1932

Abstract

Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in seed development and phase transitions, and we briefly discuss the evolution of these TF networks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070623-111458
2024-07-22
2025-04-17
Loading full text...

Full text loading...

/deliver/fulltext/arplant/75/1/annurev-arplant-070623-111458.html?itemId=/content/journals/10.1146/annurev-arplant-070623-111458&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aichinger E, Villar CBR, Di Mambro R, Sabatini S, Köhler C. 2011.. The CHD3 chromatin remodeler PICKLE and Polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root. . Plant Cell 23:(3):104760
    [Crossref] [Google Scholar]
  2. 2.
    Ali F, Qanmber G, Li F, Wang Z. 2022.. Updated role of ABA in seed maturation, dormancy, and germination. . J. Adv. Res. 35::199214
    [Crossref] [Google Scholar]
  3. 3.
    Baile F, Gómez-Zambrano Á, Calonje M. 2022.. Roles of Polycomb complexes in regulating gene expression and chromatin structure in plants. . Plant Commun. 3:(1):100267
    [Crossref] [Google Scholar]
  4. 4.
    Baile F, Merini W, Hidalgo I, Calonje M. 2021.. EAR domain-containing transcription factors trigger PRC2-mediated chromatin marking in Arabidopsis. . Plant Cell 33:(8):270115 4. Showed that VAL proteins act as a platform to recruit PRC1, PRC2, and HDAC.
    [Crossref] [Google Scholar]
  5. 5.
    Balsalobre A, Drouin J. 2022.. Pioneer factors as master regulators of the epigenome and cell fate. . Nat. Rev. Mol. Cell Biol. 23:(7):44964
    [Crossref] [Google Scholar]
  6. 6.
    Barthole G, To A, Marchive C, Brunaud V, Soubigou-Taconnat L, et al. 2014.. MYB118 represses endosperm maturation in seeds of Arabidopsis. . Plant Cell 26:(9):351937
    [Crossref] [Google Scholar]
  7. 7.
    Baud S, Boutin J-P, Miquel M, Lepiniec L, Rochat C. 2002.. An integrated overview of seed development in Arabidopsis thaliana ecotype WS. . Plant Physiol. Biochem. 40:(2):15160
    [Crossref] [Google Scholar]
  8. 8.
    Baud S, Kelemen Z, Thévenin J, Boulard C, Blanchet S, et al. 2016.. Deciphering the molecular mechanisms underpinning the transcriptional control of gene expression by master transcriptional regulators in Arabidopsis seed. . Plant Physiol. 171:(2):1099112
    [Google Scholar]
  9. 9.
    Baumbusch LO, Hughes DW, Galau GA, Jakobsen KS. 2003.. LEC1, FUS3, ABI3 and Em expression reveals no correlation with dormancy in Arabidopsis. . J. Exp. Bot. 55:(394):7787
    [Crossref] [Google Scholar]
  10. 10.
    Bäumlein H, Miséra S, Luerßen H, Kölle K, Horstmann C, et al. 1994.. The FUS3 gene of Arabidopsis thaliana is a regulator of gene expression during late embryogenesis. . Plant J. 6:(3):37987
    [Crossref] [Google Scholar]
  11. 11.
    Berger N, Dubreucq B, Roudier F, Dubos C, Lepiniec L. 2011.. Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at Lysine-27. . Plant Cell 23:(11):406578
    [Crossref] [Google Scholar]
  12. 12.
    Bieluszewski T, Xiao J, Yang Y, Wagner D. PRC2 activity, recruitment, and silencing: a comparative perspective. . Trends Plant Sci. 26:(11):118698
    [Crossref] [Google Scholar]
  13. 13.
    Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, et al. 2020.. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. . Nat. Cell Biol. 22:(6):62129
    [Crossref] [Google Scholar]
  14. 14.
    Borg M, Papareddy RK, Dombey R, Axelsson E, Nodine MD, et al. 2021.. Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis. . eLife 10::e61894 14. Shed light on the transcriptional potentiation of LEC1 and BBM in sperm cells.
    [Crossref] [Google Scholar]
  15. 15.
    Boulard C, Fatihi A, Lepiniec L, Dubreucq B. 2017.. Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits. . Biochim. Biophys. Acta Gene Regul. Mech. 1860:(10):106978
    [Crossref] [Google Scholar]
  16. 16.
    Boulard C, Thévenin J, Tranquet O, Laporte V, Lepiniec L, Dubreucq B. 2018.. LEC1 (NF-YB9) directly interacts with LEC2 to control gene expression in seed. . Biochim. Biophys. Acta Gene Regul. Mech. 1861:(5):44350
    [Crossref] [Google Scholar]
  17. 17.
    Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, et al. 2011.. Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. . PLOS Genet. 7:(3):e1002014
    [Crossref] [Google Scholar]
  18. 18.
    Brady SM, Sarkar SF, Bonetta D, McCourt P. 2003.. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. . Plant J. 34:(1):6775
    [Crossref] [Google Scholar]
  19. 19.
    Brakhage AA, Andrianopoulos A, Kato M, Steidl S, Davis MA, et al. 1999.. HAP-like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. . Fungal Genet. Biol. 27:(2–3):24352
    [Crossref] [Google Scholar]
  20. 20.
    Bratzel F, López-Torrejón G, Koch M, Del Pozo JC, Calonje M. 2010.. Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. . Curr. Biol. 20:(20):185359
    [Crossref] [Google Scholar]
  21. 21.
    Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, et al. 2006.. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. . PNAS 103:(9):346873
    [Crossref] [Google Scholar]
  22. 22.
    Bryant FM, Hughes D, Hassani-Pak K, Eastmond PJ. 2019.. Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR67 transactivates DELAY OF GERMINATION1 to establish primary seed dormancy in Arabidopsis. . Plant Cell 31:(6):127688
    [Crossref] [Google Scholar]
  23. 23.
