1932

Abstract

Fertilization of flowering plants requires the organization of complex tasks, many of which become integrated by the female gametophyte (FG). The FG is a few-celled haploid structure that orchestrates division of labor to coordinate successful interaction with the sperm cells and their transport vehicle, the pollen tube. As reproductive outcome is directly coupled to evolutionary success, the underlying mechanisms are under robust molecular control, including integrity check and repair mechanisms. Here, we review progress on understanding the development and function of the FG, starting with the functional megaspore, which represents the haploid founder cell of the FG. We highlight recent achievements that have greatly advanced our understanding of pollen tube attraction strategies and the mechanisms that regulate plant hybridization and gamete fusion. In addition, we discuss novel insights into plant polyploidization strategies that expand current concepts on the evolution of flowering plants.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-081519-035943
2020-04-29
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/arplant/71/1/annurev-arplant-081519-035943.html?itemId=/content/journals/10.1146/annurev-arplant-081519-035943&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Amien S, Kliwer I, Márton ML, Debener T, Geiger D et al. 2010. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLOS Biol 8:e1000388
    [Google Scholar]
  2. 2. 
    Antoine AF, Faure JE, Cordeiro S, Dumas C, Rougier M, Feijo JA 2000. A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants. PNAS 97:10643–48
    [Google Scholar]
  3. 3. 
    Arrigo N, Barker MS. 2012. Rarely successful polyploids and their legacy in plant genomes. Curr. Opin. Plant Biol. 15:140–46
    [Google Scholar]
  4. 4. 
    Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA 2016. On the relative abundance of autopolyploids and allopolyploids. New Phytol 210:391–98
    [Google Scholar]
  5. 5. 
    Barker MS, Husband BC, Pires JC 2016. Spreading Winge and flying high: the evolutionary importance of polyploidy after a century of study. Am. J. Bot. 103:1139–45
    [Google Scholar]
  6. 6. 
    Beale KM, Leydon AR, Johnson MA 2012. Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule. Curr. Biol. 22:1090–94
    [Google Scholar]
  7. 7. 
    Bemer M, Wolters-Arts M, Grossniklaus U, Angenent GC 2008. The MADS domain protein DIANA acts together with AGAMOUS-LIKE80 to specify the central cell in Arabidopsis ovules. Plant Cell 20:2088–101
    [Google Scholar]
  8. 8. 
    Bencivenga S, Simonini S, Benkova E, Colombo L 2012. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis. Plant Cell 24:2886–97
    [Google Scholar]
  9. 9. 
    Bianchi E, Doe B, Goulding D, Wright GJ 2014. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508:483–87
    [Google Scholar]
  10. 10. 
    Bianchi E, Wright GJ. 2014. Izumo meets Juno: preventing polyspermy in fertilization. Cell Cycle 13:2019–20
    [Google Scholar]
  11. 11. 
    Bianchi E, Wright GJ. 2016. Sperm meets egg: the genetics of mammalian fertilization. Annu. Rev. Genet. 50:93–111
    [Google Scholar]
  12. 12. 
    Biedermann S, Harashima H, Chen P, Heese M, Bouyer D et al. 2017. The retinoblastoma homolog RBR1 mediates localization of the repair protein RAD51 to DNA lesions in Arabidopsis. EMBO J 36:1279–97
    [Google Scholar]
  13. 13. 
    Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M et al. 2009. Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136:3279–88
    [Google Scholar]
  14. 14. 
    Borg M, Brownfield L, Khatab H, Sidorova A, Lingaya M, Twell D 2011. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23:534–49
    [Google Scholar]
  15. 15. 
    Borghi L, Gutzat R, Futterer J, Laizet Y, Hennig L, Gruissem W 2010. Arabidopsis RETINOBLASTOMA-RELATED is required for stem cell maintenance, cell differentiation, and lateral organ production. Plant Cell 22:1792–811
    [Google Scholar]
  16. 16. 
    Boruc J, Griffis AH, Rodrigo-Peiris T, Zhou X, Tilford B et al. 2015. GAP activity, but not subcellular targeting, is required for Arabidopsis RanGAP cellular and developmental functions. Plant Cell 27:1985–98
    [Google Scholar]
  17. 17. 
