39. 39.
    Cerqueira G, Santos M, Marchiori P, Silveira N, Machado E, Ribeiro R. 2019.. Leaf nitrogen supply improves sugarcane photosynthesis under low temperature. . Photosynthetica 57::1826
    [Crossref] [Google Scholar]
  40. 40.
    Chaves MM, Maroco JP, Pereira JS. 2003.. Understanding plant responses to drought—from genes to the whole plant. . Funct. Plant Biol. 30::23964
    [Crossref] [Google Scholar]
  41. 41.
    Chen W, Wu Y, Fritschi FB, Juenger TE. 2021.. The genetic basis of the root economics spectrum in a perennial grass. . PNAS 118::e2107541118
    [Crossref] [Google Scholar]
  42. 42.
    Chen ZJ. 2010.. Molecular mechanisms of polyploidy and hybrid vigor. . Trends Plant Sci. 15::5771
    [Crossref] [Google Scholar]
  43. 43.
    Christian JI, Basara JB, Hunt ED, Otkin JA, Furtado JC, et al. 2021.. Global distribution, trends, and drivers of flash drought occurrence. . Nat. Commun. 12::6330
    [Crossref] [Google Scholar]
  44. 44.
    Clark LV, Jin X, Petersen KK, Anzoua KG, Bagmet L, et al. 2019.. Population structure of Miscanthus sacchariflorus reveals two major polyploidization events, tetraploid-mediated unidirectional introgression from diploid M. sinensis, and diversity centred around the Yellow Sea. . Ann. Bot. 124::73148
    [Crossref] [Google Scholar]
  45. 45.
    Clifton-Brown J, Harfouche A, Casler MD, Jones HD, Macalpine WJ, et al. 2019.. Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. . GCB Bioenergy 11::11851
    [Crossref] [Google Scholar]
  46. 46.
    Collison RF, Raven EC, Pignon CP, Long SP. 2020.. Light, not age, underlies the maladaptation of maize and Miscanthus photosynthesis to self-shading. . Front. Plant Sci. 11::783
    [Crossref] [Google Scholar]
  47. 47.
    Connor EW, Hawkes CV. 2018.. Effects of extreme changes in precipitation on the physiology of C4 grasses. . Oecologia 188::35565
    [Crossref] [Google Scholar]
  48. 48.
    Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, et al. 2017.. Genomic selection in plant breeding: methods, models, and perspectives. . Trends Plant Sci. 22::96175
    [Crossref] [Google Scholar]
  49. 49.
    Davey CL, Robson P, Hawkins S, Farrar K, Clifton-Brown JC, et al. 2017.. Genetic relationships between spring emergence, canopy phenology, and biomass yield increase the accuracy of genomic prediction in Miscanthus. . J. Exp. Bot. 68::5093102
    [Crossref] [Google Scholar]
  50. 50.
    de Faria AP, Marabesi MA, Gaspar M, França MGC. 2018.. The increase of current atmospheric CO2 and temperature can benefit leaf gas exchanges, carbohydrate content and growth in C4 grass invaders of the Cerrado biome. . Plant Physiol. Biochem. 127::60816
    [Crossref] [Google Scholar]
  51. 51.
    De Silva ALC, Senarathna HAKNN, De Costa WAJM. 2021.. Genotypic variation of the interactive effects of elevated temperature and CO2 on leaf gas exchange and early growth of sugarcane. . Physiol. Plant. 173::227690
    [Crossref] [Google Scholar]
  52. 52.
    De Souza AP, Gaspar M, Da Silva EA, Ulian EC, Waclawovsky AJ, et al. 2008.. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. . Plant Cell Environ. 31::111627
    [Crossref] [Google Scholar]
  53. 53.
    Deng Q, Aras S, Yu C-L, Dzantor EK, Fay PA, et al. 2017.. Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field. . Agric. Ecosyst. Environ. 248::2937
    [Crossref] [Google Scholar]
  54. 54.
    Dinh TH, Takaragawa H, Watanabe K, Nakabaru M, Kawamitsu Y. 2019.. Leaf photosynthesis response to change of soil moisture content in sugarcane. . Sugar Tech. 21::94958
    [Crossref] [Google Scholar]
  55. 55.
    Dohleman FG, Heaton EA, Arundale RA, Long SP. 2012.. Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in Miscanthus × giganteus and Panicum virgatum across three growing seasons. . GCB Bioenergy 4::53444
    [Crossref] [Google Scholar]
  56. 56.
    Drake JE, Aspinwall MJ, Pfautsch S, Rymer PD, Reich PB, et al. 2015.. The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species. . Glob. Change Biol. 21::45972
    [Crossref] [Google Scholar]
  57. 57.
    Du Y-C, Nose A, Wasano K. 1999.. Effects of chilling temperature on photosynthetic rates, photosynthetic enzyme activities and metabolite levels in leaves of three sugarcane species. . Plant Cell Environ. 22::31724
    [Crossref] [Google Scholar]
  58. 58.
    Duarte KE, Basso MF, de Oliveira NG, da Silva JCF, de Oliveira Garcia B, et al. 2022.. MicroRNAs expression profiles in early responses to different levels of water deficit in Setaria viridis. . Physiol. Mol. Biol. Plants 28::160724
    [Crossref] [Google Scholar]
  59. 59.
    Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, et al. 2023.. Climate change challenges, plant science solutions. . Plant Cell 35::2466
    [Crossref] [Google Scholar]
  60. 60.
    Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, Bond WJ, et al. 2010.. The origins of C4 grasslands: integrating evolutionary and ecosystem science. . Science 328::58791
    [Crossref] [Google Scholar]
  61. 61.
    Edwards EJ, Still CJ. 2008.. Climate, phylogeny and the ecological distribution of C4 grasses. . Ecol. Lett. 11::26676
    [Crossref] [Google Scholar]
  62. 62.
    Ehleringer J, Björkman O. 1977.. Quantum yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2, and O2 concentration. . Plant Physiol. 59::8690
    [Crossref] [Google Scholar]
  63. 63.
