1932

Abstract

GATA factors are evolutionarily conserved transcription factors that are found in animals, fungi, and plants. Compared to that of animals, the size of the plant GATA family is increased. In angiosperms, four main GATA classes and seven structural subfamilies can be defined. In recent years, knowledge about the biological role and regulation of plant GATAs has substantially improved. Individual family members have been implicated in the regulation of photomorphogenic growth, chlorophyll biosynthesis, chloroplast development, photosynthesis, and stomata formation, as well as root, leaf, and flower development. In this review, we summarize the current knowledge of plant GATA factors. Using phylogenomic analysis, we trace the evolutionary origin of the GATA classes in the green lineage and examine their relationship to animal and fungal GATAs. Finally, we speculate about a possible conservation of GATA-regulated functions across the animal, fungal, and plant kingdoms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-072221-092913
2022-05-20
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-072221-092913.html?itemId=/content/journals/10.1146/annurev-arplant-072221-092913&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    An Y, Han X, Tang S, Xia X, Yin W 2014. Poplar GATA transcription factor PdGNC is capable of regulating chloroplast ultrastructure, photosynthesis, and vegetative growth in Arabidopsis under varying nitrogen levels. Plant Cell Tissue Organ Cult. 119:313–27
    [Google Scholar]
  2. 2.
    An Y, Zhou Y, Han X, Shen C, Wang S et al. 2020. The GATA transcription factor GNC plays an important role in photosynthesis and growth in poplar. J. Exp. Bot. 71:1969–84
    [Google Scholar]
  3. 3.
    Aravind L, Iyer LM. 2012. The HARE-HTH and associated domains. Cell Cycle 11:119–31An analysis of the shuffling of protein domains in different species and kingdoms in combination with DNA-binding domains.
    [Google Scholar]
  4. 4.
    Argüello-Astorga G, Herrera-Estrella L. 1998. Evolution of light-regulated plant promoters. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:525–55
    [Google Scholar]
  5. 5.
    Arst HN, Cove DJ. 1973. Nitrogen metabolite repression in Aspergillus nidulans. Mol. Gen. Genet. 126:111–41
    [Google Scholar]
  6. 6.
    Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2:28–36
    [Google Scholar]
  7. 7.
    Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G 1996. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–57
    [Google Scholar]
  8. 8.
    Bastakis E, Hedtke B, Klermund C, Grimm B, Schwechheimer C. 2018. LLM-domain B-GATA transcription factors play multifaceted roles in controlling greening in Arabidopsis. Plant Cell 30:582–99This detailed genetic and molecular analysis identifies several genes related to chlorophyll biosynthesis and chloroplast transcription as direct targets of AtGNC and AtGNL.
    [Google Scholar]
  9. 9.
    Behringer C, Bastakis E, Ranftl QL, Mayer KF, Schwechheimer C. 2014. Functional diversification within the family of B-GATA transcription factors through the leucine-leucine-methionine domain. Plant Physiol. 166:293–305Through LLM domain deletion and mutation, this study proves the relevance of the LLM domain for the full functionality of LLM domain–containing B-GATAs.
    [Google Scholar]
  10. 10.
    Behringer C, Schwechheimer C. 2015. B-GATA transcription factors—insights into their structure, regulation, and role in plant development. Front. Plant Sci. 6:90
    [Google Scholar]
  11. 11.
    Bi YM, Zhang Y, Signorelli T, Zhao R, Zhu T, Rothstein S. 2005. Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. Plant J 44:680–92
    [Google Scholar]
  12. 12.
    Bresnick EH, Katsumura KR, Lee HY, Johnson KD, Perkins AS 2012. Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies. Nucleic Acids Res 40:5819–31
    [Google Scholar]
  13. 13.
    Buchler JW. 1975. Static coordination chemistry of metalloporphyrins. Porphyrins and Metalloporphyrins: A New Edition Based on the Original Volume by J. E. Falk KM Smith 157–231 Amsterdam: Elsevier
    [Google Scholar]
  14. 14.
