1932

Abstract

Progressive loss of plant diversity requires the protection of wild and agri-/horticultural species. For species whose seeds are extremely short-lived, or rarely or never produce seeds, or whose genetic makeup must be preserved, cryopreservation offers the only possibility for long-term conservation. At temperatures below freezing, most vegetative plant tissues suffer severe damage from ice crystal formation and require protection. In this review, we describe how increasing the concentration of cellular solutes by air drying or adding cryoprotectants, together with rapid cooling, results in a vitrified, highly viscous state in which cells can remain viable and be stored. On this basis, a range of dormant bud–freezing, slow-cooling, and (droplet-)vitrification protocols have been developed, but few are used to cryobank important agricultural/horticultural/timber and threatened species. To improve cryopreservation efficiency, the effects of cryoprotectants and molecular processes need to be understood and the costs for cryobanking reduced. However, overall, the long-term costs of cryopreservation are low, while the benefits are huge.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070623-103551
2024-07-22
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070623-103551.html?itemId=/content/journals/10.1146/annurev-arplant-070623-103551&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acker JP, Adkins S, Alves A, Horna D, Toll J. 2017.. Feasibility study for a safety back-up cryopreservation facility, Rep. , Bioversity International, Rome, Italy: https://hdl.handle.net/10568/91009 1. A complete update on the world's cryobanks and on the species and materials stored.
    [Google Scholar]
  2. 2.
    Antonelli A, Fry C, Smith RJ, Eden J, Govaerts RHA, et al. 2023.. State of the world's plants and fungi 2023. Rep. , Royal Botanic Gardens, Kew, UK:. https://www.kew.org/sites/default/files/2023-10/State%20of%20the%20World%27s%20Plants%20and%20Fungi%202023.pdf
    [Google Scholar]
  3. 3.
    Ashworth EN. 1992.. Formation and spread of ice in plant tissues. . Hortic. Rev. 13::21555
    [Crossref] [Google Scholar]
  4. 4.
    Bachiri Y, Bajon C, Sauvanet A, Gazeau C, Morisset C. 2000.. Effect of osmotic stress on tolerance of air-drying and cryopreservation of Arabidopsis thaliana suspension cells. . Protoplasma 214::22743
    [Crossref] [Google Scholar]
  5. 5.
    Bajerski F, Nagel M, Overmann J. 2021.. Microbial occurrence in liquid nitrogen storage tanks: a challenge for cryobanking?. Appl. Microbiol. Biot. 105::763550 5. A comprehensive overview of the occurrence of microorganisms in cryotanks, including plant cryobanks, and guidelines for processing cryosamples.
    [Crossref] [Google Scholar]
  6. 6.
    Ball P. 2017.. Water is an active matrix of life for cell and molecular biology. . PNAS 114::1332735
    [Crossref] [Google Scholar]
  7. 7.
    Ballesteros D, Fanega-Sleziak N, Davies RM. 2021.. Cryopreservation of seeds and seed embryos in orthodox-, intermediate-, and recalcitrant-seeded species. . In Cryopreservation and Freeze-Drying Protocols, ed. WF Wolkers, H Oldenhof , pp. 66382. New York:: Springer
    [Google Scholar]
  8. 8.
    Ballesteros D, Pritchard HW. 2020.. The cryobiotechnology of oaks: an integration of approaches for the long-term ex situ conservation of Quercus species. . Forests 11::1281
    [Crossref] [Google Scholar]
  9. 9.
    Ballesteros D, Sershen Varghese B, Berjak P, Pammenter NW. 2014.. Uneven drying of zygotic embryos and embryonic axes of recalcitrant seeds: challenges and considerations for cryopreservation. . Cryobiology 69::1009
    [Crossref] [Google Scholar]
  10. 10.
    Ballesteros D, Walters C. 2011.. Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems. . Plant J. 68::60719
    [Crossref] [Google Scholar]
  11. 11.
    Bartels-Rausch T, Bergeron V, Cartwright JHE, Escribano R, Finney JL, et al. 2012.. Ice structures, patterns, and processes: a view across the icefields. . Rev. Mod. Phys. 84::885944
    [Crossref] [Google Scholar]
  12. 12.
    Baskakova OY, Voinkova NM, Nikishina TV, Osipova EA, Popov AS, Zhivukhina EA. 2003.. Freezing resistance and cryopreservation of cell strains of Rhaponticum carthamoides and Thalictrum minus. . Russ J. Plant Physiol. 50::66671
    [Crossref] [Google Scholar]
  13. 13.
    Benelli C, De Carlo A, Engelmann F. 2013.. Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. . Biotechnol. Adv. 31::17585
    [Crossref] [Google Scholar]
  14. 14.
    Benson EE. 2008.. Cryopreservation of phytodiversity: a critical appraisal of theory & practice. . Crit. Rev. Plant Sci. 27::141219
    [Crossref] [Google Scholar]
  15. 15.
    Bredow M, Vanderbeld B, Walker VK. 2017.. Ice-binding proteins confer freezing tolerance in transgenic Arabidopsis thaliana. . Plant Biotechnol. J. 15::6881
    [Crossref] [Google Scholar]
  16. 16.
    Brodie JF, Williams S, Garner B. 2021.. The decline of mammal functional and evolutionary diversity worldwide. . PNAS 118::e1921849118
    [Crossref] [Google Scholar]
  17. 17.