    Buijs G. 2020.. A perspective on secondary seed dormancy in Arabidopsis thaliana. . Plants 9:(6):749
    [Crossref] [Google Scholar]
  24. 24.
    Cao H, Han Y, Li J, Ding M, Li Y, et al. 2020.. Arabidopsis thaliana SEED DORMANCY 4-LIKE regulates dormancy and germination by mediating the gibberellin pathway. . J. Exp. Bot. 71:(3):91933
    [Crossref] [Google Scholar]
  25. 25.
    Carbonero P, Iglesias-Fernández R, Vicente-Carbajosa J. 2016.. The AFL subfamily of B3 transcription factors: evolution and function in angiosperm seeds. . J. Exp. Bot. 68:(4):87180
    [Google Scholar]
  26. 26.
    Carter B, Bishop B, Ho KK, Huang R, Jia W, et al. 2018.. The chromatin remodelers PKL and PIE1 act in an epigenetic pathway that determines H3K27me3 homeostasis in Arabidopsis. . Plant Cell 30:(6):133752
    [Crossref] [Google Scholar]
  27. 27.
    Castle LA, Meinke DW. 1994.. A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. . Plant Cell 6:(1):2541
    [Google Scholar]
  28. 28.
    Chan A, Carianopol C, Tsai AY-L, Varatharajah K, Chiu RS, Gazzarrini S. 2017.. SnRK1 phosphorylation of FUSCA3 positively regulates embryogenesis, seed yield, and plant growth at high temperature in Arabidopsis. . J. Exp. Bot. 68:(15):421931
    [Crossref] [Google Scholar]
  29. 29.
    Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y-H, et al. 2004.. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. . Development 131:(21):526376
    [Crossref] [Google Scholar]
  30. 30.
    Chen B, Maas L, Figueiredo D, Zhong Y, Reis R, et al. 2022.. BABY BOOM regulates early embryo and endosperm development. . PNAS 119:(25):e2201761119
    [Crossref] [Google Scholar]
  31. 31.
    Chen C, Gong X, Li Y, Li H, Zhang H, et al. 2022.. Interaction analysis between the Arabidopsis transcription repressor VAL1 and transcription coregulators SIN3-LIKEs (SNLs). . Int. J. Mol. Sci. 23:(13):6987
    [Crossref] [Google Scholar]
  32. 32.
    Chen D, Molitor A, Liu C, Shen W-H. 2010.. The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. . Cell Res. 20:(12):133244
    [Crossref] [Google Scholar]
  33. 33.
    Chen N, Veerappan V, Abdelmageed H, Kang M, Allen RD. 2018.. HSI2/VAL1 silences AGL15 to regulate the developmental transition from seed maturation to vegetative growth in Arabidopsis. . Plant Cell 30:(3):60019
    [Crossref] [Google Scholar]
  34. 34.
    Chen N, Wang H, Abdelmageed H, Veerappan V, Tadege M, Allen RD. 2020.. HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. . New Phytol. 227:(3):84056
    [Crossref] [Google Scholar]
  35. 35.
    Chen W, Wang W, Lyu Y, Wu Y, Huang P, et al. 2021.. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway. . Crop. J. 9:(1):6878
    [Crossref] [Google Scholar]
  36. 36.
    Chhun T, Chong SY, Park BS, Wong ECC, Yin J-L, et al. 2016.. HSI2 repressor recruits MED13 and HDA6 to down-regulate seed maturation gene expression directly during Arabidopsis early seedling growth. . Plant Cell Physiol. 57:(8):1689706
    [Crossref] [Google Scholar]
  37. 37.
    Chiu RS, Pan S, Zhao R, Gazzarrini S. 2016.. ABA-dependent inhibition of the ubiquitin proteasome system during germination at high temperature in Arabidopsis. . Plant J. 88:(5):74961
    [Crossref] [Google Scholar]
  38. 38.
    Delmas F, Sankaranarayanan S, Deb S, Widdup E, Bournonville C, et al. 2013.. ABI3 controls embryo degreening through Mendel's I locus. . PNAS 110:(40):E388894
    [Crossref] [Google Scholar]
  39. 39.
    Denay G, Creff A, Moussu S, Wagnon P, Thevenin J, et al. 2014.. Endosperm breakdown in Arabidopsis requires heterodimers of the basic helix-loop-helix proteins ZHOUPI and INDUCER OF CBP EXPRESSION 1. . Development 141:(6):122227
    [Crossref] [Google Scholar]
  40. 40.
    Ding ZJ, Yan JY, Li GX, Wu ZC, Zhang SQ, Zheng SJ. 2014.. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. . Plant J. 79:(5):81023
    [Crossref] [Google Scholar]
  41. 41.
    Eyster WH. 1924.. A primitive sporophyte in maize. . Am. J. Bot. 11::714
    [Crossref] [Google Scholar]
  42. 42.
    Fang Y, Qin X, Liao Q, Du R, Luo X, et al. 2022.. The genome of homosporous maidenhair fern sheds light on the euphyllophyte evolution and defences. . Nat. Plants 8:(9):102437
    [Crossref] [Google Scholar]
  43. 43.
    Fatihi A, Boulard C, Bouyer D, Baud S, Dubreucq B, Lepiniec L. 2016.. Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds. . Plant Sci. 250::198204
    [Crossref] [Google Scholar]
  44. 44.
    Finkelstein RR, Somerville CR. 1990.. Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses. . Plant Physiol. 94:(3):117279
    [Crossref] [Google Scholar]
  45. 45.
    Finnegan EJ, Robertson M, Helliwell CA. 2021.. Resetting FLOWERING LOCUS C expression after vernalization is just activation in the early embryo by a different name. . Front. Plant Sci. 11::620155
    [Crossref] [Google Scholar]
  46. 46.