    Caddick MX. 1994. Nitrogen metabolite repression. Prog. Ind. Microbiol. 29:323–53
    [Google Scholar]
  15. 15.
    Chiang YH, Zubo YO, Tapken W, Kim HJ, Lavanway AM et al. 2012. Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth, and division in Arabidopsis. Plant Physiol. 160:332–48A study on the role of AtGNC and AtGNL in chloroplast development and division.
    [Google Scholar]
  16. 16.
    Chlon TM, Crispino JD. 2012. Combinatorial regulation of tissue specification by GATA and FOG factors. Development 139:3905–16FOG is a GATA-interacting factor of human and Drosophila GATA; no bona fide protein interactors of plant GATAs have been identified to date.
    [Google Scholar]
  17. 17.
    Choi D, Choi J, Kang B, Lee S, Cho YH et al. 2014. iNID: an analytical framework for identifying network models for interplays among developmental signaling in Arabidopsis. Mol. Plant 7:792–813
    [Google Scholar]
  18. 18.
    Chudzicka-Ormaniec P, Macios M, Koper M, Weedall GD, Caddick MX et al. 2019. The role of the GATA transcription factor AreB in regulation of nitrogen and carbon metabolism in Aspergillus nidulans. FEMS Microbiol. Lett. 366:fnz066
    [Google Scholar]
  19. 19.
    Cooper TG. 2002. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol. Rev. 26:223–38
    [Google Scholar]
  20. 20.
    De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W et al. 2010. A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr. Biol. 20:1697–706
    [Google Scholar]
  21. 21.
    Ding L, Yan S, Jiang L, Zhao W, Ning K et al. 2015. HANABA TARANU (HAN) bridges meristem and organ primordia boundaries through PINHEAD, JAGGED, BLADE-ON-PETIOLE2 and CYTOKININ OXIDASE 3 during flower development in Arabidopsis. PLOS Genet. 11:e1005479This study describes the interplay of HAN GATA factors with other developmental regulators during flower development.
    [Google Scholar]
  22. 22.
    Duan Z, Zhang Y, Tu J, Shen J, Yi B et al. 2020. The Brassica napus GATA transcription factor BnA5.ZML1 is a stigma compatibility factor. J. Integr. Plant Biol. 62:1112–31The only report to date ascribing a biological role to C-GATAs.
    [Google Scholar]
  23. 23.
    Dunlap JC, Loros JJ. 2004. The Neurospora circadian system. J. Biol. Rhythms 19:414–24
    [Google Scholar]
  24. 24.
    Endo H, Yamaguchi M, Tamura T, Nakano Y, Nishikubo N et al. 2015. Multiple classes of transcription factors regulate the expression of VASCULAR-RELATED NAC-DOMAIN7, a master switch of xylem vessel differentiation. Plant Cell Physiol 56:242–54
    [Google Scholar]
  25. 25.
    Friml J, Vieten A, Sauer M, Weijers D, Schwarz H et al. 2003. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426:147–53
    [Google Scholar]
  26. 26.
    Fujiwara Y, Browne CP, Cunniff K, Goff SC, Orkin SH. 1996. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. PNAS 93:12355–58
    [Google Scholar]
  27. 27.
    Fuller KK, Dunlap JC, Loros JJ. 2016. Fungal light sensing at the bench and beyond. Adv. Genet. 96:1–51
    [Google Scholar]
  28. 28.
    Gaudinier A, Rodriguez-Medina J, Zhang L, Olson A, Liseron-Monfils C et al. 2018. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature 563:259–64
    [Google Scholar]
  29. 29.
    Gauthier GM, Sullivan TD, Gallardo SS, Brandhorst TT, Vanden Wymelenberg AJ et al. 2010. SREB, a GATA transcription factor that directs disparate fates in Blastomyces dermatitidis including morphogenesis and siderophore biosynthesis. PLOS Pathog 6:e1000846
    [Google Scholar]
  30. 30.
    Georis I, Feller A, Vierendeels F, Dubois E. 2009. The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation. Mol. Cell. Biol. 29:3803–15
    [Google Scholar]
  31. 31.