    Brush RA, Griffith M, Mlynarz A. 1994.. Characterization and quantification of intrinsic ice nucleators in winter rye (Secale cereale) leaves. . Plant Physiol. 104::72535
    [Crossref] [Google Scholar]
  18. 18.
    Buitink J, Leprince O. 2004.. Glass formation in plant anhydrobiotes: survival in the dry state. . Cryobiology 48::21528
    [Crossref] [Google Scholar]
  19. 19.
    Buitink J, Walters-Vertucci C, Hoekstra FA, Leprince O. 1996.. Calorimetric properties of dehydrating pollen: analysis of a desiccation-tolerant and an intolerant species. . Plant Physiol. 111::23542
    [Crossref] [Google Scholar]
  20. 20.
    Butenko RG, Popov AS, Volkova LA, Chernyak ND, Nosov AM. 1984.. Recovery of cell cultures and their biosynthetic capacity after storage of Dioscorea deltoidea and Panax ginseng cells in liquid nitrogen. . Plant Sci. 33::28592
    [Google Scholar]
  21. 21.
    Chang CY-Y, Bräutigam K, Hüner NPA, Ensminger I. 2021.. Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers. . New Phytol. 229::67591
    [Crossref] [Google Scholar]
  22. 22.
    Chang T, Zhao G. 2021.. Ice inhibition for cryopreservation: materials, strategies, and challenges. . Adv. Sci. 8::2002425
    [Crossref] [Google Scholar]
  23. 23.
    Chen HY, Liu J, Pan C, Yu JW, Wang QC. 2018.. In vitro regeneration of adventitious buds from leaf explants and their subsequent cryopreservation in highbush blueberry. . Plant Cell Tissue Organ Cult. 134::193204
    [Crossref] [Google Scholar]
  24. 24.
    Chen P, Wang S, Chen Z, Ren P, Hepfer RG, et al. 2023.. Nanowarming and ice-free cryopreservation of large sized, intact porcine articular cartilage. . Commun. Biol. 6::220
    [Crossref] [Google Scholar]
  25. 25.
    Chen THH, Kartha KK, Gusta LV. 1985.. Cryopreservation of wheat suspension culture and regenerable callus. . Plant Cell Tissue Organ Cult. 4::1019
    [Crossref] [Google Scholar]
  26. 26.
    Colville L, Pritchard HW. 2019.. Seed life span and food security. . New Phytol. 14::55762
    [Crossref] [Google Scholar]
  27. 27.
    Couee I, Sulmon C, Gouesbet G, El Amrani A. 2006.. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. . J. Exp. Bot. 57::44959
    [Crossref] [Google Scholar]
  28. 28.
    DeVries AL, Komatsu SK, Feeney RE. 1970.. Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. . J. Biol. Chem. 245::29018
    [Crossref] [Google Scholar]
  29. 29.
    Dinato NB, Imaculada Santos IR, Zanotto Vigna BB, de Paula AF, Fávero AP. 2020.. Pollen cryopreservation for plant breeding and genetic resources conservation. . CryoLetters 41::11527
    [Google Scholar]
  30. 30.
    Dolev MB, Braslavsky I, Davies PL. 2016.. Ice-binding proteins and their function. . Annu. Rev. Biochem. 85::51542
    [Crossref] [Google Scholar]
  31. 31.
    Dubrovina AS, Kiselev KV. 2016.. Age-associated alterations in the somatic mutation and DNA methylation levels in plants. . Plant Biol. 18::18596
    [Crossref] [Google Scholar]
  32. 32.
    Ekpo MD, Xie J, Hu Y, Liu X, Liu F, et al. 2022.. Antifreeze proteins: novel applications and navigation towards their clinical application in cryobanking. . Int. J. Mol. Sci. 23::2639
    [Crossref] [Google Scholar]
  33. 33.
    Elliott GD, Wang S, Fuller B. 2017.. Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. . Cryobiology 76::7491
    [Crossref] [Google Scholar]
  34. 34.
    Engelmann F. 2004.. Plant cryopreservation: progress and prospects. . In Vitro Cell Dev. Plant 40::42733
    [Crossref] [Google Scholar]
  35. 35.
    Engelmann F. 2011.. Cryopreservation of embryos: an overview. . In Plant Embryo Culture: Methods and Protocols, ed. TA Thorpe, EC Yeung , pp. 15584. Totowa, NJ:: Humana
    [Google Scholar]
  36. 36.
    Fabre J, Dereuddre J. 1990.. Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot tips. . CryoLetters 11::41326
    [Google Scholar]
  37. 37.
    Farrant JM, Pammenter NW, Berjak P. 1993.. Seed development in relation to desiccation tolerance: a comparison between desiccation-sensitive (recalcitrant) seeds of Avicennia marina and desiccation-tolerant types. . Seed Sci. Res. 3::113
    [Crossref] [Google Scholar]
  38. 38.
    Folgado R, Panis B, Sergeant K, Renaut J, Swennen R, Hausman JF. 2015.. Unravelling the effect of sucrose and cold pretreatment on cryopreservation of potato through sugar analysis and proteomics. . Cryobiology 71::43241
    [Crossref] [Google Scholar]
  39. 39.
    Forsline PL, Towill LE, Waddell JW, Stushnoff C, Lamboy WF, McFerson JR. 1998.. Recovery and longevity of cryopreserved dormant apple buds. . J. Am. Soc. Hortic. Sci. 123::36570
    [Crossref] [Google Scholar]
  40. 40.