    Fouracre JP, He J, Chen VJ, Sidoli S, Poethig RS. 2021.. VAL genes regulate vegetative phase change via miR156-dependent and independent mechanisms. . PLOS Genet. 17:(6):e1009626
    [Crossref] [Google Scholar]
  47. 47.
    Fouracre JP, Poethig RS. 2016.. The role of small RNAs in vegetative shoot development. . Curr. Opin. Plant Biol. 29::6472
    [Crossref] [Google Scholar]
  48. 48.
    Gao J, Zhang K, Cheng Y-J, Yu S, Shang G-D, et al. 2022.. A robust mechanism for resetting juvenility during each generation in Arabidopsis. . Nat. Plants 8:(3):25768 48. Showed that LEC2 reactivates the expression of juvenility genes MIR156A and MIR156C during embryogenesis.
    [Crossref] [Google Scholar]
  49. 49.
    Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P. 2004.. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. . Dev. Cell 7:(3):37385
    [Crossref] [Google Scholar]
  50. 50.
    Gnesutta N, Saad D, Chaves-Sanjuan A, Mantovani R, Nardini M. 2017.. Crystal structure of the Arabidopsis thaliana L1L/NF-YC3 histone-fold dimer reveals specificities of the LEC1 family of NF-Y subunits in plants. . Mol. Plant 10:(4):64548 50. Provided structural insights into how LEC1-type TFs may have sequence preference flanking the CCAAT motif.
    [Crossref] [Google Scholar]
  51. 51.
    Gong R, Cao H, Zhang J, Xie K, Wang D, Yu S. 2018.. Divergent functions of the GAGA-binding transcription factor family in rice. . Plant J. 94:(1):3247
    [Crossref] [Google Scholar]
  52. 52.
    Gremer JR, Venable DL. 2014.. Bet hedging in desert winter annual plants: optimal germination strategies in a variable environment. . Ecol. Lett. 17:(3):38087
    [Crossref] [Google Scholar]
  53. 53.
    Guo F, Zhang P, Wu Y, Lian G, Yang Z, et al. 2022.. Rice LEAFY COTYLEDON1 hinders embryo greening during the seed development. . Front. Plant Sci. 13::887980
    [Crossref] [Google Scholar]
  54. 54.
    Han J-D, Li X, Jiang C-K, Wong GK-S, Rothfels CJ, Rao G-Y. 2017.. Evolutionary analysis of the LAFL genes involved in the land plant seed maturation program. . Front. Plant Sci. 8::439
    [Google Scholar]
  55. 55.
    Hecker A, Brand LH, Peter S, Simoncello N, Kilian J, et al. 2015.. The Arabidopsis GAGA-binding factor BASIC PENTACYSTEINE6 recruits the POLYCOMB-REPRESSIVE COMPLEX1 component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA motifs. . Plant Physiol. 168:(3):101324
    [Crossref] [Google Scholar]
  56. 56.
    Henderson JT, Li H-C, Rider SD Jr., Mordhorst AP, Romero-Severson J, et al. 2004.. PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. . Plant Physiol. 134:(3):9951005
    [Crossref] [Google Scholar]
  57. 57.
    Horstman A, Li M, Heidmann I, Weemen M, Chen B, et al. 2017.. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. . Plant Physiol. 175:(2):84857
    [Crossref] [Google Scholar]
  58. 58.
    Hu Y, Zhou L, Huang M, He X, Yang Y, et al. 2018.. Gibberellins play an essential role in late embryogenesis of Arabidopsis. . Nat. Plants 4:(5):28998
    [Crossref] [Google Scholar]
  59. 59.
    Hu Y, Zhou L, Yang Y, Zhang W, Chen Z, et al. 2021.. The gibberellin signaling negative regulator RGA-LIKE3 promotes seed storage protein accumulation. . Plant Physiol. 185:(4):1697707
    [Crossref] [Google Scholar]
  60. 60.
    Huang M, Hu Y, Liu X, Li Y, Hou X. 2015.. Arabidopsis LEAFY COTYLEDON1 mediates postembryonic development via interacting with PHYTOCHROME-INTERACTING FACTOR4. . Plant Cell 27:(11):3099111
    [Crossref] [Google Scholar]
  61. 61.
    Huo H, Wei S, Bradford KJ. 2016.. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. . PNAS 113:(15):E2199206
    [Crossref] [Google Scholar]
  62. 62.
    Ikeuchi M, Iwase A, Rymen B, Harashima H, Shibata M, . 2015.. PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. . Nat. Plants 1::15089
    [Crossref] [Google Scholar]
  63. 63.
    Jia H, Suzuki M, McCarty DR. 2014.. Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks. . Wiley Interdiscip. Rev. Dev. Biol. 3:(1):13545
    [Crossref] [Google Scholar]
  64. 64.
    Jia H, Suzuki M, McCarty DR. 2021.. Structural variation affecting DNA backbone interactions underlies adaptation of B3 DNA binding domains to constraints imposed by protein architecture. . Nucleic Acids Res. 49:(9):49895002 64. Demonstrated that LEC2 and FUS3 have higher DNA binding affinity than ABI3 and VAL1.
    [Crossref] [Google Scholar]
  65. 65.
    Jo L, Pelletier JM, Harada JJ. 2019.. Central role of the LEAFY COTYLEDON1 transcription factor in seed development. . J. Integr. Plant Biol. 61:(5):56480
    [Crossref] [Google Scholar]
  66. 66.
    Jo L, Pelletier JM, Hsu S-W, Baden R, Goldberg RB, Harada JJ. 2020.. Combinatorial interactions of the LEC1 transcription factor specify diverse developmental programs during soybean seed development. . PNAS 117:(2):122332 66. Showed that soybean LEC1 partners with various TFs to regulate distinct sets of genes in seed development.