    Endres L, dos Santos CM, Silva JV, Barbosa GVdS, Silva ALJ, et al. 2019.. Inter-relationship between photosynthetic efficiency, Δ13C, antioxidant activity and sugarcane yield under drought stress in field conditions. . J. Agronomy Crop Sci. 205::43346
    [Crossref] [Google Scholar]
  64. 64.
    Fang Y, Xiong L. 2015.. General mechanisms of drought response and their application in drought resistance improvement in plants. . Cell. Mol. Life Sci. 72::67389
    [Crossref] [Google Scholar]
  65. 65.
    Fazio S, Monti A. 2011.. Life cycle assessment of different bioenergy production systems including perennial and annual crops. . Biomass Bioenergy 35::486878
    [Crossref] [Google Scholar]
  66. 66.
    Felton AJ, Smith MD. 2017.. Integrating plant ecological responses to climate extremes from individual to ecosystem levels. . Philos. Trans. R. Soc. B 372::20160142
    [Crossref] [Google Scholar]
  67. 67.
    Ferchaud F, Vitte G, Mary B. 2016.. Changes in soil carbon stocks under perennial and annual bioenergy crops. . GCB Bioenergy 8::290306
    [Crossref] [Google Scholar]
  68. 68.
    Fitzpatrick MC, Chhatre VE, Soolanayakanahally RY, Keller SR. 2021.. Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests. . Mol. Ecology Resourc. 21::274965
    [Crossref] [Google Scholar]
  69. 69.
    Fonteyne S, Muylle H, Lootens P, Kerchev P, Van den Ende W, et al. 2017.. Physiological basis of chilling tolerance and early-season growth in miscanthus. . Ann. Bot. 121::28195
    [Crossref] [Google Scholar]
  70. 70.
    Fonti P, Jansen S. 2012.. Xylem plasticity in response to climate. . New Phytol. 195::73436
    [Crossref] [Google Scholar]
  71. 71.
    Galliart M, Bello N, Knapp M, Poland J, St Amand P, et al. 2019.. Local adaptation, genetic divergence, and experimental selection in a foundation grass across the US Great Plains’ climate gradient. . Glob. Change Biol. 25::85068
    [Crossref] [Google Scholar]
  72. 72.
    Ghalambor CK, McKay JK, Carroll SP, Reznick DN. 2007.. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. . Funct. Ecol. 21::394407
    [Crossref] [Google Scholar]
  73. 73.
    Glaz B, Morris DR, Daroub SH. 2004.. Sugarcane photosynthesis, transpiration, and stomatal conductance due to flooding and water table. . Crop Sci. 44::163341
    [Crossref] [Google Scholar]
  74. 74.
    Gong Z, Dong L, Lam S, Zhang D, Zong Y, et al. 2021.. Nutritional quality in response to elevated CO2 concentration in foxtail millet (Setaria italica). . J. Cereal Sci. 102::103318
    [Crossref] [Google Scholar]
  75. 75.
    Grabowski PP, Evans J, Daum C, Deshpande S, Barry KW, et al. 2017.. Genome-wide associations with flowering time in switchgrass using exome-capture sequencing data. . New Phytol. 213::15469
    [Crossref] [Google Scholar]
  76. 76.
    Grady KC, Laughlin DC, Ferrier SM, Kolb TE, Hart SC, et al. 2013.. Conservative leaf economic traits correlate with fast growth of genotypes of a foundation riparian species near the thermal maximum extent of its geographic range. . Funct. Ecol. 27::42838
    [Crossref] [Google Scholar]
  77. 77.
    Grime JP. 1977.. Evidence for existence of 3 primary strategies in plants and its relevance to ecological and evolutionary theory. . Am. Nat. 111::116994
    [Crossref] [Google Scholar]
  78. 78.
    Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, et al. 2020.. Plant responses to rising vapor pressure deficit. . New Phytol. 226::155066
    [Crossref] [Google Scholar]
  79. 79.
    Habermann E, Contin DR, Afonso LF, Barosela JR, de Pinho Costa KA, et al. 2022.. Future warming will change the chemical composition and leaf blade structure of tropical C3 and C4 forage species depending on soil moisture levels. . Sci. Total Environ. 821::153342
    [Crossref] [Google Scholar]
  80. 80.
    Habermann E, San Martin JAB, Contin DR, Bossan VP, Barboza A, et al. 2019.. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum. . PLOS ONE 14::e0212506
    [Crossref] [Google Scholar]
  81. 81.
    Harper JL. 1977.. Population Biology of Plants. London:: Academic
    [Google Scholar]
  82. 82.
    Hartman JC, Nippert JB, Springer CJ. 2012.. Ecotypic responses of switchgrass to altered precipitation. . Funct. Plant Biol. 39::12636
    [Crossref] [Google Scholar]
  83. 83.
    Heaton EA, Dohleman FG, Long SP. 2009.. Seasonal nitrogen dynamics of Miscanthus × giganteus and Panicum virgatum. . GCB Bioenergy 1::297307
    [Crossref] [Google Scholar]
  84. 84.
    Heckman RW, Khasanova AR, Johnson NS, Weber S, Bonnette JE, et al. 2020.. Plant biomass, not plant economics traits, determines responses of soil CO2 efflux to precipitation in the C4 grass Panicum virgatum. . J. Ecol. 108::2095106
    [Crossref] [Google Scholar]
  85. 85.
    Heckman RW, Rueda A, Bonnette JE, Aspinwall MJ, Khasanova A, et al. 2023.. Legacies of precipitation influence primary production in Panicum virgatum. . Oecologia 201::26978
    [Crossref] [Google Scholar]
  86. 86.
    Heslot N, Akdemir D, Sorrells ME, Jannink J-L. 2014.. Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. . Theor. Appl. Genet. 127::46380
    [Crossref] [Google Scholar]
  87. 87.
    Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y. 2006.. Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. . J. Exp. Bot. 57::291302
    [Crossref] [Google Scholar]
  88. 88.
    Hoover DL, Knapp AK, Smith MD. 2014.. Contrasting sensitivities of two dominant C4 grasses to heat waves and drought. . Plant Ecol. 215::72131 88. Examined the physiological responses of C4 grasses to the combined effects of drought and heat wave.
    [Crossref] [Google Scholar]
  89. 89.