    Funnekotter B, Bunn E, Mancera RL. 2017.. Cryo-mesh: a simple alternative cryopreservation protocol. . CryoLetters 38::15559
    [Google Scholar]
  41. 41.
    Funnekotter B, Colville L, Kaczmarczyk A, Turner SR, Bunn E, Mancera RL. 2017.. Monitoring of oxidative status in three native Australian species during cold acclimation and cryopreservation. . Plant Cell Rep. 36::190316
    [Crossref] [Google Scholar]
  42. 42.
    Gonzalez-Arnao MT, Panta A, Roca W, Roosevelt E, Florent E. 2007.. Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. . Plant Cell Tissue Organ Cult. 92::113
    [Crossref] [Google Scholar]
  43. 43.
    Goveia M, Kioko JI, Berjak P. 2004.. Developmental status is a critical factor in the selection of excised recalcitrant axes as explants for cryopreservation: a study on Trichilia dregeana Sond. . Seed Sci. Res. 14::24148
    [Crossref] [Google Scholar]
  44. 44.
    Griffith M, Yaish MWF. 2004.. Antifreeze proteins in overwintering plants: a tale of two activities. . Trends Plant Sci. 9::399405
    [Crossref] [Google Scholar]
  45. 45.
    Gross BL, Henk AD, Bonnart R, Volk GM. 2017.. Changes in transcript expression patterns as a result of cryoprotectant treatment and liquid nitrogen exposure in Arabidopsis shoot tips. . Plant Cell Rep. 36::45970
    [Crossref] [Google Scholar]
  46. 46.
    Gurtovenko AA, Anwar J. 2007.. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. . J. Phys. Chem. B 111::1045360
    [Crossref] [Google Scholar]
  47. 47.
    Hajari E, Berjak P, Pammenter N, Watt MP. 2011.. A novel means for cryopreservation of germplasm of the recalcitrant-seeded species. , Ekebergia capensis. CryoLetters 32::30816
    [Google Scholar]
  48. 48.
    Heine-Dobbernack E, Kiesecker H, Schumacher HM. 2008.. Cryopreservation of Dedifferentiated Cell Cultures. New York:: Springer
    [Google Scholar]
  49. 49.
    Hirsh AG, Williams RJ, Meryman HT. 1985.. A novel method of natural cryoprotection: intracellular glass formation in deeply frozen Populus. . Plant Physiol. 79::4156
    [Crossref] [Google Scholar]
  50. 50.
    Höfer M. 2016.. Cryopreservation of in vitro shoot tips of strawberry by the vitrification method—establishment of a duplicate collection of Fragaria germplasm. . CryoLetters 37::16372
    [Google Scholar]
  51. 51.
    Hossain MA, Li ZG, Hoque TS, Burritt DJ, Fujita M, Munne-Bosch S. 2018.. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. . Protoplasma 255::399412
    [Crossref] [Google Scholar]
  52. 52.
    Htwe CSS, Rajkumar S, Pathania P, Agrawal A. 2023.. Transcriptome profiling during sequential stages of cryopreservation in banana (Musa AAA cv Borjahaji) shoot meristem. . Plants 12::1165
    [Crossref] [Google Scholar]
  53. 53.
    Impe D, Ballesteros D, Nagel M. 2022.. Impact of drying and cooling rate on the survival of the desiccation-sensitive wheat pollen. . Plant Cell Rep. 41::44761
    [Crossref] [Google Scholar]
  54. 54.
    Jepson P, Whittaker RJ. 2002.. Histories of protected areas: internationalisation of conservationist values and their adoption in the Netherlands Indies (Indonesia). . Env. Hist. 8::12972
    [Crossref] [Google Scholar]
  55. 55.
    Kiani H, Sun D-W. 2011.. Water crystallization and its importance to freezing of foods: a review. . Trends Food Sci. Technol. 22::40726
    [Crossref] [Google Scholar]
  56. 56.
    Kim H-H, Kim J-B, Baek H-J, Cho E-G, Chae Y-A, Engelmann F. 2004.. Evolution of DMSO concentration in garlic shoot tips during a vitrification procedure. . CryoLetters 25::91100
    [Google Scholar]
  57. 57.
    Kim H-H, Popova E. 2023.. Unifying principles of cryopreservation protocols for new plant materials based on alternative cryoprotective agents (CPAs) and a systematic approach. . CryoLetters 44::112 57. A guide to cryopreservation protocol development based on classification of critical factors affecting plant cryotolerance.
    [Crossref] [Google Scholar]
  58. 58.
    Kim H-H, Popova E, Shin D-J, Yi J-Y, Kim CH, et al. 2012.. Cryobanking of Korean Allium germplasm collections: results from a 10 year experience. . CryoLetters 33::4557
    [Google Scholar]
  59. 59.
    Kim SI, Choi HK, Son JS, Yun JH, Jang MS, et al. 2001.. Cryopreservation of Taxus chinensis suspension cell cultures. . CryoLetters 22::4350
    [Google Scholar]
  60. 60.
    Klimaszewska K, Hargreaves C, Lelu-Walter M-A, Trontin J-F. 2016.. Advances in conifer somatic embryogenesis since year 2000. . In In Vitro Embryogenesis in Higher Plants, ed. MA Germana, M Lambardi , pp. 13166. New York:: Springer
    [Google Scholar]
  61. 61.