    [Crossref] [Google Scholar]
  67. 67.
    Junker A, Bäumlein H. 2012.. Multifunctionality of the LEC1 transcription factor during plant development. . Plant Signal. Behav. 7:(12):171820
    [Crossref] [Google Scholar]
  68. 68.
    Kagale S, Rozwadowski K. 2011.. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. . Epigenetics 6:(2):14146
    [Crossref] [Google Scholar]
  69. 69.
    Kagaya Y, Okuda R, Ban A, Toyoshima R, Tsutsumida K, et al. 2005.. Indirect ABA-dependent regulation of seed storage protein genes by FUSCA3 transcription factor in Arabidopsis. . Plant Cell Physiol. 46:(2):30011
    [Crossref] [Google Scholar]
  70. 70.
    Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T. 2005.. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. . Plant Cell Physiol. 46:(3):399406
    [Crossref] [Google Scholar]
  71. 71.
    Keith K, Kraml M, Dengler NG, McCourt P. 1994.. fusca3: a heterochronic mutation affecting late embryo development in Arabidopsis. . Plant Cell 6:(5):589600
    [Crossref] [Google Scholar]
  72. 72.
    Kim HU, Jung S-J, Lee K-R, Kim EH, Lee S-M, et al. 2014.. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues. . FEBS Open Bio 4:(1):2532
    [Crossref] [Google Scholar]
  73. 73.
    Kim SY, Lee J, Eshed-Williams L, Zilberman D, Sung ZR. 2012.. EMF1 and PRC2 cooperate to repress key regulators of Arabidopsis development. . PLOS Genet. 8:(3):e1002512
    [Crossref] [Google Scholar]
  74. 74.
    Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA. 2016.. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. . Plant J. 88:(6):105870
    [Crossref] [Google Scholar]
  75. 75.
    Koornneef M, Reuling G, Karssen CM. 1984.. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. . Physiol. Plant 61:(3):37783
    [Crossref] [Google Scholar]
  76. 76.
    Kroj T, Savino G, Valon C, Giraudat J, Parcy F. 2003.. Regulation of storage protein gene expression in Arabidopsis. . Development 130:(24):606573
    [Crossref] [Google Scholar]
  77. 77.
    Kurup S, Jones HD, Holdsworth MJ. 2000.. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. . Plant J. 21:(2):14355
    [Crossref] [Google Scholar]
  78. 78.
    Lafon-Placette C, Köhler C. 2014.. Embryo and endosperm, partners in seed development. . Curr. Opin. Plant Biol. 17::6469
    [Crossref] [Google Scholar]
  79. 79.
    Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, et al. 2010.. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. . PNAS 107:(18):806370
    [Crossref] [Google Scholar]
  80. 80.
    Lee H, Fischer RL, Goldberg RB, Harada JJ. 2003.. Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. . PNAS 100:(4):215256
    [Crossref] [Google Scholar]
  81. 81.
    Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou D-X, et al. 2018.. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. . Plant Reprod. 31:(3):291307
    [Crossref] [Google Scholar]
  82. 82.
    Li H-C, Chuang K, Henderson JT, Rider SD Jr., Bai Y, et al. 2005.. PICKLE acts during germination to repress expression of embryonic traits. . Plant J. 44:(6):101022
    [Crossref] [Google Scholar]
  83. 83.
    Li X-Y, Mantovani R, Hooft Van Huijsduijnen R, Andre I, Benoist C, Mathis D. 1992.. Evolutionary variation of the CCAAT-binding transcription factor NF-Y. . Nucleic Acids Res. 20:(5):108791
    [Crossref] [Google Scholar]
  84. 84.
    Liang Z, Yuan L, Xiong X, Hao Y, Song X, et al. 2022.. The transcriptional repressors VAL1 and VAL2 mediate genome-wide recruitment of the CHD3 chromatin remodeler PICKLE in Arabidopsis. . Plant Cell 34:(10):391535 84. Showed genome-wide recruitment of the chromatin remodeler PICKLE by VAL1 and VAL2.
    [Crossref] [Google Scholar]
  85. 85.
    Lim S, Park J, Lee N, Jeong J, Toh S, et al. 2013.. ABA-INSENSITIVE3, ABA-INSENSITIVE5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. . Plant Cell 25:(12):486378
    [Crossref] [Google Scholar]
  86. 86.
    Liu F, Zhang H, Ding L, Soppe WJJ, Xiang Y. 2020.. REVERSAL OF RDO5 1, a homolog of Rice Seed Dormancy4, interacts with bHLH57 and controls ABA biosynthesis and seed dormancy in Arabidopsis. . Plant Cell 32:(6):193348
    [Crossref] [Google Scholar]
  87. 87.
    Liu X, Zhang H, Zhao Y, Feng Z, Li Q, et al. 2013.. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. . PNAS 110:(38):1548590
    [Crossref] [Google Scholar]
  88. 88.
    Liu Y, Li X, Zhao J, Tang X, Tian S, et al. 2015.. Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryogenesis. . PNAS 112:(40):1243237
    [Crossref] [Google Scholar]
  89. 89.
    Locascio A, Roig-Villanova I, Bernardi J, Varotto S. 2014.. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. . Front. Plant Sci. 5::412
    [Crossref] [Google Scholar]
  90. 90.
    Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua N-H. 2002.. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. . Plant J. 32:(3):31728
    [Crossref] [Google Scholar]
  91. 91.
    Lotan T, Ohto M, Yee KM, West MAL, Lo R, et al. 1998.. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. . Cell 93:(7):1195205
    [Crossref] [Google Scholar]
  92. 92.