    Hoover DL, Knapp AK, Smith MD. 2017.. Photosynthetic responses of a dominant C4 grass to an experimental heat wave are mediated by soil moisture. . Oecologia 183::30313
    [Crossref] [Google Scholar]
  90. 90.
    Hui D, Yu C-L, Deng Q, Dzantor EK, Zhou S, et al. 2018.. Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: a mesocosm experiment. . PLOS ONE 13::e0192555
    [Crossref] [Google Scholar]
  91. 91.
    Ings J, Mur L, Robson P, Bosch M. 2013.. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus × giganteus. . Front. Plant Sci. 4::468
    [Crossref] [Google Scholar]
  92. 92.
    IPCC (Intergov. Panel Clim. Change). 2023.. Climate Change 2023: Synthesis Report, IPCC, Geneva, Switz.:
    [Google Scholar]
  93. 93.
    Iwasa Y. 2000.. Dynamic optimization of plant growth. . Evol. Ecol. Res. 2::43755
    [Google Scholar]
  94. 94.
    Jagadish SVK, Way DA, Sharkey TD. 2021.. Plant heat stress: concepts directing future research. . Plant Cell Environ. 44::19922005
    [Crossref] [Google Scholar]
  95. 95.
    Jager HI, Baskaran LM, Brandt CC, Davis EB, Gunderson CA, Wullschleger SD. 2010.. Empirical geographic modeling of switchgrass yields in the United States. . GCB Bioenergy 2::24857
    [Crossref] [Google Scholar]
  96. 96.
    Jaiphong T, Tominaga J, Watanabe K, Nakabaru M, Takaragawa H, et al. 2016.. Effects of duration and combination of drought and flood conditions on leaf photosynthesis, growth and sugar content in sugarcane. . Plant Prod. Sci. 19::42737
    [Crossref] [Google Scholar]
  97. 97.
    Jampeetong A, Guo W-Y, Brix H. 2020.. Growth and photosynthetic acclimation to temperature in hybrid Napier grass (Pennisetum purpureum × P. americanum cv. Pakchong 1) and giant reed (Arundo donax). . Aquatic Bot. 164::103232
    [Crossref] [Google Scholar]
  98. 98.
    Jensen AB, Eller F. 2020.. Hybrid Napier grass (Pennisetum purpureum Schumach × P. americanum (L.) Leeke cv. Pakchong1) and Giant reed (Arundo donax L.) as candidate species in temperate European paludiculture: growth and gas exchange responses to suboptimal temperatures. . Aquatic Bot. 160::103165
    [Crossref] [Google Scholar]
  99. 99.
    Jensen E, Robson P, Norris J, Cookson A, Farrar K, et al. 2013.. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation. . J. Exp. Bot. 64::54152
    [Crossref] [Google Scholar]
  100. 100.
    Jensen E, Shafiei R, Ma X-F, Serba DD, Smith DP, et al. 2021.. Linkage mapping evidence for a syntenic QTL associated with flowering time in perennial C4 rhizomatous grasses Miscanthus and switchgrass. . GCB Bioenergy 13::98111
    [Crossref] [Google Scholar]
  101. 101.
    Jones MB, Finnan J, Hodkinson TR. 2015.. Morphological and physiological traits for higher biomass production in perennial rhizomatous grasses grown on marginal land. . GCB Bioenergy 7::37585
    [Crossref] [Google Scholar]
  102. 102.
    Jordan DR, Hunt CH, Cruickshank AW, Borrell AK, Henzell RG. 2012.. The relationship between the stay-green trait and grain yield in elite Sorghum hybrids grown in a range of environments. . Crop Sci. 52::115361
    [Crossref] [Google Scholar]
  103. 103.
    Kadioglu A, Terzi R. 2007.. A dehydration avoidance mechanism: leaf rolling. . Bot. Rev. 73::290302
    [Crossref] [Google Scholar]
  104. 104.
    Kakani VG, Surabhi GK, Reddy KR. 2008.. Photosynthesis and fluorescence responses of C4 plant Andropogon gerardii acclimated to temperature and carbon dioxide. . Photosynthetica 46::42030
    [Crossref] [Google Scholar]
  105. 105.
    Kannenberg SA, Novick KA, Alexander MR, Maxwell JT, Moore DJP, et al. 2019.. Linking drought legacy effects across scales: from leaves to tree rings to ecosystems. . Glob. Change Biol. 25::297892
    [Crossref] [Google Scholar]
  106. 106.
    Karp A, Shield I. 2008.. Bioenergy from plants and the sustainable yield challenge. . New Phytol. 179::1532 106. Identified three major challenges to increasing the biomass yields of perennial bioenergy crops.
    [Crossref] [Google Scholar]
  107. 107.
    Kassem II, Joshi P, Sigler V, Heckathorn S, Wang Q. 2008.. Effect of elevated CO2 and drought on soil microbial communities associated with Andropogon gerardii. . J. Integr. Plant Biol. 50::140615
    [Crossref] [Google Scholar]
  108. 108.
    Kawecki TJ, Ebert D. 2004.. Conceptual issues in local adaptation. . Ecol. Lett. 7::122541
    [Crossref] [Google Scholar]
  109. 109.
    Keeler KH. 1990.. Distribution of polyploid variation in big bluestem (Andropogon gerardii, Poaceae) across the tallgrass prairie region. . Genome 33::95100
    [Crossref] [Google Scholar]
  110. 110.
    Keeley JE, Rundel PW. 2005.. Fire and the Miocene expansion of C4 grasslands. . Ecol. Lett. 8::68390
    [Crossref] [Google Scholar]
  111. 111.
    Kikuzawa K, Onoda Y, Wright IJ, Reich PB. 2013.. Mechanisms underlying global temperature-related patterns in leaf longevity. . Glob. Ecology Biogeogr. 22::98293
    [Crossref] [Google Scholar]
  112. 112.
    Knapp AK, Avolio ML, Beier C, Carroll CJW, Collins SL, et al. 2017.. Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. . Glob. Change Biol. 23::177482
    [Crossref] [Google Scholar]
  113. 113.