    Konov KB, Leonov DV, Isaev NP, Fedotov KY, Voronkova VK, Dzuba SA. 2015.. Membrane–sugar interactions probed by pulsed electron paramagnetic resonance of spin labels. . J. Phys. Chem. B 119::1026166
    [Crossref] [Google Scholar]
  62. 62.
    Köpnick C, Grübe M, Stock J, Senula A, Mock H-P, Nagel M. 2018.. Changes of soluble sugars and ATP content during DMSO droplet freezing and PVS3 droplet vitrification of potato shoot tips. . Cryobiology 85::7986
    [Crossref] [Google Scholar]
  63. 63.
    Kreckel HD, Samuels FMD, Bonnart R, Volk GM, Stich DG, Levinger NE. 2023.. Tracking permeation of dimethyl sulfoxide (DMSO) in Mentha × piperita shoot tips using coherent Raman microscopy. . Plants 12::2247
    [Crossref] [Google Scholar]
  64. 64.
    Lambardi M, Benelli C, De Carlo A, Ozudogru EA, Previati A, Ellis D. 2011.. Cryopreservation of ancient apple cultivars of Veneto: a comparison between PVS2-vitrification and dormant-bud techniques. . Acta Hortic. 908::19198
    [Crossref] [Google Scholar]
  65. 65.
    Lerbret A, Affouard F, Bordat P, Hédoux A, Guinet Y, Descamps M. 2011.. Slowing down of water dynamics in disaccharide aqueous solutions. . J. Non-Cryst. Solids 357::69599
    [Crossref] [Google Scholar]
  66. 66.
    Li B, Takahashi D, Kawamura Y, Uemura M. 2020.. Plasma membrane proteome analyses of Arabidopsis thaliana suspension-cultured cells during cold or ABA treatment: Relationship with freezing tolerance and growth phase. . J. Proteom. 211::103528
    [Crossref] [Google Scholar]
  67. 67.
    Lin L, Ma J, Ai Q, Pritchard HW, Li W, Chen H. 2021.. Lipid remodeling confers osmotic stress tolerance to embryogenic cells during cryopreservation. . Int. J. Mol. Sci. 22::2174
    [Crossref] [Google Scholar]
  68. 68.
    Lovelock JE, Bishop MWH. 1959.. Prevention of freezing damage to living cells by dimethyl sulphoxide. . Nature 183::139495
    [Crossref] [Google Scholar]
  69. 69.
    Major M. 2023.. Chilling out for conservation. . Crop Trust News, Mar. 23. https://www.croptrust.org/news-events/news/chilling-out-for-conservation/
    [Google Scholar]
  70. 70.
    Maki S, Hirai Y, Niino T, Matsumoto T. 2015.. Assessment of molecular genetic stability between long-term cryopreserved and tissue cultured wasabi (Wasabia japonica) plants. . CryoLetters 36::31824
    [Google Scholar]
  71. 71.
    Malik SK, Chaudhury R. 2019.. Cryopreservation techniques for conservation of tropical horticultural species using various explants. . In Conservation and Utilization of Horticultural Genetic Resources, ed. PE Rajasekharan, VR Rao , pp. 57994. Singapore:: Springer
    [Google Scholar]
  72. 72.
    Matsumoto T, Yamamoto S-i, Fukui K, Rafique T, Engelmann F, Niino T. 2015.. Cryopreservation of persimmon shoot tips from dormant buds using the D cryo-plate technique. . Hortic. J. 84::10610
    [Crossref] [Google Scholar]
  73. 73.
    Mazur P. 1984.. Freezing of living cells: mechanisms and implications. . Am. J. Physiol. Cell Physiol. 247::C12542 73. A classic comprehensive review of freezing mechanisms and water behavior in plant cells.
    [Crossref] [Google Scholar]
  74. 74.
    Miguel C, Marum L. 2011.. An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. . J. Exp. Bot. 62::371325
    [Crossref] [Google Scholar]
  75. 75.
    Mikuła A. 2006.. Comparison of three techniques for cryopreservation and reestablishment of long-term Gentiana tibetica suspension culture. . CryoLetters 27::26982
    [Google Scholar]
  76. 76.
    Montalbán IA, García-Mendiguren O, Moncaleán P. 2016.. Somatic embryogenesis in Pinus spp. . In In Vitro Embryogenesis in Higher Plants, ed. MA Germana, M Lambardi , pp. 40515. New York:: Springer
    [Google Scholar]
  77. 77.
    Nadarajan J, Pritchard HW. 2014.. Biophysical characteristics of successful oilseed embryo cryoprotection and cryopreservation using vacuum infiltration vitrification: an innovation in plant cell preservation. . PLOS ONE 9::e96169
    [Crossref] [Google Scholar]
  78. 78.
    Naing AH, Kim CK. 2019.. A brief review of applications of antifreeze proteins in cryopreservation and metabolic genetic engineering. . 3 Biotech 9::329
    [Crossref] [Google Scholar]
  79. 79.
    Narida A, Hsieh WC, Huang CL, Wen ZH, Tsai S, Lin C. 2022.. Novel long-term cryo-storage using vitrification and laser warming techniques. . Biopreserv. Biobank. https://doi.org/10.1089/bio.2022.0033
    [Google Scholar]
  80. 80.
    Nausch H, Buyel JF. 2021.. Cryopreservation of plant cell cultures – diverse practices and protocols. . New Biotech. 62::8695
    [Crossref] [Google Scholar]
  81. 81.