    Gillis WQ, Bowerman BA, Schneider SQ. 2008. The evolution of protostome GATA factors: Molecular phylogenetics, synteny, and intron/exon structure reveal orthologous relationships. BMC Evol. Biol. 8:112
    [Google Scholar]
  32. 32.
    Gupta P, Nutan KK, Singla-Pareek SL, Pareek A. 2017. Abiotic stresses cause differential regulation of alternative splice forms of GATA transcription factor in rice. Front. Plant Sci. 8:1944
    [Google Scholar]
  33. 33.
    Haas H, Angermayr K, Stöffler G 1997. Molecular analysis of a Penicillium chrysogenum GATA factor encoding gene (sreP) exhibiting significant homology to the Ustilago maydis urbs1 gene. Gene 184:33–37
    [Google Scholar]
  34. 34.
    Haas H, Zadra I, Stöffler G, Angermayr K. 1999. The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J. Biol. Chem. 274:4613–19
    [Google Scholar]
  35. 35.
    Harel A, Bromberg Y, Falkowski PG, Bhattacharya D. 2014. Evolutionary history of redox metal-binding domains across the tree of life. PNAS 111:7042–47
    [Google Scholar]
  36. 36.
    Hayama R, Yang P, Valverde F, Mizoguchi T, Furutani-Hayama I et al. 2019. Ubiquitin carboxyl-terminal hydrolases are required for period maintenance of the circadian clock at high temperature in Arabidopsis. Sci. Rep. 9:17030
    [Google Scholar]
  37. 37.
    He P, Wang X, Zhang X, Jiang Y, Tian W et al. 2018. Short and narrow flag leaf1, a GATA zinc finger domain-containing protein, regulates flag leaf size in rice (Oryza sativa). BMC Plant Biol 18:273
    [Google Scholar]
  38. 38.
    He QP, Zhao S, Wang JX, Li CX, Yan YS et al. 2018. Transcription factor NsdD regulates the expression of genes involved in plant biomass-degrading enzymes, conidiation, and pigment biosynthesis in Penicillium oxalicum. Appl. Environ. Microbiol. 84:e01039–18
    [Google Scholar]
  39. 39.
    Hider RC, Kong X. 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27:637–57
    [Google Scholar]
  40. 40.
    Hofman-Bang J. 1999. Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol. Biotechnol. 12:35–73
    [Google Scholar]
  41. 41.
    Horiguchi G, Kim GT, Tsukaya H. 2005. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43:68–78
    [Google Scholar]
  42. 42.
    Hudson D, Guevara DR, Hand AJ, Xu Z, Hao L et al. 2013. Rice cytokinin GATA transcription factor1 regulates chloroplast development and plant architecture. Plant Physiol 162:132–44
    [Google Scholar]
  43. 43.
    Hudson D, Guevara DR, Yaish MW, Hannam C, Long N et al. 2011. GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT) expression in Arabidopsis. PLOS ONE 6:e26765
    [Google Scholar]
  44. 44.
    Idnurm A, Verma S, Corrochano LM. 2010. A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet. Biol. 47:881–92
    [Google Scholar]
  45. 45.
    Jarai G, Truong H-N, Daniel-Vedele F, Marzluf GA. 1992. NIT2, the nitrogen regulatory protein of Neurospora crassa, binds upstream of nia, the tomato nitrate reductase gene, in vitro. Curr. Genet. 21:37–41
    [Google Scholar]
  46. 46.
    Jiang K, Yung V, Chiba T, Feldman LJ 2018. Longitudinal patterning in roots: A GATA2–auxin interaction underlies and maintains the root transition domain. Planta 247:831–43
    [Google Scholar]
  47. 47.
    Kanei M, Horiguchi G, Tsukaya H. 2012. Stable establishment of cotyledon identity during embryogenesis in Arabidopsis by ANGUSTIFOLIA3 and HANABA TARANU. . Development 139:2436–46
    [Google Scholar]
  48. 48.