    Bourke PM, Voorrips RE, Visser RGF, Maliepaard C 2018. Tools for genetic studies in experimental populations of polyploids. Front. Plant Sci. 9:513
    [Google Scholar]
  18. 18. 
    Bouyer D, Heese M, Chen P, Harashima H, Roudier F et al. 2018. Genome-wide identification of RETINOBLASTOMA RELATED 1 binding sites in Arabidopsis reveals novel DNA damage regulators. PLOS Genet 14:e1007797
    [Google Scholar]
  19. 19. 
    Brawley SH. 1987. A sodium-dependent, fast block to polyspermy occurs in eggs of fucoid algae. Dev. Biol. 124:390–97
    [Google Scholar]
  20. 20. 
    Bretagnolle F, Thompson JD. 1995. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22
    [Google Scholar]
  21. 21. 
    Capron A, Gourgues M, Neiva LS, Faure JE, Berger F et al. 2008. Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI gene. Plant Cell 20:3038–49
    [Google Scholar]
  22. 22. 
    Carvacho I, Piesche M, Maier TJ, Machaca K 2018. Ion channel function during oocyte maturation and fertilization. Front. Cell. Dev. Biol. 6:63
    [Google Scholar]
  23. 23. 
    Ceccato L, Masiero S, Sinha Roy D, Bencivenga S, Roig-Villanova I et al. 2013. Maternal control of PIN1 is required for female gametophyte development in Arabidopsis. PLOS ONE 8:e66148
    [Google Scholar]
  24. 24. 
    Chen YH, Li HJ, Shi DQ, Yuan L, Liu J et al. 2007. The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell 19:3563–77
    [Google Scholar]
  25. 25. 
    Chen Z, Hafidh S, Poh SH, Twell D, Berger F 2009. Proliferation and cell fate establishment during Arabidopsis male gametogenesis depends on the Retinoblastoma protein. PNAS 106:7257–62
    [Google Scholar]
  26. 26. 
    Chen Z, Higgins JD, Hui JT, Li J, Franklin FC, Berger F 2011. Retinoblastoma protein is essential for early meiotic events in Arabidopsis. EMBO J 30:744–55
    [Google Scholar]
  27. 27. 
    Cheng CY, Mathews DE, Schaller GE, Kieber JJ 2013. Cytokinin-dependent specification of the functional megaspore in the Arabidopsis female gametophyte. Plant J 73:929–40
    [Google Scholar]
  28. 28. 
    Chettoor AM, Evans MMS. 2015. Correlation between a loss of auxin signaling and a loss of proliferation in maize antipodal cells. Front. Plant Sci. 6:187
    [Google Scholar]
  29. 29. 
    Chettoor AM, Phillips AR, Coker CT, Dilkes B, Evans MMS 2016. Maternal gametophyte effects on seed development in maize. Genetics 204:233–48
    [Google Scholar]
  30. 30. 
    Cheung AY, Wu H-M. 2016. LURE is bait for multiple receptors. Nature 531:178–80
    [Google Scholar]
  31. 31. 
    Christensen CA, Gorsich SW, Brown RH, Jones LG, Brown J et al. 2002. Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. Plant Cell 14:2215–32
    [Google Scholar]
  32. 32. 
    Christensen CA, King EJ, Jordan JR, Drews GN 1997. Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex. Plant Reprod. 10:49–64
    [Google Scholar]
  33. 33. 
    Cross NL, Elinson RP. 1980. A fast block to polyspermy in frogs mediated by changes in the membrane potential. Dev. Biol. 75:187–98
    [Google Scholar]
  34. 34. 
    Cyprys P, Lindemeier M, Sprunck S 2019. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. Nat. Plants 5:253–57
    [Google Scholar]
  35. 35. 
    Daigle C, Mazin B, Matton DP 2019. The Solanum chacoense Fertilization-Related Kinase 3 (ScFRK3) is involved in male and female gametophyte development. BMC Plant Biol 19:202
    [Google Scholar]
  36. 36. 