    Niino T, Yamamoto SI, Fukui K, Castillo Martinez CR, Arizaga MV, et al. 2013.. Dehydration improves cryopreservation of mat rush (Juncus decipiens Nakai) basal stem buds on cryo-plates. . CryoLetters 34::54960
    [Google Scholar]
  82. 82.
    Nikishina TV, Popova EV, Vakhrameeva MG, Varlygina TI, Kolomeitseva GL, et al. 2007.. Cryopreservation of seeds and protocorms of rare temperate orchids. . Russ. J. Plant Physiol. 54::12127
    [Crossref] [Google Scholar]
  83. 83.
    Nishizawa S, Sakai A, Amano Y, Matsuzawa T. 1993.. Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. . Plant Sci. 91::6773
    [Crossref] [Google Scholar]
  84. 84.
    Normah MN, Makeen AM. 2008.. Cryopreservation of excised embryos and embryonic axes. . In Plant Cryopreservation: A Practical Guide, ed. BM Reed , pp. 21140. New York:: Springer
    [Google Scholar]
  85. 85.
    Normah MN, Sulong N, Reed BM. 2019.. Cryopreservation of shoot tips of recalcitrant and tropical species: advances and strategies. . Cryobiology 87::114
    [Crossref] [Google Scholar]
  86. 86.
    Ogawa Y, Sakurai N, Oikawa A, Kai K, Morishita Y, et al. 2012.. High-throughput cryopreservation of plant cell cultures for functional genomics. . Plant Cell Physiol. 53::94352
    [Crossref] [Google Scholar]
  87. 87.
    Ogawa Y, Suzuki H, Sakurai N, Aoki K, Saito K, Shibata D. 2008.. Cryopreservation and metabolic profiling analysis of Arabidopsis T87 suspension-cultured cells. . CryoLetters 29::42736
    [Google Scholar]
  88. 88.
    Oliver MJ, Farrant JM, Hilhorst HWM, Mundree S, Williams B, Bewley JD. 2020.. Desiccation tolerance: avoiding cellular damage during drying and rehydration. . Annu. Rev. Plant Biol. 71::43560
    [Crossref] [Google Scholar]
  89. 89.
    Ozudogru EA, Capuana M, Kaya E, Panis B, Lambardi M. 2010.. Cryopreservation of Fraxinus excelsior L. embryogenic callus by one-step freezing and slow cooling techniques. . CryoLetters 31::6375
    [Google Scholar]
  90. 90.
    Ozudogru EA, Lambardi M. 2016.. Cryotechniques for the long-term conservation of embryogenic cultures from woody plants. . In In Vitro Embryogenesis in Higher Plants, ed. MA Germana, M Lambardi , pp. 53750. New York:: Springer
    [Google Scholar]
  91. 91.
    Pan C, Liu J, Bi W-L, Chen H, Engelmann F, Wang Q-C. 2018.. Cryopreservation of small leaf squares-bearing adventitious buds of Lilium Oriental hybrid ‘Siberia’ by vitrification. . Plant Cell Tissue Organ Cult. 133::15964
    [Crossref] [Google Scholar]
  92. 92.
    Panis B. 2019.. Sixty years of plant cryopreservation: from freezing hardy mulberry twigs to establishing reference crop collections for future generations. . Acta Hortic. 1234::18
    [Crossref] [Google Scholar]
  93. 93.
    Panis B, Nagel M, Van den Houwe I. 2020.. Challenges and prospects for the conservation of crop genetic resources in field genebanks, in in vitro collections and/or in liquid nitrogen. . Plants 9::1634
    [Crossref] [Google Scholar]
  94. 94.
    Panis B, Piette B, Swennen R. 2005.. Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. . Plant Sci. 168::4555
    [Crossref] [Google Scholar]
  95. 95.
    Panis B, Swennen R, Engelmann F. 2001.. Cryopreservation of plant germplasm. . Acta Hortic. 560::7986
    [Crossref] [Google Scholar]
  96. 96.
    Panter PE, Panter JR, Knight H. 2020.. Impact of cell-wall structure and composition on plant freezing tolerance. . Annu. Plant Rev. Online https://doi.org/10.1002/9781119312994.apr0746
    [Google Scholar]
  97. 97.
    Parihar A, Kumar A, Panda U, Khan R, Parihar DS, Khan R. 2023.. Cryopreservation: a comprehensive overview, challenges, and future perspectives. . Adv. Biol. 7::2200285
    [Crossref] [Google Scholar]
  98. 98.
    Pearce RS. 2001.. Plant freezing and damage. . Ann. Bot. 87::41724
    [Crossref] [Google Scholar]
  99. 99.
    Pegg DE. 2007.. Principles of cryopreservation. . In Cryopreservation and Freeze-Drying Protocols, ed. JG Day, GN Stacey , pp. 3957. Totowa, NJ:: Humana
    [Google Scholar]
  100. 100.
    Pence VC. 1996.. Germination, desiccation and cryopreservation of seeds of Populus deltoides Bartr. . Seed Sci. Technol. 24::15157
    [Google Scholar]
  101. 101.
    Pence VC, Ballesteros D, Walters C, Reed BM, Philpott M, et al. 2020.. Cryobiotechnologies: tools for expanding long-term ex situ conservation to all plant species. . Biol. Conserv. 250::108736
    [Crossref] [Google Scholar]
  102. 102.