    Kröel-Dulay G, Mojzes A, Szitár K, Bahn M, Batáry P, et al. 2022.. Field experiments underestimate aboveground biomass response to drought. . Nat. Ecol. Evol. 6::54045
    [Crossref] [Google Scholar]
  114. 114.
    Ku S-B, Edwards GE. 1977.. Oxygen inhibition of photosynthesis: II. Kinetic characteristics as affected by temperature. . Plant Physiol. 59::99199
    [Crossref] [Google Scholar]
  115. 115.
    Kudo G. 1996.. Intraspecific variation of leaf traits in several deciduous species in relation to length of growing season. . Ecoscience 3::48389
    [Crossref] [Google Scholar]
  116. 116.
    Lazarević B, Kontek M, Carović-Stanko K, Clifton-Brown J, Al Hassan M, et al. 2022.. Multispectral image analysis detects differences in drought responses in novel seeded Miscanthus sinensis hybrids. . GCB Bioenergy 14::121934
    [Crossref] [Google Scholar]
  117. 117.
    Leakey ADB. 2009.. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. . Proc. R. Soc. B 276::233343
    [Crossref] [Google Scholar]
  118. 118.
    Leakey ADB, Ferguson JN, Pignon CP, Wu A, Jin Z, et al. 2019.. Water use efficiency as a constraint and target for improving the resilience and productivity of C3 and C4 crops. . Annu. Rev. Plant Biol. 70::781808
    [Crossref] [Google Scholar]
  119. 119.
    Li P, Li B, Seneweera S, Zong Y, Li FY, et al. 2019.. Photosynthesis and yield response to elevated CO2, C4 plant foxtail millet behaves similarly to C3 species. . Plant Sci. 285::23947
    [Crossref] [Google Scholar]
  120. 120.
    Li S, Moller CA, Mitchell NG, Martin DG, Sacks EJ, et al. 2022.. The leaf economics spectrum of triploid and tetraploid C4 grass Miscanthus×giganteus. . Plant Cell Environ. 45::346275
    [Crossref] [Google Scholar]
  121. 121.
    Li S-L, Li Z-G, Yang L-T, Li Y-R, He Z-L. 2018.. Differential effects of cold stress on chloroplasts structures and photosynthetic characteristics in cold-sensitive and cold-tolerant cultivars of sugarcane. . Sugar Tech. 20::1120
    [Crossref] [Google Scholar]
  122. 122.
    Li X, Guo T, Mu Q, Li X, Yu J. 2018.. Genomic and environmental determinants and their interplay underlying phenotypic plasticity. . PNAS 115::667984
    [Crossref] [Google Scholar]
  123. 123.
    Liang K, Peng X, Liu F. 2022.. Physiological response of Miscanthus genotypes to salinity stress under elevated CO2. . GCB Bioenergy 14::85874
    [Crossref] [Google Scholar]
  124. 124.
    Lin Y-S, Medlyn BE, Ellsworth DS. 2012.. Temperature responses of leaf net photosynthesis: the role of component processes. . Tree Physiol. 32::21931
    [Crossref] [Google Scholar]
  125. 125.
    Liu Y, Zhang X, Tran H, Shan L, Kim J, et al. 2015.. Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters. . Biotechnol. Biofuels 8::152
    [Crossref] [Google Scholar]
  126. 126.
    Liu YY, Li J, Liu SC, Yu Q, Tong XJ, et al. 2020.. Sugarcane leaf photosynthetic light responses and their difference between varieties under high temperature stress. . Photosynthetica 58::100918
    [Crossref] [Google Scholar]
  127. 127.
    Lopes MS, Araus JL, van Heerden PDR, Foyer CH. 2011.. Enhancing drought tolerance in C4 crops. . J. Exp. Bot. 62::313553
    [Crossref] [Google Scholar]
  128. 128.
    Lorenz K, Lal R, Preston CM, Nierop KGJ. 2007.. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. . Geoderma 142::110
    [Crossref] [Google Scholar]
  129. 129.
    Lovell JT, MacQueen AH, Mamidi S, Bonnette J, Jenkins J, et al. 2021.. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. . Nature 590::43844
    [Crossref] [Google Scholar]
  130. 130.
    Lovell JT, Shakirov EV, Schwartz S, Lowry DB, Aspinwall MJ, et al. 2016.. Promises and challenges of eco-physiological genomics in the field: tests of drought responses in switchgrass. . Plant Physiol. 172::73448 130. Examined physiological and transcriptomic responses of switchgrass to drought, linking stress responses across different scales.
    [Google Scholar]
  131. 131.
    Lowry DB, Lovell JT, Zhang L, Bonnette J, Fay PA, et al. 2019.. QTL × environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. . PNAS 116::12933
    [Crossref] [Google Scholar]
  132. 132.
    Ludwig LJ, Canvin DT. 1971.. The rate of photorespiration during photosynthesis and the relationship of the substrate of light respiration to the products of photosynthesis in sunflower leaves. . Plant Physiol. 48::71219
    [Crossref] [Google Scholar]
  133. 133.
    Lundgren MR, Besnard G, Ripley BS, Lehmann CER, Chatelet DS, et al. 2015.. Photosynthetic innovation broadens the niche within a single species. . Ecol. Lett. 18::102129
    [Crossref] [Google Scholar]
  134. 134.
    Lundgren MR, Christin P-A. 2017.. Despite phylogenetic effects, C3–C4 lineages bridge the ecological gap to C4 photosynthesis. . J. Exp. Bot. 68::24154
    [Crossref] [Google Scholar]
  135. 135.
    Lundgren MR, Fleming AJ. 2020.. Cellular perspectives for improving mesophyll conductance. . Plant J. 101::84557
    [Crossref] [Google Scholar]
  136. 136.
    Mainali KP, Heckathorn SA, Wang D, Weintraub MN, Frantz JM, Hamilton EW. 2014.. Impact of a short-term heat event on C and N relations in shoots vs. roots of the stress-tolerant C4 grass, Andropogon gerardii. . J. Plant Physiol. 171::97785
    [Crossref] [Google Scholar]
  137. 137.
    Maricle BR, Adler PB. 2011.. Effects of precipitation on photosynthesis and water potential in Andropogon gerardii and Schizachyrium scoparium in a southern mixed grass prairie. . Environ. Exp. Bot. 72::22331
    [Crossref] [Google Scholar]
  138. 138.