    Kim M, Xi H, Park J. 2021. Genome-wide comparative analyses of GATA transcription factors among 19 Arabidopsis ecotype genomes: intraspecific characteristics of GATA transcription factors. PLOS ONE 16:e0252181
    [Google Scholar]
  49. 49.
    Klermund C, Ranftl QL, Diener J, Bastakis E, Richter R, Schwechheimer C. 2016. LLM-domain B-GATA transcription factors promote stomatal development downstream of light signaling pathways in Arabidopsis thaliana hypocotyls. Plant Cell 28:646–60
    [Google Scholar]
  50. 50.
    Kloehn J, Harding CR, Soldati-Favre D. 2021. Supply and demand—heme synthesis, salvage and utilization by Apicomplexa. FEBS J 288:382–404
    [Google Scholar]
  51. 51.
    Kobayashi K, Ohnishi A, Sasaki D, Fujii S, Iwase A et al. 2017. Shoot removal induces chloroplast development in roots via cytokinin signaling. Plant Physiol 173:2340–55
    [Google Scholar]
  52. 52.
    Kollmer I, Werner T, Schmulling T 2011. Ectopic expression of different cytokinin-regulated transcription factor genes of Arabidopsis thaliana alters plant growth and development. J. Plant Physiol. 168:1320–27
    [Google Scholar]
  53. 53.
    Lamb HK, Ren J, Park A, Johnson C, Leslie K et al. 2004. Modulation of the ligand binding properties of the transcription repressor NmrA by GATA-containing DNA and site-directed mutagenesis. Protein Sci 13:3127–38
    [Google Scholar]
  54. 54.
    Lentjes MHFM, Niessen HEC, Akiyama Y, de Bruïne AP, Melotte V, van Engeland M. 2016. The emerging role of GATA transcription factors in development and disease. Expert Rev. Mol. Med. 18:e3
    [Google Scholar]
  55. 55.
    Leong SA, Winkelmann G. 1998. Molecular biology of iron transport in fungi. Met. Ions Biol. Syst. 35:147–86
    [Google Scholar]
  56. 56.
    Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–96
    [Google Scholar]
  57. 57.
    Li Y, Mullin M, Zhang Y, Drews F, Welch LR, Showalter AM 2020. Identification of cis-regulatory sequences controlling pollen-specific expression of hydroxyproline-rich glycoprotein genes in Arabidopsis thaliana. Plants 9:1751
    [Google Scholar]
  58. 58.
    Liu PP, Koizuka N, Martin RC, Nonogaki H 2005. The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination. Plant J 44:960–71
    [Google Scholar]
  59. 59.
    Liu Y, Ma M, Li G, Yuan L, Xie Y et al. 2020. Transcription factors FHY3 and FAR1 regulate light-induced CIRCADIAN CLOCK ASSOCIATED1 gene expression in Arabidopsis. Plant Cell 32:1464–78
    [Google Scholar]
  60. 60.
    Lowry JA, Atchley WR. 2000. Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J. Mol. Evol. 50:103–15
    [Google Scholar]
  61. 61.
    Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC et al. 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–68
    [Google Scholar]
  62. 62.
    Luo X-M, Lin W-H, Zhu S, Zhu JY, Sun Y et al. 2010. Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Dev. Cell 19:872–83
    [Google Scholar]
  63. 63.
    Macios M, Caddick MX, Weglenski P, Scazzocchio C, Dzikowska A. 2012. The GATA factors AREA and AREB together with the co-repressor NMRA, negatively regulate arginine catabolism in Aspergillus nidulans in response to nitrogen and carbon source. Fungal Genet. Biol. 49:189–98
    [Google Scholar]
  64. 64.
    Magasanik B. 2005. The transduction of the nitrogen regulation signal in Saccharomyces cerevisiae. PNAS 102:16537–38
    [Google Scholar]
  65. 65.
    Manfield IW, Devlin PF, Jen C-H, Westhead DR, Gilmartin PM. 2007. Conservation, convergence, and divergence of light-responsive, circadian-regulated, and tissue-specific expression patterns during evolution of the Arabidopsis GATA gene family. Plant Physiol 143:941–58
    [Google Scholar]
  66. 66.