    Pence VC, Beckman E, Meyer A, Pritchard HW, Westwood M, et al. 2022.. Gap analysis of exceptional species—using a global list of exceptional plants to expand strategic ex situ conservation action beyond conventional seed banking. . Biol. Conserv. 266::109439
    [Crossref] [Google Scholar]
  103. 103.
    Pence VC, Bruns EB. 2022.. The tip of the iceberg: cryopreservation needs for meeting the challenge of exceptional plant conservation. . Plants 11::1528
    [Crossref] [Google Scholar]
  104. 104.
    Pence VC, Meyer A, Linsky J, Gratzfeld J, Pritchard HW, et al. 2022.. Defining exceptional species—a conceptual framework to expand and advance ex situ conservation of plant diversity beyond conventional seed banking. . Biol. Conserv. 266::109440
    [Crossref] [Google Scholar]
  105. 105.
    Pence VC, Philpott M, Culley TM, Plair B, Yorke SR, et al. 2017.. Survival and genetic stability of shoot tips of Hedeoma todsenii R.S.Irving after long-term cryostorage. . In Vitro Cell Dev. Plant 53::32838
    [Crossref] [Google Scholar]
  106. 106.
    Polge C, Smith AU, Parkes AS. 1949.. Revival of spermatozoa after vitrification and dehydration at low temperatures. . Nature 164::666
    [Crossref] [Google Scholar]
  107. 107.
    Popova E, Kulichenko I, Kim HH. 2023.. Critical role of regrowth conditions in post-cryopreservation of in vitro plant germplasm. . Biology 12::542
    [Crossref] [Google Scholar]
  108. 108.
    Popova EV, Lee E-J, Wu C-H, Hahn E-J, Paek K-Y. 2009.. A simple method for cryopreservation of Ginkgo biloba callus. . Plant Cell Tissue Organ Cult. 97::33743
    [Crossref] [Google Scholar]
  109. 109.
    Pritchard H, Seaton P. 1993.. Orchid seed storage: historical perspective, current status, and future prospects for long-term conservation. . Selbyana 14::89104
    [Google Scholar]
  110. 110.
    Pummer BG, Budke C, Augustin-Bauditz S, Niedermeier D, Felgitsch L, et al. 2015.. Ice nucleation by water-soluble macromolecules. . Atmos. Chem. Phys. 15::407791
    [Crossref] [Google Scholar]
  111. 111.
    Quatrano RS. 1968.. Freeze-preservation of cultured flax cells utilizing dimethyl sulfoxide. . Plant Physiol. 43::205761
    [Crossref] [Google Scholar]
  112. 112.
    Ramachandra Rao S, Ravishankar GA. 2002.. Plant cell cultures: chemical factories of secondary metabolites. . Biotechnol. Adv. 20::10153
    [Crossref] [Google Scholar]
  113. 113.
    Reed BM. 2008.. Plant Cryopreservation: A Practical Guide. New York:: Springer-Verlag 113. The first stepwise manual of plant cryopreservation, with contributions about the most important plant species.
    [Google Scholar]
  114. 114.
    Reinhoud PJ, Schrijnemakers EWM, van Iren F, Kijne JW. 1995.. Vitrification and a heat-shock treatment improve cryopreservation of tobacco cell suspensions compared to two-step freezing. . Plant Cell Tissue Organ Cult. 42::26167
    [Crossref] [Google Scholar]
  115. 115.
    Reinhoud PJ, van Iren F, Kijne JW. 2000.. Cryopreservation of undifferentiated plant cells. . In Cryopreservation of Tropical Plant Germplasm, ed. F Engelmann, H Takagi , pp. 91102. Rome:: JIRCAS/IPGRI
    [Google Scholar]
  116. 116.
    Ren L, Zhang D, Chen GQ, Reed BM, Shen XH, Chen HY. 2015.. Transcriptomic profiling revealed the regulatory mechanism of Arabidopsis seedlings response to oxidative stress from cryopreservation. . Plant Cell Rep. 34::216178
    [Crossref] [Google Scholar]
  117. 117.
    Roach T, Ivanova M, Beckett RP, Minibayeva FV, Green I, et al. 2008.. An oxidative burst of superoxide in embryonic axes of recalcitrant sweet chestnut seeds as induced by excision and desiccation. . Physiol. Plant 133::13139
    [Crossref] [Google Scholar]
  118. 118.
    Sakai A. 1960.. Survival of the twig of woody plants at −196° C. . Nature 185::39394
    [Crossref] [Google Scholar]
  119. 119.
    Sakai A, Engelmann F. 2007.. Vitrification, encapsulation-vitrification and droplet-vitrification: a review. . CryoLetters 28::15172 119. A detailed overview of modern cryopreservation methods applicable to diverse plant materials.
    [Google Scholar]
  120. 120.
    Sakai A, Kobayashi S, Oiyama I. 1990.. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. . Plant Cell Rep. 9::3033
    [Crossref] [Google Scholar]
  121. 121.
    Sakai A, Nishiyama Y. 1978.. Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. . Hortscience 13::22527
    [Crossref] [Google Scholar]
  122. 122.
    Schumacher HM, Westphal M, Heine-Dobbernack E. 2015.. Cryopreservation of plant cell lines. . In Cryopreservation and Freeze-Drying Protocols, ed. WF Wolkers, H Oldenhof , pp. 4239. Methods Mol. Biol. 1257 . New York:: Springer
    [Google Scholar]
  123. 123.