    Maricle BR, Caudle KL, Lindsey KJ, Baer SG, Johnson LC. 2017.. Effects of extreme drought on photosynthesis and water potential of Andropogon gerardii (big bluestem) ecotypes in common gardens across Kansas. . Trans. Kansas Acad. Sci. 120::116
    [Crossref] [Google Scholar]
  139. 139.
    Martin-Benito D, Anchukaitis KJ, Evans MN, Del Río M, Beeckman H, Cañellas I. 2017.. Effects of drought on xylem anatomy and water-use efficiency of two co-occurring pine species. . Forests 8::332
    [Crossref] [Google Scholar]
  140. 140.
    Martínez-Vilalta J, Sala A, Asensio D, Galiano L, Hoch G, et al. 2016.. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. . Ecol. Monogr. 86::495516
    [Crossref] [Google Scholar]
  141. 141.
    Mason CM, Donovan LA. 2015.. Evolution of the leaf economics spectrum in herbs: evidence from environmental divergences in leaf physiology across Helianthus (Asteraceae). . Evolution 69::270520
    [Crossref] [Google Scholar]
  142. 142.
    Meyer E, Aspinwall MJ, Lowry DB, Palacio-Mejia JD, Logan TL, et al. 2014.. Integrating transcriptional, metabolomic, and physiological responses to drought stress and recovery in switchgrass (Panicum virgatum L.). . BMC Genom. 15::527
    [Crossref] [Google Scholar]
  143. 143.
    Miguez FE, Maughan M, Bollero GA, Long SP. 2012.. Modeling spatial and dynamic variation in growth, yield, and yield stability of the bioenergy crops Miscanthus × giganteus and Panicum virgatum across the conterminous United States. . GCB Bioenergy 4::50920
    [Crossref] [Google Scholar]
  144. 144.
    Morgan JA, Lecain DR, Mosier AR, Milchunas DG. 2001.. Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe. . Glob. Change Biol. 7::45166
    [Crossref] [Google Scholar]
  145. 145.
    Mu Q, Guo T, Li X, Yu J. 2022.. Phenotypic plasticity in plant height shaped by interaction between genetic loci and diurnal temperature range. . New Phytol. 233::176879 145. Described a novel approach for quantifying environmental indices to improve predictions of G×E interactions.
    [Crossref] [Google Scholar]
  146. 146.
    Mwendia SW, Yunusa IAM, Sindel BM, Whalley RDB, Bruhl JJ. 2019.. Osmotic adjustment, stomata morphology and function show contrasting responses to water stress in mesic and hydric grasses under elevated CO2 concentration. . Photosynthetica 57::12131
    [Crossref] [Google Scholar]
  147. 147.
    Mwendia SW, Yunusa IAM, Whalley RDB, Sindel BM, Kenney D, Kariuki IW. 2013.. Use of plant water relations to assess forage quality and growth for two cultivars of Napier grass (Pennisetum purpureum) subjected to different levels of soil water supply and temperature regimes. . Crop Pasture Sci. 64::100819
    [Crossref] [Google Scholar]
  148. 148.
    Naidu SL, Moose SP, AL-Shoaibi AK, Raines CA, Long SP. 2003.. Cold tolerance of C4 photosynthesis in Miscanthus × giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. . Plant Physiol. 132::168897
    [Crossref] [Google Scholar]
  149. 149.
    Napier JD, Grabowski PP, Lovell JT, Bonnette J, Mamidi S, et al. 2022.. A generalist–specialist trade-off between switchgrass cytotypes impacts climate adaptation and geographic range. . PNAS 119::e2118879119
    [Crossref] [Google Scholar]
  150. 150.
    Napier JD, Heckman RW, Juenger TE. 2023.. Gene-by-environment interactions in plants: molecular mechanisms, environmental drivers, and adaptive plasticity. . Plant Cell 35::10924
    [Crossref] [Google Scholar]
  151. 151.
    Nippert JB, Fay PA, Carlisle JD, Knapp AK, Smith MD. 2009.. Ecophysiological responses of two dominant grasses to altered temperature and precipitation regimes. . Acta Oecol. 35::4008
    [Crossref] [Google Scholar]
  152. 152.
    Niu L, Fu C, Lin H, Wolabu TW, Wu Y, et al. 2016.. Control of floral transition in the bioenergy crop switchgrass. . Plant Cell Environ. 39::215871
    [Crossref] [Google Scholar]
  153. 153.
    Niu S, Luo Y, Li D, Cao S, Xia J, et al. 2014.. Plant growth and mortality under climatic extremes: an overview. . Environ. Exp. Bot. 98::1319
    [Crossref] [Google Scholar]
  154. 154.
    Novick KA, Miniat CF, Vose JM. 2016.. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion–tension theory. . Plant Cell Environ. 39::58396
    [Crossref] [Google Scholar]
  155. 155.
    O'Keefe K, Tomeo N, Nippert JB, Springer CJ. 2013.. Population origin and genome size do not impact Panicum virgatum (switchgrass) responses to variable precipitation. . Ecosphere 4::art37
    [Crossref] [Google Scholar]
  156. 156.
    Olatoye MO, Clark LV, Wang J, Yang X, Yamada T, et al. 2019.. Evaluation of genomic selection and marker-assisted selection in Miscanthus and energycane. . Mol. Breeding 39::171 156. Compared the efficacy of marker-assisted selection and genomic selection in two bioenergy grasses.
    [Crossref] [Google Scholar]
  157. 157.
    Oliver RJ, Finch JW, Taylor G. 2009.. Second generation bioenergy crops and climate change: a review of the effects of elevated atmospheric CO2 and drought on water use and the implications for yield. . GCB Bioenergy 1::97114
    [Crossref] [Google Scholar]
  158. 158.
    Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, et al. 2017.. Physiological and structural tradeoffs underlying the leaf economics spectrum. . New Phytol. 214::144763
    [Crossref] [Google Scholar]
  159. 159.
    Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. . PNAS 112::852936
    [Crossref] [Google Scholar]
  160. 160.