    Mara CD, Irish VF 2008. Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis. Plant Physiol 147:707–18
    [Google Scholar]
  67. 67.
    Marmorstein R. 2003. Structure of SET domain proteins: a new twist on histone methylation. Trends Biochem. Sci. 28:59–62
    [Google Scholar]
  68. 68.
    Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP. 2003. The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem. Sci. 28:69–74
    [Google Scholar]
  69. 69.
    Millard CJ, Fairall L, Schwabe JWR. 2014. Towards an understanding of the structure and function of MTA1. Cancer Metastasis Rev 33:857–67
    [Google Scholar]
  70. 70.
    Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA et al. 2021. Pfam: The protein families database in 2021. Nucleic Acids Res 49:D412–19
    [Google Scholar]
  71. 71.
    Monahan BJ, Askin MC, Hynes MJ, Davis MA. 2006. Differential expression of Aspergillus nidulans ammonium permease genes is regulated by GATA transcription factor AreA. Eukaryot. Cell 5:226–37
    [Google Scholar]
  72. 72.
    Naito T, Kiba T, Koizumi N, Yamashino T, Mizuno T 2007. Characterization of a unique GATA family gene that responds to both light and cytokinin in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 71:1557–60
    [Google Scholar]
  73. 73.
    Nawy T, Bayer M, Mravec J, Friml J, Birnbaum KD, Lukowitz W. 2010. The GATA factor HANABA TARANU is required to position the proembryo boundary in the early Arabidopsis embryo. Dev. Cell 19:103–13A careful developmental analysis of HAN-domain B-GATA function during embryogenesis.
    [Google Scholar]
  74. 74.
    Nicolson GL, Nawa A, Toh Y, Taniguchi S, Nishimori K, Moustafa A 2003. Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation. Clin. Exp. Metastas. 20:19–24
    [Google Scholar]
  75. 75.
    Nishii A, Takemura M, Fujita H, Shikata M, Yokota A, Kohchi T 2000. Characterization of a novel gene encoding a putative single zinc-finger protein, ZIM, expressed during the reproductive phase in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 64:1402–9
    [Google Scholar]
  76. 76.
    Osuna D, Usadel B, Morcuende R, Gibon Y, Bläsing OE et al. 2007. Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. Plant J 49:463–91
    [Google Scholar]
  77. 77.
    Papadopoulos JS, Agarwala R. 2007. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–79
    [Google Scholar]
  78. 78.
    Park J, Kim H, Kim S, Kong S, Park J et al. 2006. A comparative genome-wide analysis of GATA transcription factors in fungi. Genom. Inform. 4:147–160
    [Google Scholar]
  79. 79.
    Patient RK, McGhee JD. 2002. The GATA family (vertebrates and invertebrates). Curr. Opin. Genet. Dev. 12:416–22
    [Google Scholar]
  80. 80.
    Peng H, Prokop J, Karar J, Park K, Cao L et al. 2018. Familial and somatic BAP1 mutations inactivate ASXL1/2-mediated allosteric regulation of BAP1 deubiquitinase by targeting multiple independent domains. Cancer Res 78:1200–13
    [Google Scholar]
  81. 81.
    Phillips JD. 2019. Heme biosynthesis and the porphyrias. Mol. Genet. Metab. 128:164–77
    [Google Scholar]
  82. 82.
    Plevin MJ, Mills MM, Ikura M. 2005. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem. Sci. 30:66–69
    [Google Scholar]
  83. 83.
    Preston JC, Powers B, Kostyun JL, Driscoll H, Zhang F, Zhong J. 2019. Implications of region-specific gene expression for development of the partially fused petunia corolla. Plant J 100:158–75
    [Google Scholar]
  84. 84.
    Ranftl QL, Bastakis E, Klermund C, Schwechheimer C. 2016. LLM-Domain containing B-GATA factors control different aspects of cytokinin-regulated development in Arabidopsis thaliana. Plant Physiol 170:2295–311A description of a complex mutant with defects in most Arabidopsis LLM-domain B-GATA genes.