    Senula A, Nagel M. 2021.. Cryopreservation of plant shoot tips of potato, mint, garlic, and shallot using plant vitrification solution 3. . In Cryopreservation and Freeze-Drying Protocols, ed. WF Wolkers, H Oldenhof , pp. 64761. Methods Mol. Biol. 2180 . New York:: Springer
    [Google Scholar]
  124. 124.
    Seo JH, Naing AH, Jeon SM, Kim CK. 2018.. Anti-freezing-protein type III strongly influences the expression of relevant genes in cryopreserved potato shoot tips. . Plant Mol. Biol. 97::34755
    [Crossref] [Google Scholar]
  125. 125.
    Sershen Pammenter NW, Berjak P, Wesley-Smith J. 2007.. Cryopreservation of embryonic axes of selected amaryllid species. . CryoLetters 28::38799
    [Google Scholar]
  126. 126.
    Stegner M, Flörl A, Lindner J, Plangger S, Schaefernolte T, et al. 2022.. Freeze dehydration versus supercooling of mesophyll cells: impact of cell wall, cellular and tissue traits on the extent of water displacement. . Physiol. Plant 174::e13793
    [Crossref] [Google Scholar]
  127. 127.
    Stock J, Bräutigam A, Melzer M, Bienert GP, Bunk B, et al. 2020.. The transcription factor WRKY22 is required during cryo-stress acclimation in Arabidopsis shoot tips. . J. Exp. Bot. 71::49935009
    [Crossref] [Google Scholar]
  128. 128.
    Takahashi D, Imai H, Kawamura Y, Uemura M. 2016.. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance. . Cryobiology 72::12334
    [Crossref] [Google Scholar]
  129. 129.
    Tanner JD, Chen KY, Bonnart RM, Minas IS, Volk GM. 2021.. Considerations for large-scale implementation of dormant budwood cryopreservation. . Plant Cell Tissue Organ Cult. 144::3548
    [Crossref] [Google Scholar]
  130. 130.
    Tas RP, Hendrix MMRM, Voets IK. 2023.. Nanoscopy of single antifreeze proteins reveals that reversible ice binding is sufficient for ice recrystallization inhibition but not thermal hysteresis. . PNAS 120::e2212456120
    [Crossref] [Google Scholar]
  131. 131.
    Thomashow MF. 2010.. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. . Plant Physiol. 154::57177
    [Crossref] [Google Scholar]
  132. 132.
    Touchell DH, Dixon KW, Tan B. 1992.. Cryopreservation of shoot-tips of Grevillea scapigera (Proteaceae): a rare and endangered plant from Western Australia. . Austr. J. Bot. 40::30510
    [Crossref] [Google Scholar]
  133. 133.
    Towey JJ, Soper AK, Dougan L. 2012.. Molecular insight into the hydrogen bonding and micro-segregation of a cryoprotectant molecule. . J. Phys. Chem. B 116::13898904
    [Crossref] [Google Scholar]
  134. 134.
    Tweddle JC, Dickie JB, Baskin CC, Baskin JM. 2003.. Ecological aspects of seed desiccation sensitivity. . J. Ecol. 91::294304
    [Crossref] [Google Scholar]
  135. 135.
    Uragami A, Sakai A, Nagai M, Takahashi T. 1989.. Survival of cultured cells and somatic embryos of Asparagus officinalis cryopreserved by vitrification. . Plant Cell Rep. 8::41821
    [Crossref] [Google Scholar]
  136. 136.
    Verheijen M, Lienhard M, Schrooders Y, Clayton O, Nudischer R, et al. 2019.. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. . Sci. Rep. 9::4641
    [Crossref] [Google Scholar]
  137. 137.
    Vogg G, Heim R, Gotschy B, Beck E, Hansen J. 1998.. Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.). II. Seasonal changes in the fluidity of thylakoid membranes. . Planta 204::2016
    [Crossref] [Google Scholar]
  138. 138.
    Volk GM, Henk AD, Jenderek MM, Richards CM. 2016.. Probabilistic viability calculations for cryopreserving vegetatively propagated collections in genebanks. . Genet. Resourc. Crop. Evol. 64::161322 138. The main statistical analysis used by major world cryobanks to estimate the number of samples that need to be stored.
    [Crossref] [Google Scholar]
  139. 139.
    Volk GM, Jenderek M, Chao CT. 2017.. Prioritization of Malus accessions for collection cryopreservation at the USDA-ARS National Center for Genetic Resources Preservation. . Acta Hortic. 1172::26772
    [Crossref] [Google Scholar]
  140. 140.
    Vollmer R, Villagaray R, Castro M, Cárdenas J, Pineda S, et al. 2022.. The world's largest potato cryobank at the International Potato Center (CIP) – status quo, protocol improvement through large-scale experiments and long-term viability monitoring. . Front. Plant Sci. 13::1059817
    [Crossref] [Google Scholar]
  141. 141.
    Vujović T, Chatelet P, Ružić Đ, Engelmann F. 2015.. Cryopreservation of Prunus spp. using aluminium cryo-plates. . Sci. Hortic. 195::17382
    [Crossref] [Google Scholar]
  142. 142.
    Walters C, Pence VC. 2020.. The unique role of seed banking and cryobiotechnologies in plant conservation. . Plants People Planet 3::8391
    [Crossref] [Google Scholar]
  143. 143.
    Wang M-R, Bi W, Shukla MR, Ren L, Hamborg Z, et al. 2021.. Epigenetic and genetic integrity, metabolic stability, and field performance of cryopreserved plants. . Plants 10::1889
    [Crossref] [Google Scholar]
  144. 144.