    Deng Y, Dong H, Mu J, Ren B, Zheng B et al. 2010. Arabidopsis histidine kinase CKI1 acts upstream of histidine phosphotransfer proteins to regulate female gametophyte development and vegetative growth. Plant Cell 22:1232–48
    [Google Scholar]
  37. 37. 
    Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T et al. 2014. Male-female communication triggers calcium signatures during fertilization in Arabidopsis. Nat. Commun 5:4645
    [Google Scholar]
  38. 38. 
    Di Fino LM, D'Ambrosio JM, Tejos R, van Wijk R, Lamattina L et al. 2017. Arabidopsis phosphatidylinositol-phospholipase C2 (PLC2) is required for female gametogenesis and embryo development. Planta 245:717–28
    [Google Scholar]
  39. 39. 
    Diboll AG, Larson DA. 1966. An electron microscopic study of the mature megagametophyte in Zea mays. Am. J. Bot 53:391–402
    [Google Scholar]
  40. 40. 
    Drews GN, Koltunow AMG. 2011. The female gametophyte. Arabidopsis Book 9:e0155
    [Google Scholar]
  41. 41. 
    Ebel C, Mariconti L, Gruissem W 2004. Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 429:776–80
    [Google Scholar]
  42. 42. 
    Escobar-Restrepo J-M, Huck N, Kessler S, Gagliardini V, Gheyselinck J et al. 2007. The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–60
    [Google Scholar]
  43. 43. 
    Evans MMS, Grossniklaus U. 2009. The maize megagametophyte. Handbook of Maize: Its Biology J Bennetzen, S Hake 79–104 New York: Springer
    [Google Scholar]
  44. 44. 
    Fédry J, Liu Y, Péhau-Arnaudet G, Pei J, Li W et al. 2017. The ancient gamete fusogen HAP2 is a eukaryotic class II fusion protein. Cell 168:904–15
    [Google Scholar]
  45. 45. 
    Galindo-Trigo S, Blanco-Touriñán N, DeFalco TA, Wells ES, Gray JE et al. 2020. CrRLK1L receptor-like kinases HERK1 and ANJEA are female determinants of pollen tube reception. EMBO Rep 21:e48466
    [Google Scholar]
  46. 46. 
    Ge Z, Bergonci T, Zhao Y, Zou Y, Du S et al. 2017. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358:1596–600
    [Google Scholar]
  47. 47. 
    Gómez JF, Talle B, Wilson ZA 2015. Anther and pollen development: a conserved developmental pathway. J. Integr. Plant Biol. 57:876–91
    [Google Scholar]
  48. 48. 
    Groß-Hardt R, Kägi C, Baumann N, Moore JM, Baskar R et al. 2007. LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLOS Biol 5:e47
    [Google Scholar]
  49. 49. 
    Grossniklaus U. 2017. Polyspermy produces tri-parental seeds in maize. Curr. Biol. 27:R1300–2
    [Google Scholar]
  50. 50. 
    Gutiérrez-Marcos JF, Costa LM, Evans MMS 2006. Maternal gametophytic baseless1 is required for development of the central cell and early endosperm patterning in maize (Zea mays). Genetics 174:317–29
    [Google Scholar]
  51. 51. 
    Hamamura Y, Nagahara S, Higashiyama T 2012. Double fertilization on the move. Curr. Opin. Plant Biol. 15:70–77
    [Google Scholar]
  52. 52. 
    Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, Higashiyama T 2014. Live imaging of calcium spikes during double fertilization in Arabidopsis. Nat. Commun 5:4722
    [Google Scholar]
  53. 53. 
    Hamamura Y, Saito C, Awai C, Kurihara D, Miyawaki A et al. 2011. Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. Curr. Biol 21:497–502
    [Google Scholar]
  54. 54. 
    Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR 2014. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–11
    [Google Scholar]
  55. 55. 
    Hejatko J, Pernisova M, Eneva T, Palme K, Brzobohaty B 2003. The putative sensor histidine kinase CKI1 is involved in female gametophyte development in Arabidopsis. Mol. Genet. Genom 269:443–53
    [Google Scholar]
  56. 56. 