    [Google Scholar]
  85. 85.
    Rastogi R, Bate NJ, Sivasankar S, Rothstein SJ 1997. Footprinting of the spinach nitrite reductase gene promoter reveals the preservation of nitrate regulatory elements between fungi and higher plants. Plant Mol. Biol. 34:465–76
    [Google Scholar]
  86. 86.
    Ravindran P, Verma V, Stamm P, Kumar PP. 2017. A novel RGL2-DOF6 complex contributes to primary seed dormancy in Arabidopsis thaliana by regulating a GATA transcription factor. Mol. Plant 10:1307–20
    [Google Scholar]
  87. 87.
    Rayko E, Maumus F, Maheswari U, Jabbari K, Bowler C 2010. Transcription factor families inferred from genome sequences of photosynthetic stramenopiles. New Phytol 188:52–66
    [Google Scholar]
  88. 88.
    Reyes JC, Muro-Pastor MI, Florencio FJ. 2004. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134:1718–32
    [Google Scholar]
  89. 89.
    Richter R, Bastakis E, Schwechheimer C 2013. Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis. Plant Physiol 162:1992–2004
    [Google Scholar]
  90. 90.
    Richter R, Behringer C, Müller IK, Schwechheimer C. 2010. The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes Dev 24:2093–104
    [Google Scholar]
  91. 91.
    Richter R, Behringer C, Zourelidou M, Schwechheimer C. 2013. Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. PNAS 110:13192–97
    [Google Scholar]
  92. 92.
    Scazzocchio C. 2000. The fungal GATA factors. Curr. Opin. Microbiol. 3:126–31
    [Google Scholar]
  93. 93.
    Scheible W-R, Morcuende R, Czechowski T, Fritz C, Osuna D et al. 2004. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–99
    [Google Scholar]
  94. 94.
    Scheid R, Chen J, Zhong X 2021. Biological role and mechanism of chromatin readers in plants. Curr. Opin. Plant Biol. 61:102008
    [Google Scholar]
  95. 95.
    Schiessl K, Muiño JM, Sablowski R. 2014. Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors. PNAS 111:2830–35
    [Google Scholar]
  96. 96.
    Shikata M, Matsuda Y, Ando K, Nishii A, Takemura M et al. 2004. Characterization of Arabidopsis ZIM, a member of a novel plant-specific GATA factor gene family. J. Exp. Bot. 55:631–39
    [Google Scholar]
  97. 97.
    Shin JM, Chung K, Sakamoto S, Kojima S, Yeh C-M et al. 2017. The chimeric repressor for the GATA4 transcription factor improves tolerance to nitrogen deficiency in Arabidopsis. Plant Biotechnol. 34:151–58
    [Google Scholar]
  98. 98.
    Solari F, Bateman A, Ahringer J. 1999. The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development 126:2483–94
    [Google Scholar]
  99. 99.
    Strayer C, Oyama T, Schultz TF, Raman R, Somers DE et al. 2000. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–71
    [Google Scholar]
  100. 100.
    Tahoun M, Gee CT, McCoy VE, Sander PM, Müller CE. 2021. Chemistry of porphyrins in fossil plants and animals. RSC Adv 11:7552–63
    [Google Scholar]
  101. 101.
    Terzaghi WB, Cashmore AR. 1995. Light-regulated transcription. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:445–74
    [Google Scholar]
  102. 102.
    Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–35
    [Google Scholar]
  103. 103.
    Tripathi K, Kumar N, Singh M, Singh RK 2020. Fungal siderophore: biosynthesis, transport, regulation, and potential applications. Rhizosphere Microbes SK Sharma, UB Singh, PK Sahu, HV Singh, PK Sharma 387–408 Singapore: Springer
    [Google Scholar]
  104. 104.
    Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu C et al. 1997. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90:109–19
    [Google Scholar]
  105. 105.