    Lu QS, Dela Paz J, Pathmanathan A, Chiu RS, Tsai AY-L, Gazzarrini S. 2010.. The C-terminal domain of FUSCA3 negatively regulates mRNA and protein levels, and mediates sensitivity to the hormones abscisic acid and gibberellic acid in Arabidopsis. . Plant J. 64:(1):10013
    [Google Scholar]
  93. 93.
    Luerßen H, Kirik V, Herrmann P, Miséra S. 1998.. FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. . Plant J. 15:(6):75564
    [Crossref] [Google Scholar]
  94. 94.
    Lumba S, Tsuchiya Y, Delmas F, Hezky J, Provart NJ, et al. 2012.. The embryonic leaf identity gene FUSCA3 regulates vegetative phase transitions by negatively modulating ethylene-regulated gene expression in Arabidopsis. . BMC Biol. 10:(1):8
    [Crossref] [Google Scholar]
  95. 95.
    Luo X, Ou Y, Li R, He Y. 2020.. Maternal transmission of the epigenetic ‘memory of winter cold’ in Arabidopsis. . Nat. Plants 6:(10):121118
    [Crossref] [Google Scholar]
  96. 96.
    MacGregor DR, Zhang N, Iwasaki M, Chen M, Dave A, et al. 2019.. ICE1 and ZOU determine the depth of primary seed dormancy in Arabidopsis independently of their role in endosperm development. . Plant J. 98:(2):27790
    [Crossref] [Google Scholar]
  97. 97.
    Makarevich G, Leroy O, Akinci U, Schubert D, Clarenz O, et al. 2006.. Different Polycomb group complexes regulate common target genes in Arabidopsis. . EMBO Rep. 7:(9):94752
    [Crossref] [Google Scholar]
  98. 98.
    McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK. 1991.. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. . Cell 66:(5):895905
    [Crossref] [Google Scholar]
  99. 99.
    Meinke DW. 1992.. A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons. . Science 258:(5088):164750
    [Crossref] [Google Scholar]
  100. 100.
    Meinke DW, Franzmann LH, Nickle TC, Yeung EC. 1994.. Leafy cotyledon mutants of Arabidopsis. . Plant Cell 6:(8):104964
    [Crossref] [Google Scholar]
  101. 101.
    Merini W, Romero-Campero FJ, Gomez-Zambrano A, Zhou Y, Turck F, Calonje M. 2017.. The Arabidopsis Polycomb Repressive Complex 1 (PRC1) components AtBMI1A, B, and C impact gene networks throughout all stages of plant development. . Plant Physiol. 173:(1):62741
    [Crossref] [Google Scholar]
  102. 102.
    Mikulski P, Wolff P, Lu T, Nielsen M, Echevarria EF, et al. 2022.. VAL1 acts as an assembly platform co-ordinating co-transcriptional repression and chromatin regulation at Arabidopsis FLC. . Nat. Commun. 13:(1):5542
    [Crossref] [Google Scholar]
  103. 103.
    Misra CS, Sousa AGG, Barros PM, Kermanov A, Becker JD. 2023.. Cell-type-specific alternative splicing in the Arabidopsis germline. . Plant Physiol. 192:(1):85101
    [Crossref] [Google Scholar]
  104. 104.
    Molitor AM, Bu Z, Yu Y, Shen W-H. 2014.. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. . PLOS Genet. 10:(1):e1004091
    [Crossref] [Google Scholar]
  105. 105.
    Mönke G, Seifert M, Keilwagen J, Mohr M, Grosse I, et al. 2012.. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. . Nucleic Acids Res. 40:(17):824054
    [Crossref] [Google Scholar]
  106. 106.
    Moussu S, Doll NM, Chamot S, Brocard L, Creff A, et al. 2017.. ZHOUPI and KERBEROS mediate embryo/endosperm separation by promoting the formation of an extracuticular sheath at the embryo surface. . Plant Cell 29:(7):164256
    [Crossref] [Google Scholar]
  107. 107.
    Mu Y, Liu Y, Bai L, Li S, He C, et al. 2017.. Cucumber CsBPCs regulate the expression of CsABI3 during seed germination. . Front. Plant Sci. 8::459
    [Google Scholar]
  108. 108.
    Müller K, Bouyer D, Schnittger A, Kermode AR. 2012.. Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions. . PLOS ONE 7:(12):e51532
    [Crossref] [Google Scholar]
  109. 109.
    Nambara E, Hayama R, Tsuchiya Y, Nishimura M, Kawaide H, et al. 2000.. The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination. . Dev. Biol. 220:(2):41223
    [Crossref] [Google Scholar]
  110. 110.
    Nambara E, Keith K, McCourt P, Naito S. 1994.. Isolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene. . Plant Cell Physiol. 35:(3):50913
    [Google Scholar]
  111. 111.
    Nambara E, Naito S, McCourt P. 1992.. A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. . Plant J. 2:(4):43541
    [Crossref] [Google Scholar]
  112. 112.
    Nardini M, Gnesutta N, Donati G, Gatta R, Forni C, et al. 2013.. Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. . Cell 152:(1–2):13243
    [Crossref] [Google Scholar]
  113. 113.
    Ng DW-K, Chandrasekharan MB, Hall TC. 2004.. The 5′ UTR negatively regulates quantitative and spatial expression from the ABI3 promoter. . Plant Mol. Biol. 54:(1):2538
    [Crossref] [Google Scholar]
  114. 114.
    Nodine MD, Bartel DP. 2010.. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. . Genes Dev. 24:(23):267892
    [Crossref] [Google Scholar]
  115. 115.
    Ogas J, Cheng J-C, Sung ZR, Somerville C. 1997.. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. . Science 277:(5322):9194
    [Crossref] [Google Scholar]
  116. 116.
    Oldfield AJ, Yang P, Conway AE, Cinghu S, Freudenberg JM, et al. 2014.. Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors. . Mol. Cell 55:(5):70822
    [Crossref] [Google Scholar]
  117. 117.