    Helliwell CA, Chin-Atkins AN, Wilson IW, Chapple R, Dennis ES, Chaudhury A 2001. The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell 13:2115–25
    [Google Scholar]
  57. 57. 
    Hernández-Lagana E, Rodríguez-Leal D, Luá J, Vielle-Calzada JP 2016. A multigenic network of ARGONAUTE4 clade members controls early megaspore formation in Arabidopsis. Genetics 204:1045–56
    [Google Scholar]
  58. 58. 
    Heslop-Harrison J. 1987. Pollen germination and pollen-tube growth. Int. Rev. Cytol. 107:1–78
    [Google Scholar]
  59. 59. 
    Heydlauff J, Groß-Hardt R. 2014. Love is a battlefield: programmed cell death during fertilization. J. Exp. Bot. 65:1323–30
    [Google Scholar]
  60. 60. 
    Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T 1998. Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell 10:2019–32
    [Google Scholar]
  61. 61. 
    Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S et al. 2001. Pollen tube attraction by the synergid cell. Science 293:1480–83
    [Google Scholar]
  62. 62. 
    Higashiyama T, Yang WC. 2017. Gametophytic pollen tube guidance: attractant peptides, gametic controls, and receptors. Plant Physiol 173:112–21
    [Google Scholar]
  63. 63. 
    Hisanaga T, Okahashi K, Yamaoka S, Kajiwara T, Nishihama R et al. 2019. A cis-acting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO J 38:e100240
    [Google Scholar]
  64. 64. 
    Huang BQ, Russell SD. 1992. Female germ unit: organization, isolation, and function. Int. Rev. Cytol. 140:233–93
    [Google Scholar]
  65. 65. 
    Huang BQ, Russell SD. 1992. Synergid degeneration in Nicotiana: a quantitative, fluorochromatic and chlorotetracycline study. Sex. Plant Reprod. 5:151–55
    [Google Scholar]
  66. 66. 
    Huang JL, Ju Y, Wang XF, Zhang Q, Sodmergen 2015. A one-step rectification of sperm cell targeting ensures the success of double fertilization. J. Integr. Plant Biol. 57:496–503
    [Google Scholar]
  67. 67. 
    Huck N, Moore JM, Federer M, Grossniklaus U 2003. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–59
    [Google Scholar]
  68. 68. 
    Iwano M, Ngo QA, Entani T, Shiba H, Nagai T et al. 2012. Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells. Development 139:4202–9
    [Google Scholar]
  69. 69. 
    Jaffe LA. 1976. Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature 261:68–71
    [Google Scholar]
  70. 70. 
    Jeong S, Palmer TM, Lukowitz W 2011. The RWP-RK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP kinase signaling. Curr. Biol. 21:1268–76
    [Google Scholar]
  71. 71. 
    Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100
    [Google Scholar]
  72. 72. 
    Johnson MA, Harper JF, Palanivelu R 2019. A fruitful journey: pollen tube navigation from germination to fertilization. Annu. Rev. Plant Biol. 70:809–37
    [Google Scholar]
  73. 73. 
    Johnson MA, von Besser K, Zhou Q, Smith E, Aux G et al. 2004. Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168:971–82
    [Google Scholar]
  74. 74. 
    Johnston AJ, Matveeva E, Kirioukhova O, Grossniklaus U, Gruissem W 2008. A dynamic reciprocal RBR-PRC2 regulatory circuit controls Arabidopsis gametophyte development. Curr. Biol. 18:1680–86
    [Google Scholar]
  75. 75. 
    Johnston SA, den Nijs TPM, Peloquin SJ, Hanneman RE 1980. The significance of genic balance to endosperm development in interspecific crosses. Theor. Appl. Genet. 57:5–9
    [Google Scholar]
  76. 76. 
    Jones DS, Yuan J, Smith BE, Willoughby AC, Kumimoto EL, Kessler SA 2017. MILDEW RESISTANCE LOCUS O function in pollen tube reception is linked to its oligomerization and subcellular distribution. Plant Physiol 175:172–85
    [Google Scholar]
  77. 77. 
    Just EE. 1919. The fertilization reaction in Echinarachnius parma. I. Cortical response of the egg to insemination. Biol. Bull. 36:1–10
    [Google Scholar]
  78. 78. 