    Osborne CP, Sack L. 2012.. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. . Philos. Trans. R. Soc. B 367::583600 160. Proposed that C4 photosynthesis evolved to conserve water under conditions of low [CO2] and high light and temperature.
    [Crossref] [Google Scholar]
  161. 161.
    Osborne CP, Salomaa A, Kluyver TA, Visser V, Kellogg EA, et al. 2014.. A global database of C4 photosynthesis in grasses. . New Phytol. 204::44146
    [Crossref] [Google Scholar]
  162. 162.
    Ott JP, Klimešová J, Hartnett DC. 2019.. The ecology and significance of below-ground bud banks in plants. . Ann. Bot. 123::1099118 162. Explained the importance of bud banks for plant population dynamics and responses to environmental change.
    [Crossref] [Google Scholar]
  163. 163.
    Owensby C, Ham J, Knapp A, Bremer D, Auen L. 1997.. Water vapour fluxes and their impact under elevated CO2 in a C4-tallgrass prairie. . Glob. Change Biol. 3::18995
    [Crossref] [Google Scholar]
  164. 164.
    Panchy N, Lehti-Shiu M, Shiu S-H. 2016.. Evolution of gene duplication in plants. . Plant Physiol. 171::2294316
    [Crossref] [Google Scholar]
  165. 165.
    Parajuli S, Kannan B, Karan R, Sanahuja G, Liu H, et al. 2020.. Towards oilcane: engineering hyperaccumulation of triacylglycerol into sugarcane stems. . GCB Bioenergy 12::47690
    [Crossref] [Google Scholar]
  166. 166.
    Pardo J, VanBuren R. 2021.. Evolutionary innovations driving abiotic stress tolerance in C4 grasses and cereals. . Plant Cell 33::3391401
    [Crossref] [Google Scholar]
  167. 167.
    Pau S, Edwards EJ, Still CJ. 2013.. Improving our understanding of environmental controls on the distribution of C3 and C4 grasses. . Glob. Change Biol. 19::18496
    [Crossref] [Google Scholar]
  168. 168.
    Pearcy RW, Sims DA. 1994.. Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. . In Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above- and Belowground, ed. MM Caldwell, RW Pearcy , pp. 14574. San Diego, CA:: Academic
    [Google Scholar]
  169. 169.
    Pease CM, Bull JJ. 1988.. A critique of methods for measuring life history trade-offs. . J. Evol. Biol. 1::293303
    [Crossref] [Google Scholar]
  170. 170.
    Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, et al. 2013.. New handbook for standardised measurement of plant functional traits worldwide. . Aust. J. Bot. 61::167234
    [Crossref] [Google Scholar]
  171. 171.
    Piedade MTF, Junk WJ, Long SP. 1991.. The productivity of the C4 grass Echinochloa polystachya on the Amazon floodplain. . Ecology 72::145663
    [Crossref] [Google Scholar]
  172. 172.
    Piedade MTF, Long SP, Junk WJ. 1994.. Leaf and canopy photosynthetic CO2 uptake of a stand of Echinochloa polystachya on the Central Amazon floodplain. . Oecologia 97::193201
    [Crossref] [Google Scholar]
  173. 173.
    Pignon CP, Jaiswal D, McGrath JM, Long SP. 2017.. Loss of photosynthetic efficiency in the shade. An Achilles heel for the dense modern stands of our most productive C4 crops?. J. Exp. Bot. 68::33545
    [Crossref] [Google Scholar]
  174. 174.
    Purdy SJ, Cunniff J, Maddison AL, Jones LE, Barraclough T, et al. 2015.. Seasonal carbohydrate dynamics and climatic regulation of senescence in the perennial grass, Miscanthus. . BioEnergy Res. 8::2841
    [Crossref] [Google Scholar]
  175. 175.
    Ramstein GP, Evans J, Kaeppler SM, Mitchell RB, Vogel KP, et al. 2016.. Accuracy of genomic prediction in switchgrass (Panicum virgatum L.) improved by accounting for linkage disequilibrium. . G3 6::104962
    [Crossref] [Google Scholar]
  176. 176.
    Reich PB. 2014.. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. . J. Ecol. 102::275301
    [Crossref] [Google Scholar]
  177. 177.
    Reich PB, Stefanski A, Rich RL, Sendall KM, Wei X, et al. 2021.. Assessing the relevant time frame for temperature acclimation of leaf dark respiration: a test with 10 boreal and temperate species. . Glob. Change Biol. 27::294558
    [Crossref] [Google Scholar]
  178. 178.
    Reichmann LG, Sala OE, Peters DPC. 2013.. Precipitation legacies in desert grassland primary production occur through previous-year tiller density. . Ecology 94::43543
    [Crossref] [Google Scholar]
  179. 179.
    Ricketts MP, Heckman RW, Fay PA, Matamala R, Jastrow JD, et al. 2023.. Local adaptation of switchgrass drives trait relations to yield and differential responses to climate and soil environments. . GCB Bioenergy 15::68096
    [Crossref] [Google Scholar]
  180. 180.
    Roley SS, Duncan DS, Liang D, Garoutte A, Jackson RD, et al. 2018.. Associative nitrogen fixation (ANF) in switchgrass (Panicum virgatum) across a nitrogen input gradient. . PLOS ONE 13::e0197320
    [Crossref] [Google Scholar]
  181. 181.
    Sage RF. 2004.. The evolution of C4 photosynthesis. . New Phytol. 161::34170
    [Crossref] [Google Scholar]
  182. 182.
    Sage RF, Christin P-A, Edwards EJ. 2011.. The C4 plant lineages of planet Earth. . J. Exp. Bot. 62::315569
    [Crossref] [Google Scholar]
  183. 183.
    Sage RF, de Melo Peixoto M, Friesen P, Deen B. 2015.. C4 bioenergy crops for cool climates, with special emphasis on perennial C4 grasses. . J. Exp. Bot. 66::4195212
    [Crossref] [Google Scholar]
  184. 184.
    Sage RF, Kubien DS. 2003.. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. . Photosynth. Res. 77::20925
    [Crossref] [Google Scholar]
  185. 185.