    Wang M-R, Lambardi M, Engelmann F, Pathirana R, Panis B, Volk GM, Wang Q-C. 2021.. Advances in cryopreservation of in vitro-derived propagules: technologies and explant sources. . Plant Cell Tissue Organ Cult. 144::720 144. A comprehensive review of technological advances in cryopreservation of in vitro–derived propagules in the early twenty-first century.
    [Crossref] [Google Scholar]
  145. 145.
    Wang M-R, Zhang ZB, Zamecnik J, Bilavcik A, Blystad DR, et al. 2020.. Droplet-vitrification for shoot tip cryopreservation of shallot (Allium cepa var. aggregatum): effects of PVS3 and PVS2 on shoot regrowth. . Plant Cell Tissue Organ Cult. 140::18595
    [Crossref] [Google Scholar]
  146. 146.
    Wang Q-C, Panis B, Engelmann F, Lambardi M, Valkonen JPT. 2009.. Cryotherapy of shoot tips: a technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. . Ann. Appl. Biol. 154::35163
    [Crossref] [Google Scholar]
  147. 147.
    Wesley-Smith J, Pammenter NW, Berjak P, Walters C. 2001.. The effects of two drying rates on the desiccation tolerance of embryonic axes of recalcitrant jackfruit (Artocarpus heterophyllus Lamk.) seeds. . Ann. Bot. 88::65364
    [Crossref] [Google Scholar]
  148. 148.
    Wesley-Smith J, Walters C, Berjak P, Pammenter NW. 2004.. The influence of water content, cooling and warming rate upon survival of embryonic axes of Poncirus trifoliata (L.). . CryoLetters 25::12938
    [Google Scholar]
  149. 149.
    Wesley-Smith J, Walters C, Pammenter NW, Berjak P. 2015.. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum. . Ann. Bot. 115::9911000
    [Crossref] [Google Scholar]
  150. 150.
    Westwood M, Cavender N, Meyer A, Smith P. 2021.. Botanic garden solutions to the plant extinction crisis. . Plants People Planet 3::2232
    [Crossref] [Google Scholar]
  151. 151.
    Whitaker C, Beckett RP, Minibayeva FV, Kranner I. 2010.. Production of reactive oxygen species in excised, desiccated and cryopreserved explants of Trichilia dregeana Sond. . S. Afr. J. Bot. 76::11218
    [Crossref] [Google Scholar]
  152. 152.
    Wisniewski M, Fuller M, Glenn DM, Gusta L, Duman J, Griffith M. 2002.. Extrinsic ice nucleation in plants. . In Plant Cold Hardiness: Gene Regulation and Genetic Engineering, ed. PH Li, ET Palva , pp. 21121. Boston:: Springer
    [Google Scholar]
  153. 153.
    Wisniewski M, Glenn DM, Gusta L, Fuller MP. 2008.. Using infrared thermography to study freezing in plants. . Hortscience 43::164851
    [Crossref] [Google Scholar]
  154. 154.
    Withers LA. 1979.. Freeze preservation of somatic embryos and clonal plantlets of carrot (Daucus carota L). . Plant Physiol. 63::46067
    [Crossref] [Google Scholar]
  155. 155.
    Xia K, Hill LM, Li D-Z, Walters C. 2014.. Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China. . Ann. Bot. 114::174759
    [Crossref] [Google Scholar]
  156. 156.
    Yamamoto S, Rafique T, Priyantha WS, Fukui K, Matsumoto T, Niino T. 2011.. Development of a cryopreservation procedure using aluminium cryo-plates. . CryoLetters 32::25665
    [Google Scholar]
  157. 157.
    Yamamoto S, Wunna Rafique T, Arizaga MV, Fukui K, et al. 2015.. The aluminum cryo-plate increases efficiency of cryopreservation protocols for potato shoot tips. . Am. J. Potato Res. 92::25057
    [Crossref] [Google Scholar]
  158. 158.
    Yamashita Y, Kinoshita K, Yamazaki M. 2000.. Low concentration of DMSO stabilizes the bilayer gel phase rather than the interdigitated gel phase in dihexadecylphosphatidylcholine membrane. . Biochim. Biophys. Acta Biomembr. 1467::395405
    [Crossref] [Google Scholar]
  159. 159.
    Yenson AJM, Sommerville KD, Guja LK, Merritt DJ, Dalziell EL, et al. 2024.. Ex situ germplasm collections of exceptional species are a vital part of the conservation of Australia's national plant treasures. . Plants People Planet 6::4466
    [Crossref] [Google Scholar]
  160. 160.
    Yu G, Li R, Hubel A. 2019.. Interfacial interactions of sucrose during cryopreservation detected by Raman spectroscopy. . Langmuir 35::738895
    [Crossref] [Google Scholar]
  161. 161.
    Yuorieva N, Sinetova M, Messineva E, Kulichenko I, Fomenkov A, et al. 2023.. Plants, cells, algae, and cyanobacteria in vitro and cryobank collections at the Institute of Plant Physiology, Russian Academy of Sciences—a platform for research and production center. . Biology 12::838
    [Crossref] [Google Scholar]
  162. 162.
    Zhang C, Fei S-z, Arora R, Hannapel DJ. 2010.. Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance. . Planta 232::15564
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070623-103551
Loading
/content/journals/10.1146/annurev-arplant-070623-103551
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error