    Kägi C, Baumann N, Nielsen N, Stierhof YD, Groß-Hardt R 2010. The gametic central cell of Arabidopsis determines the lifespan of adjacent accessory cells. PNAS 107:22350–55
    [Google Scholar]
  79. 79. 
    Kasahara RD, Maruyama D, Hamamura Y, Sakakibara T, Twell D, Higashiyama T 2012. Fertilization recovery after defective sperm cell release in Arabidopsis. Curr. Biol 22:1084–89
    [Google Scholar]
  80. 80. 
    Kasahara RD, Notaguchi M, Nagahara S, Suzuki T, Susaki D et al. 2016. Pollen tube contents initiate ovule enlargement and enhance seed coat development without fertilization. Sci. Adv. 2:e1600554
    [Google Scholar]
  81. 81. 
    Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN 2005. MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–92
    [Google Scholar]
  82. 82. 
    Kasaras A, Kunze R. 2010. Expression, localisation and phylogeny of a novel family of plant-specific membrane proteins. Plant Biol 12:140–52
    [Google Scholar]
  83. 83. 
    Kawashima T, Berger F. 2011. Green love talks: cell–cell communication during double fertilization in flowering plants. AoB Plants 2011:plr015
    [Google Scholar]
  84. 84. 
    Kawashima T, Berger F. 2015. The central cell nuclear position at the micropylar end is maintained by the balance of F-actin dynamics, but dispensable for karyogamy in Arabidopsis. Plant Reprod 28:103–10
    [Google Scholar]
  85. 85. 
    Kawashima T, Maruyama D, Shagirov M, Li J, Hamamura Y et al. 2014. Dynamic F-actin movement is essential for fertilization in Arabidopsis thaliana. eLife 3:e04501
    [Google Scholar]
  86. 86. 
    Köhler C, Mittelsten Scheid O, Erilova A 2010. The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet 26:142–48
    [Google Scholar]
  87. 87. 
    Koi S, Hisanaga T, Sato K, Shimamura M, Yamato KT et al. 2016. An evolutionarily conserved plant RKD factor controls germ cell differentiation. Curr. Biol. 26:1775–81
    [Google Scholar]
  88. 88. 
    Kong J, Lau S, Jürgens G 2015. Twin plants from supernumerary egg cells in Arabidopsis. Curr. Biol 25:225–30
    [Google Scholar]
  89. 89. 
    Kőszegi D, Johnston AJ, Rutten T, Czihal A, Altschmied L et al. 2011. Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J 67:280–91
    [Google Scholar]
  90. 90. 
    Kradolfer D, Wolff P, Jiang H, Siretskiy A, Köhler C 2013. An imprinted gene underlies postzygotic reproductive isolation in Arabidopsis thaliana. Dev. Cell 26:5525–35
    [Google Scholar]
  91. 91. 
    Kreiner JM, Kron P, Husband BC 2017. Frequency and maintenance of unreduced gametes in natural plant populations: associations with reproductive mode, life history and genome size. New Phytol 214:879–89
    [Google Scholar]
  92. 92. 
    Krohn NG, Lausser A, Juranic M, Dresselhaus T 2012. Egg cell signaling by the secreted peptide ZmEAL1 controls antipodal cell fate. Dev. Cell 23:219–25
    [Google Scholar]
  93. 93. 
    Kwee HS, Sundaresan V. 2003. The NOMEGA gene required for female gametophyte development encodes the putative APC6/CDC16 component of the Anaphase Promoting Complex in Arabidopsis. Plant J 36:853–66
    [Google Scholar]
  94. 94. 
    Lawit SJ, Chamberlin MA, Agee A, Caswell ES, Albertsen MC 2013. Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos. Plant Reprod 26:125–37
    [Google Scholar]
  95. 95. 
    Leshem Y, Johnson C, Sundaresan V 2013. Pollen tube entry into the synergid cell of Arabidopsis is observed at a site distinct from the filiform apparatus. Plant Reprod 26:93–99
    [Google Scholar]
  96. 96. 