    Unamba CIN, Nag A, Sharma RK. 2015. Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front. Plant Sci. 6:1074
    [Google Scholar]
  106. 106.
    Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G. 2007. The tify family previously known as ZIM. Trends Plant Sci 12:239–44
    [Google Scholar]
  107. 107.
    Voisard C, Wang J, McEvoy JL, Xu P, Leong SA. 1993. urbsl, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol. Cell Biol. 13:7091–100
    [Google Scholar]
  108. 108.
    Wang B, Zhou X, Loros JJ, Dunlap JC. 2015. Alternative use of DNA binding domains by the Neurospora White Collar complex dictates circadian regulation and light responses. Mol. Cell Biol. 36:781–93
    [Google Scholar]
  109. 109.
    Wang H, Wang H 2015. Multifaceted roles of FHY3 and FAR1 in light signaling and beyond. Trends Plant Sci 20:453–61
    [Google Scholar]
  110. 110.
    Wang L, Yin H, Qian Q, Yang J, Huang C et al. 2009. NECK LEAF 1, a GATA type transcription factor, modulates organogenesis by regulating the expression of multiple regulatory genes during reproductive development in rice. Cell Res 19:598–611
    [Google Scholar]
  111. 111.
    Whipple CJ, Hall DH, DeBlasio S, Taguchi-Shiobara F, Schmidt RJ, Jackson DP. 2010. A conserved mechanism of bract suppression in the grass family. Plant Cell 22:565–78Identification of a novel HAN factor from grass species with a conserved role in the suppression of bract leaf development.
    [Google Scholar]
  112. 112.
    Xiao X, Fu YH, Marzluf GA. 1995. The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Biochemistry 34:8861–68
    [Google Scholar]
  113. 113.
    Xu Y, Wang H, Lu Z, Wen L, Gu Z et al. 2021. Developmental analysis of the GATA factor HANABA TARANU mutants in Medicago truncatula reveals their roles in nodule formation. Front. Plant Sci. 12:616776
    [Google Scholar]
  114. 114.
    Xu Z, Casaretto JA, Bi Y-M, Rothstein SJ. 2017. Genome-wide binding analysis of AtGNC and AtCGA1 demonstrates their cross-regulation and common and specific functions. Plant Direct 1:e00016
    [Google Scholar]
  115. 115.
    Yang P, Smalle J, Lee S, Yan N, Emborg TJ, Vierstra RD 2007. Ubiquitin C-terminal hydrolases 1 and 2 affect shoot architecture in Arabidopsis. Plant J 51:441–57
    [Google Scholar]
  116. 116.
    Zhang X, Zhou Y, Ding L, Wu Z, Liu R, Meyerowitz EM. 2013. Transcription repressor HANABA TARANU controls flower development by integrating the actions of multiple hormones, floral organ specification genes, and GATA3 family genes in Arabidopsis. Plant Cell 25:83–101
    [Google Scholar]
  117. 117.
    Zhang Y-J, Zhang Y, Zhang L-L, Huang H-Y, Yang B-J et al. 2018. OsGATA7 modulates brassinosteroids-mediated growth regulation and influences architecture and grain shape. Plant Biotechnol. J. 16:1261–64
    [Google Scholar]
  118. 118.
    Zhao T, Wu T, Pei T, Wang Z, Yang H et al. 2021. Overexpression of SlGATA17 promotes drought tolerance in transgenic tomato plants by enhancing activation of the phenylpropanoid biosynthetic pathway. Front. Plant Sci. 12:634888
    [Google Scholar]
  119. 119.
    Zhao Y, Medrano L, Ohashi K, Fletcher JC, Yu H et al. 2004. HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis. Plant Cell 16:2586–600
    [Google Scholar]
  120. 120.
    Zubo YO, Blakley IC, Franco-Zorrilla JM, Yamburenko MV, Solano R et al. 2018. Coordination of chloroplast development through the action of the GNC and GLK transcription factor families. Plant Physiol 178:130–47
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-072221-092913
Loading
/content/journals/10.1146/annurev-arplant-072221-092913
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error