    Saha P, Sade N, Arzani A, Rubio Wilhelmi MdM, Coe KM, et al. 2016.. Effects of abiotic stress on physiological plasticity and water use of Setaria viridis (L.). . Plant Sci. 251::12838
    [Crossref] [Google Scholar]
  186. 186.
    Sarath G, Baird LM, Mitchell RB. 2014.. Senescence, dormancy and tillering in perennial C4 grasses. . Plant Sci. 217–218::14051
    [Crossref] [Google Scholar]
  187. 187.
    Sattler MC, Carvalho CR, Clarindo WR. 2016.. The polyploidy and its key role in plant breeding. . Planta 243::28196
    [Crossref] [Google Scholar]
  188. 188.
    Schönbeck LC, Schuler P, Lehmann MM, Mas E, Mekarni L, et al. 2022.. Increasing temperature and vapour pressure deficit lead to hydraulic damages in the absence of soil drought. . Plant Cell Environ. 45::327589
    [Crossref] [Google Scholar]
  189. 189.
    Scordia D, Scalici G, Clifton-Brown J, Robson P, Patanè C, Cosentino SL. 2020.. Wild Miscanthus germplasm in a drought-affected area: physiology and agronomy appraisals. . Agronomy 10::679
    [Crossref] [Google Scholar]
  190. 190.
    Silva MdA, Jifon JL, dos Santos CM, Jadoski CJ, da Silva JAG. 2013.. Photosynthetic capacity and water use efficiency in sugarcane genotypes subject to water deficit during early growth phase. . Braz. Arch. Biol. Technol. 56::73548
    [Crossref] [Google Scholar]
  191. 191.
    Slavov GT, Davey CL, Bosch M, Robson PRH, Donnison IS, Mackay IJ. 2019.. Genomic index selection provides a pragmatic framework for setting and refining multi-objective breeding targets in Miscanthus. . Ann. Bot. 124::52129
    [Crossref] [Google Scholar]
  192. 192.
    Slewinski TL. 2012.. Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production. . J. Exp. Bot. 63::464770
    [Crossref] [Google Scholar]
  193. 193.
    Slot M, Kitajima K. 2015.. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. . Oecologia 177::885900
    [Crossref] [Google Scholar]
  194. 194.
    Smith NG, Dukes JS. 2017.. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types. . Glob. Change Biol. 23::484053
    [Crossref] [Google Scholar]
  195. 195.
    Somerville C, Youngs H, Taylor C, Davis SC, Long SP. 2010.. Feedstocks for lignocellulosic biofuels. . Science 329::79092
    [Crossref] [Google Scholar]
  196. 196.
    Sonawane BV, Sharwood RE, von Caemmerer S, Whitney SM, Ghannoum O. 2017.. Short-term thermal photosynthetic responses of C4 grasses are independent of the biochemical subtype. . J. Exp. Bot. 68::558397
    [Crossref] [Google Scholar]
  197. 197.
    Sturchio MA, Chieppa J, Chapman SK, Canas G, Aspinwall MJ. 2022.. Temperature acclimation of leaf respiration differs between marsh and mangrove vegetation in a coastal wetland ecotone. . Glob. Change Biol. 28::61229
    [Crossref] [Google Scholar]
  198. 198.
    Surendran Nair S, Kang S, Zhang X, Miguez FE, Izaurralde RC, et al. 2012.. Bioenergy crop models: descriptions, data requirements, and future challenges. . GCB Bioenergy 4::62033
    [Crossref] [Google Scholar]
  199. 199.
    Tang S, Li L, Wang Y, Chen Q, Zhang W, et al. 2017.. Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). . Sci. Rep. 7::10009
    [Crossref] [Google Scholar]
  200. 200.
    Taylor SH, Ripley BS, Martin T, De-Wet L-A, Woodward FI, Osborne CP. 2014.. Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought. . Glob. Change Biol. 20::19922003
    [Crossref] [Google Scholar]
  201. 201.
    Tejera-Nieves M, Abraha M, Chen J, Hamilton SK, Robertson GP, Walker BJ. 2023.. Seasonal decline in leaf photosynthesis in perennial switchgrass explained by sink limitations and water deficit. . Front. Plant Sci. 13::1023571
    [Crossref] [Google Scholar]
  202. 202.
    Teskey R, Wertin T, Bauweraerts I, Ameye M, McGuire MA, Steppe K. 2015.. Responses of tree species to heat waves and extreme heat events. . Plant Cell Environ. 38::1699712
    [Crossref] [Google Scholar]
  203. 203.
    Tilhou NW, Casler M. 2022.. Genetic correlations between switchgrass performance in sward conditions and surrogate measures. . Crop Sci. 62::151121
    [Crossref] [Google Scholar]
  204. 204.
    Tilhou NW, Poudel HP, Lovell J, Mamidi S, Schmutz J, et al. 2023.. Genomic prediction of switchgrass winter survivorship across diverse lowland populations. . G3 13::jkad014
    [Crossref] [Google Scholar]
  205. 205.
    Tjoelker MG, Oleksyn J, Lorenc-Plucinska G, Reich PB. 2009.. Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana. . New Phytol. 181::21829
    [Crossref] [Google Scholar]
  206. 206.
    Valença DdC, de Moura SM, Travassos-Lins J, Alves-Ferreira M, Medici LO, et al. 2020.. Physiological and molecular responses of Setaria viridis to osmotic stress. . Plant Physiol. Biochem. 155::11425
    [Crossref] [Google Scholar]
  207. 207.
    Van de Peer Y, Ashman T-L, Soltis PS, Soltis DE. 2021.. Polyploidy: an evolutionary and ecological force in stressful times. . Plant Cell 33::1126
    [Crossref] [Google Scholar]
  208. 208.
    VanWallendael A, Bonnette J, Juenger TE, Fritschi FB, Fay PA, et al. 2020.. Geographic variation in the genetic basis of resistance to leaf rust between locally adapted ecotypes of the biofuel crop switchgrass (Panicum virgatum). . New Phytol. 227::1696708
    [Crossref] [Google Scholar]
  209. 209.