    O'Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A, et al. 2016.. Cistrome and epicistrome features shape the regulatory DNA landscape. . Cell 165:(5):128092
    [Crossref] [Google Scholar]
  118. 118.
    Ooms JJJ, Leon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM. 1993.. Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana: a comparative study using abscisic acid-insensitive abi3 mutants. . Plant Physiol. 102:(4):118591
    [Crossref] [Google Scholar]
  119. 119.
    Pan J, Hu Y, Wang H, Guo Q, Chen Y, et al. 2020.. Molecular mechanism underlying the synergetic effect of jasmonate on abscisic acid signaling during seed germination in Arabidopsis. . Plant Cell 32:(12):384665
    [Crossref] [Google Scholar]
  120. 120.
    Parcy F, Valon C, Kohara A, Miséra S, Giraudat J. 1997.. The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. . Plant Cell 9:(8):126577
    [Google Scholar]
  121. 121.
    Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J. 1994.. Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. . Plant Cell 6:(11):156782
    [Google Scholar]
  122. 122.
    Park J, Lee N, Kim W, Lim S, Choi G. 2011.. ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. . Plant Cell 23:(4):140415
    [Crossref] [Google Scholar]
  123. 123.
    Pelletier JM, Kwong RW, Park S, Le BH, Baden R, et al. 2017.. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. . PNAS 114:(32):E671019
    [Crossref] [Google Scholar]
  124. 124.
    Pellizzaro A, Neveu M, Lalanne D, Ly Vu B, Kanno Y, et al. 2020.. A role for auxin signaling in the acquisition of longevity during seed maturation. . New Phytol. 225:(1):28496
    [Crossref] [Google Scholar]
  125. 125.
    Penfield S, Li Y, Gilday AD, Graham S, Graham IA. 2006.. Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. . Plant Cell 18:(8):188799
    [Crossref] [Google Scholar]
  126. 126.
    Qüesta JI, Song J, Geraldo N, An H, Dean C. 2016.. Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization. . Science 353:(6298):48588
    [Crossref] [Google Scholar]
  127. 127.
    Raz V, Bergervoet JHW, Koornneef M. 2001.. Sequential steps for developmental arrest in Arabidopsis seeds. . Development 128:(2):24352
    [Crossref] [Google Scholar]
  128. 128.
    Rider SD Jr., Henderson JT, Jerome RE, Edenberg HJ, Romero-Severson J, Ogas J. 2003.. Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. . Plant J. 35:(1):3343
    [Crossref] [Google Scholar]
  129. 129.
    Roscoe TJ, Vaissayre V, Paszkiewicz G, Clavijo F, Kelemen Z, et al. 2019.. Regulation of FUSCA3 expression during seed development in Arabidopsis. . Plant Cell Physiol. 60:(2):47687
    [Crossref] [Google Scholar]
  130. 130.
    Ryu H, Cho H, Bae W, Hwang I. 2014.. Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. . Nat. Commun. 5:(1):4138
    [Crossref] [Google Scholar]
  131. 131.
    Santos Mendoza M, Dubreucq B, Miquel M, Caboche M, Lepiniec L. 2005.. LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. . FEBS Lett. 579:(21):466670
    [Crossref] [Google Scholar]
  132. 132.
    Schneider A, Aghamirzaie D, Elmarakeby H, Poudel AN, Koo AJ, et al. 2016.. Potential targets of VIVIPAROUS1/ABI3-LIKE1 (VAL1) repression in developing Arabidopsis thaliana embryos. . Plant J. 85:(2):30519
    [Crossref] [Google Scholar]
  133. 132a.
    Schubert D, Clarenz O, Goodrich J. 2005.. Epigenetic control of plant development by Polycomb-group proteins. . Curr. Opin. Plant Biol. 8:(5):55361
    [Crossref] [Google Scholar]
  134. 133.
    Shen Y, Devic M, Lepiniec L, Zhou D-X. 2015.. Chromodomain, helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes. . Plant Biotechnol. J. 13:(6):81120
    [Crossref] [Google Scholar]
  135. 134.
    Shu K, Liu X, Xie Q, He Z. 2016.. Two faces of one seed: hormonal regulation of dormancy and germination. . Mol. Plant 9:(1):3445
    [Crossref] [Google Scholar]
  136. 135.
    Smit ME, Weijers D. 2015.. The role of auxin signaling in early embryo pattern formation. . Curr. Opin. Plant Biol. 28::99105
    [Crossref] [Google Scholar]
  137. 136.
    Song J, Xie X, Chen C, Shu J, Thapa RK, et al. 2021.. LEAFY COTYLEDON1 expression in the endosperm enables embryo maturation in Arabidopsis. . Nat. Commun. 12:(1):3963 136. Showed that LEC1 protein of endospermic origin is required for embryo maturation.
    [Crossref] [Google Scholar]
  138. 137.
    Song J, Xie X, Cui Y, Zou J. 2021.. Endosperm-embryo communications: recent advances and perspectives. . Plants 10:(11):2511
    [Crossref] [Google Scholar]
  139. 138.
    Sreenivasulu N, Wobus U. 2013.. Seed-development programs: a systems biology–based comparison between dicots and monocots. . Annu. Rev. Plant Biol. 64::189217
    [Crossref] [Google Scholar]
  140. 139.
    Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, et al. 2001.. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. . PNAS 98:(20):1180611
    [Crossref] [Google Scholar]
  141. 140.
    Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, et al. 2010.. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. . PNAS 107:(13):579297
    [Crossref] [Google Scholar]
  142. 141.
    Suzuki M, Ketterling MG, Li Q-B, McCarty DR. 2003.. Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. . Plant Physiol. 132:(3):166477
    [Crossref] [Google Scholar]
  143. 142.
    Suzuki M, McCarty DR. 2008.. Functional symmetry of the B3 network controlling seed development. . Curr. Opin. Plant Biol. 11:(5):54853
    [Crossref] [Google Scholar]
  144. 143.
    Suzuki M, Wang HH-Y, McCarty DR. 2007.. Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. . Plant Physiol. 143:(2):90211
    [Crossref] [Google Scholar]
  145. 144.
    Tai HH, Tai GCC, Beardmore T. 2005.. Dynamic histone acetylation of late embryonic genes during seed germination. . Plant Mol. Biol. 59:(6):90925
    [Crossref] [Google Scholar]
  146. 145.
    Tanaka M, Kikuchi A, Kamada H. 2008.. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. . Plant Physiol. 146:(1):14961
    [Crossref] [Google Scholar]
  147. 146.
    Tang LP, Zhou C, Wang SS, Yuan J, Zhang XS, Su YH. 2017.. FUSCA3 interacting with LEAFY COTYLEDON 2 controls lateral root formation through regulating YUCCA4 gene expression in Arabidopsis thaliana. . New Phytol. 213:(4):174054
    [Crossref] [Google Scholar]
  148. 147.
    Tang X, Bian S, Tang M, Lu Q, Li S, et al. 2012.. MicroRNA-mediated repression of the seed maturation program during vegetative development in Arabidopsis. . PLOS Genet. 8:(11):e1003091
    [Crossref] [Google Scholar]
  149. 148.
    Tang X, Lim M-H, Pelletier J, Tang M, Nguyen V, et al. 2012.. Synergistic repression of the embryonic programme by SET DOMAIN GROUP 8 and EMBRYONIC FLOWER 2 in Arabidopsis seedlings. . J. Exp. Bot. 63:(3):1391404
    [Crossref] [Google Scholar]
  150. 149.
    Tao Z, Hu H, Luo X, Jia B, Du J, He Y. 2019.. Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in Arabidopsis. . Nat. Plants 5:(4):42435
    [Crossref] [Google Scholar]
  151. 150.
    Tao Z, Shen L, Gu X, Wang Y, Yu H, He Y. 2017.. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. . Nature 551:(7678):12428 150. Showed that LEC1 acts as a pioneer TF to reactivate silenced FLC in the embryo.
    [Crossref] [Google Scholar]
  152. 151.
    Tian R, Wang F, Zheng Q, Niza VMAGE, Downie AB, Perry SE. 2020.. Direct and indirect targets of the arabidopsis seed transcription factor ABSCISIC ACID INSENSITIVE3. . Plant J. 103:(5):167994
    [Crossref] [Google Scholar]
  153. 152.
    To A, Valon C, Savino G, Guilleminot J, Devic M, et al. 2006.. A network of local and redundant gene regulation governs Arabidopsis seed maturation. . Plant Cell 18:(7):164251
    [Crossref] [Google Scholar]
  154. 153.
    Tsukagoshi H, Morikami A, Nakamura K. 2007.. Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings. . PNAS 104:(7):254347
    [Crossref] [Google Scholar]
  155. 154.
    Vashisht D, Nodine MD. 2014.. MicroRNA functions in plant embryos. . Biochem. Soc. Trans. 42:(2):35257
    [Crossref] [Google Scholar]
  156. 155.
    Verma S, Attuluri VPS, Robert HS. 2022.. Transcriptional control of Arabidopsis seed development. . Planta 255:(4):90
    [Crossref] [Google Scholar]
  157. 156.
    Wang F, Perry SE. 2013.. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. . Plant Physiol. 161:(3):125164
    [Crossref] [Google Scholar]
  158. 157.
    Wang H, Guo J, Lambert KN, Lin Y. 2007.. Developmental control of Arabidopsis seed oil biosynthesis. . Planta 226:(3):77383
    [Crossref] [Google Scholar]
  159. 158.
    Wendrich JR, Weijers D. 2013.. The Arabidopsis embryo as a miniature morphogenesis model. . New Phytol. 199:(1):1425
    [Crossref] [Google Scholar]
  160. 159.
    West Mal, Yee KM, Danao J, Zimmerman JL, Fischer RL, et al. 1994.. LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. . Plant Cell 6:(12):173145
    [Crossref] [Google Scholar]
  161. 160.
    Whittaker C, Dean C. 2017.. The FLC locus: a platform for discoveries in epigenetics and adaptation. . Annu. Rev. Cell Dev. Biol. 33::55575
    [Crossref] [Google Scholar]
  162. 161.
    Willmann MR, Mehalick AJ, Packer RL, Jenik PD. 2011.. MicroRNAs regulate the timing of embryo maturation in Arabidopsis. . Plant Physiol. 155:(4):187184
    [Crossref] [Google Scholar]
  163. 162.
    Wu J, Mohamed D, Dowhanik S, Petrella R, Gregis V, et al. 2020.. Spatiotemporal restriction of FUSCA3 expression by class I BPCs promotes ovule development and coordinates embryo and endosperm growth. . Plant Cell 32:(6):1886904 162. Showed that BPC1 and BPC2 repress FUSCA3 to promote ovule development and coordinate embryo and endosperm growth.
    [Crossref] [Google Scholar]
  164. 163.
    Wu T, Alizadeh M, Lu B, Cheng J, Hoy R, et al. 2022.. The transcriptional co-repressor SEED DORMANCY 4-LIKE (AtSDR4L) promotes the embryonic-to-vegetative transition in Arabidopsis thaliana. . J. Integr. Plant Biol. 64:(11):207596 163. Showed that AtSDR4L promotes the embryonic-to-vegetative-stage transition by directly binding to LEC1 and repressing AFL.
    [Crossref] [Google Scholar]
  165. 164.