    VanWallendael A, Lowry DB, Hamilton JA. 2022.. One hundred years into the study of ecotypes, new advances are being made through large-scale field experiments in perennial plant systems. . Curr. Opin. Plant Biol. 66::102152
    [Crossref] [Google Scholar]
  210. 210.
    Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, et al. 2023.. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. . Plant Cell 35::67108
    [Crossref] [Google Scholar]
  211. 211.
    Vicca S, Gilgen AK, Camino Serrano M, Dreesen FE, Dukes JS, et al. 2012.. Urgent need for a common metric to make precipitation manipulation experiments comparable. . New Phytol. 195::51822
    [Crossref] [Google Scholar]
  212. 212.
    Vogel KP, Schmer MR, Mitchell RB. 2005.. Plant adaptation regions: ecological and climatic classification of plant materials. . Rangeland Ecol. Manag. 58::31519
    [Crossref] [Google Scholar]
  213. 213.
    Volaire F. 2018.. A unified framework of plant adaptive strategies to drought: crossing scales and disciplines. . Glob. Change Biol. 24::292938 213. Developed a cross-scale conceptual model of plant strategies for dealing with water stress.
    [Crossref] [Google Scholar]
  214. 214.
    Von Caemmerer S. 2000.. Biochemical Models of Leaf Photosynthesis. Collingswood, Aust:.: CSIRO Publishing
    [Google Scholar]
  215. 215.
    Von Caemmerer S, Furbank RT. 2016.. Strategies for improving C4 photosynthesis. . Curr. Opin. Plant Biol. 31::12534
    [Crossref] [Google Scholar]
  216. 216.
    Voss-Fels KP, Cooper M, Hayes BJ. 2019.. Accelerating crop genetic gains with genomic selection. . Theor. Appl. Genet. 132::66986
    [Crossref] [Google Scholar]
  217. 217.
    Vu JCV, Allen LH Jr. 2009.. Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane. . J. Plant Physiol. 166::10716
    [Crossref] [Google Scholar]
  218. 218.
    Vu JCV, Allen LH Jr., Gesch RW. 2006.. Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2. . Plant Sci. 171::12331
    [Crossref] [Google Scholar]
  219. 219.
    Walsh B, Blows MW. 2009.. Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. . Annu. Rev. Ecol. Evol. Syst. 40::4159
    [Crossref] [Google Scholar]
  220. 220.
    Wang D, Heckathorn SA, Mainali K, Tripathee R. 2016.. Timing effects of heat-stress on plant ecophysiological characteristics and growth. . Front. Plant Sci. 7::1629
    [Google Scholar]
  221. 221.
    Wang D, Portis AR Jr., Moose SP, Long SP. 2008.. Cool C4 photosynthesis: Pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus × giganteus. . Plant Physiol. 148::55767
    [Crossref] [Google Scholar]
  222. 222.
    Way DA, Yamori W. 2014.. Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. . Photosynth. Res. 119::89100
    [Crossref] [Google Scholar]
  223. 223.
    Weng T-Y, Nakashima T, Villanueva-Morales A, Stewart JR, Sacks EJ, Yamada T. 2022.. Assessment of drought tolerance of Miscanthus genotypes through dry-down treatment and fixed-soil-moisture-content techniques. . Agriculture 12::6
    [Crossref] [Google Scholar]
  224. 224.
    Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, et al. 2004.. The worldwide leaf economics spectrum. . Nature 428::82127
    [Crossref] [Google Scholar]
  225. 225.
    Wright L, Turhollow A. 2010.. Switchgrass selection as a “model” bioenergy crop: a history of the process. . Biomass Bioenergy 34::85168
    [Crossref] [Google Scholar]
  226. 226.
    Wullschleger SD, Davis EB, Borsuk ME, Gunderson CA, Lynd LR. 2010.. Biomass production in switchgrass across the United States: database description and determinants of yield. . Agronomy J. 102::115868
    [Crossref] [Google Scholar]
  227. 227.
    Xu Y. 2016.. Envirotyping for deciphering environmental impacts on crop plants. . Theor. Appl. Genet. 129::65373
    [Crossref] [Google Scholar]
  228. 228.
    Yamori W, Hikosaka K, Way DA. 2014.. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. . Photosynth. Res. 119::10117 228. Described the physiological and biochemical mechanisms by which different photosynthetic pathways acclimate to temperature.
    [Crossref] [Google Scholar]
  229. 229.
    Yang J, Udvardi M. 2017.. Senescence and nitrogen use efficiency in perennial grasses for forage and biofuel production. . J. Exp. Bot. 69::85565
    [Crossref] [Google Scholar]
  230. 230.
    Yang W, Feng H, Zhang X, Zhang J, Doonan JH, et al. 2020.. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. . Mol. Plant 13::187214
    [Crossref] [Google Scholar]
  231. 231.
    Zeng Y, Zhao S, Yang S, Ding S-Y. 2014.. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. . Curr. Opin. Biotechnol. 27::3845
    [Crossref] [Google Scholar]
  232. 232.
    Zhang K, Johnson L, Vara Prasad PV, Pei Z, Wang D. 2015.. Big bluestem as a bioenergy crop: a review. . Renew. Sustain. Energy Rev. 52::74056
    [Crossref] [Google Scholar]
  233. 233.
    Zhang Y, Keenan TF, Zhou S. 2021.. Exacerbated drought impacts on global ecosystems due to structural overshoot. . Nat. Ecol. Evol. 5::149098
    [Crossref] [Google Scholar]
  234. 234.
    Zhang Y-B, Yang S-L, Dao J-M, Deng J, Shahzad AN, et al. 2020.. Drought-induced alterations in photosynthetic, ultrastructural and biochemical traits of contrasting sugarcane genotypes. . PLOS ONE 15::e0235845
    [Crossref] [Google Scholar]
  235. 235.
    Zhao D, Glaz B, Comstock JC. 2013.. Sugarcane leaf photosynthesis and growth characters during development of water-deficit stress. . Crop Sci. 53::106675
    [Crossref] [Google Scholar]
  236. 236.
    Zheng HJ, Wu AZ, Zheng CC, Wang YF, Cai R, et al. 2009.. QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. . Plant Breeding 128::5462
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070623-093952
Loading
/content/journals/10.1146/annurev-arplant-070623-093952
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article