    Xiao J, Jin R, Wagner D. 2017.. Developmental transitions: integrating environmental cues with hormonal signaling in the chromatin landscape in plants. . Genome Biol. 18:(1):88
    [Crossref] [Google Scholar]
  166. 165.
    Xiao J, Jin R, Yu X, Shen M, Wagner JD, et al. 2017.. Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. . Nat. Genet. 49:(10):154652 165. Demonstrated that PRC2 is recruited to Polycomb response elements by TFs of different families.
    [Crossref] [Google Scholar]
  167. 166.
    Xu F, Kuo T, Rosli Y, Liu M-S, Wu L, et al. 2018.. Trithorax group proteins act together with a Polycomb group protein to maintain chromatin integrity for epigenetic silencing during seed germination in Arabidopsis. . Mol. Plant 11:(5):65977
    [Crossref] [Google Scholar]
  168. 167.
    Xu G, Tao Z, He Y. 2022.. Embryonic reactivation of FLOWERING LOCUS C by ABSCISIC ACID-INSENSITIVE 3 establishes the vernalization requirement in each Arabidopsis generation. . Plant Cell 34:(6):220521
    [Crossref] [Google Scholar]
  169. 168.
    Yamamoto A, Kagaya Y, Toyoshima R, Kagaya M, Takeda S, Hattori T. 2009.. Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specific ABRE-binding factors. . Plant J. 58:(5):84356
    [Crossref] [Google Scholar]
  170. 169.
    Yamamoto A, Kagaya Y, Usui H, Hobo T, Takeda S, Hattori T. 2010.. Diverse roles and mechanisms of gene regulation by the Arabidopsis seed maturation master regulator FUS3 revealed by microarray analysis. . Plant Cell Physiol. 51:(12):203146
    [Crossref] [Google Scholar]
  171. 170.
    Yang C, Bratzel F, Hohmann N, Koch M, Turck F, Calonje M. 2013.. VAL- and AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in Arabidopsis. . Curr. Biol. 23:(14):132429
    [Crossref] [Google Scholar]
  172. 171.
    Yang D, Zhao F, Zhu D, Chen X, Kong X, et al. 2022.. Progressive chromatin silencing of ABA biosynthesis genes permits seed germination in Arabidopsis. . Plant Cell 34:(8):287191
    [Crossref] [Google Scholar]
  173. 172.
    Yang Z, Liu X, Wang K, Li Z, Jia Q, et al. 2022.. ABA-INSENSITIVE 3 with or without FUSCA3 highly up-regulates lipid droplet proteins and activates oil accumulation. . J. Exp. Bot. 73:(7):207792
    [Crossref] [Google Scholar]
  174. 173.
    Yuan L, Song X, Zhang L, Yu Y, Liang Z, et al. 2021.. The transcriptional repressors VAL1 and VAL2 recruit PRC2 for genome-wide Polycomb silencing in Arabidopsis. . Nucleic Acids Res. 49:(1):98113
    [Crossref] [Google Scholar]
  175. 174.
    Yuan W, Luo X, Li Z, Yang W, Wang Y, et al. 2016.. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. . Nat. Genet. 48:(12):152734
    [Crossref] [Google Scholar]
  176. 175.
    Zemzoumi K, Frontini M, Bellorini M, Mantovani R. 1999.. NF-Y histone fold α1 helices help impart CCAAT specificity. . J. Mol. Biol. 286:(2):32737
    [Crossref] [Google Scholar]
  177. 176.
    Zhang H, Bishop B, Ringenberg W, Muir WM, Ogas J. 2012.. The CHD3 remodeler PICKLE associates with genes enriched for trimethylation of histone H3 lysine 27. . Plant Physiol. 159:(1):41832
    [Crossref] [Google Scholar]
  178. 177.
    Zhang H, Rider SD Jr., Henderson JT, Fountain M, Chuang K, et al. 2008.. The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27. . J. Biol. Chem. 283:(33):2263748
    [Crossref] [Google Scholar]
  179. 178.
    Zhao B, Zhang H, Chen T, Ding L, Zhang L, et al. 2022.. Sdr4 dominates pre-harvest sprouting and facilitates adaptation to local climatic condition in Asian cultivated rice. . J. Integr. Plant Biol. 64:(6):124663
    [Crossref] [Google Scholar]
  180. 179.
    Zhao P, Zhou X, Shen K, Liu Z, Cheng T, et al. 2019.. Two-step maternal-to-zygotic transition with two-phase parental genome contributions. . Dev. Cell 49:(6):88293.e5
    [Crossref] [Google Scholar]
  181. 180.
    Zheng L, Otani M, Kanno Y, Seo M, Yoshitake Y, et al. 2022.. Seed dormancy 4 like1 of Arabidopsis is a key regulator of phase transition from embryo to vegetative development. . Plant J. 112:(2):46075
    [Crossref] [Google Scholar]
  182. 181.
    Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE. 2009.. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. . Plant Cell 21:(9):256377
    [Crossref] [Google Scholar]
  183. 182.
    Zhou Y, Tan B, Luo M, Li Y, Liu C, et al. 2013.. HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings. . Plant Cell 25:(1):13448
    [Crossref] [Google Scholar]
  184. 183.
    Zhu Y, Hu X, Duan Y, Li S, Wang Y, et al. 2020.. The Arabidopsis nodulin homeobox factor AtNDX interacts with AtRING1A/B and negatively regulates abscisic acid signaling. . Plant Cell 32:(3):70321
    [Crossref] [Google Scholar]
  185. 184.
    Zong W, Kim J, Bordiya Y, Qiao H, Sung S. 2022.. Abscisic acid negatively regulates the Polycomb-mediated H3K27me3 through the PHD-finger protein, VIL1. . New Phytol. 235:(3):105769
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-070623-111458
Loading
/content/journals/10.1146/annurev-arplant-070623-111458
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error