    Leydon AR, Tsukamoto T, Dunatunga D, Qin Y, Johnson MA, Palanivelu R 2015. Pollen tube discharge completes the process of synergid degeneration that is initiated by pollen tube-synergid interaction in Arabidopsis. Plant Physiol 169:485–96
    [Google Scholar]
  97. 97. 
    Li C, Wu HM, Cheung AY 2016. FERONIA and her pals: functions and mechanisms. Plant Physiol 171:2379–92
    [Google Scholar]
  98. 97a. 
    Li C, Yeh F-L, Cheung AY, Duan Q, Kita Det al. 2015. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife 4:e06587
    [Google Scholar]
  99. 98. 
    Li HJ, Liu NY, Shi DQ, Liu J, Yang WC 2010. YAO is a nucleolar WD40-repeat protein critical for embryogenesis and gametogenesis in Arabidopsis. BMC Plant Biol 10:169
    [Google Scholar]
  100. 99. 
    Li L, He Y, Wang Y, Zhao S, Chen X et al. 2015. Arabidopsis PLC2 is involved in auxin-modulated reproductive development. Plant J 84:504–15
    [Google Scholar]
  101. 100. 
    Li N, Yuan L, Liu N, Shi D, Li X et al. 2009. SLOW WALKER2, a NOC1/MAK21 homologue, is essential for coordinated cell cycle progression during female gametophyte development in Arabidopsis. Plant Physiol 151:1486–97
    [Google Scholar]
  102. 101. 
    Li S, Liu L, Zhuang X, Yu Y, Liu X et al. 2013. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153:562–74
    [Google Scholar]
  103. 102. 
    Lituiev DS, Grossniklaus U. 2014. Patterning of the angiosperm female gametophyte through the prism of theoretical paradigms. Biochem. Soc. Trans. 42:332–39
    [Google Scholar]
  104. 103. 
    Lituiev DS, Krohn NG, Muller B, Jackson D, Hellriegel B et al. 2013. Theoretical and experimental evidence indicates that there is no detectable auxin gradient in the angiosperm female gametophyte. Development 140:4544–53
    [Google Scholar]
  105. 104. 
    Liu HH, Xiong F, Duan CY, Wu YN, Zhang Y, Li S 2019. Importin β4 mediates nuclear import of GRF-interacting factors to control ovule development in Arabidopsis. Plant Physiol 179:1080–92
    [Google Scholar]
  106. 105. 
    Deleted in proof
  107. 106. 
    Liu M, Shi DQ, Yuan L, Liu J, Yang WC 2010. SLOW WALKER3, encoding a putative DEAD-box RNA helicase, is essential for female gametogenesis in Arabidopsis. J. Integr. Plant Biol 52:817–28
    [Google Scholar]
  108. 107. 
    Liu Y, Misamore MJ, Snell WJ 2010. Membrane fusion triggers rapid degradation of two gamete-specific, fusion-essential proteins in a membrane block to polygamy in Chlamydomonas. Development 137:1473–81
    [Google Scholar]
  109. 108. 
    Liu Y, Tewari R, Ning J, Blagborough AM, Garbom S et al. 2008. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev 22:1051–68
    [Google Scholar]
  110. 109. 
    Liu Z, Yuan L, Song X, Yu X, Sundaresan V 2017. AHP2, AHP3, and AHP5 act downstream of CKI1 in Arabidopsis female gametophyte development. J. Exp. Bot 68:3365–73
    [Google Scholar]
  111. 110. 
    Lu C, Yu F, Tian L, Huang X, Tan H et al. 2017. RPS9M, a mitochondrial ribosomal protein, is essential for central cell maturation and endosperm development in Arabidopsis. Front. Plant Sci 8:2171
    [Google Scholar]
  112. 111. 
    Machaca K, Qu Z, Kuruma A, Criss Hartzell H, McCarty N 2002. The endogenous calcium-activated Cl channel in Xenopus oocytes: a physiologically and biophysically rich model system. Curr. Top. Membr. 53:3–39
    [Google Scholar]
  113. 112. 
    Maeda E, Miyake H. 1996. Ultrastructure of antipodal cells of rice (Oryza sativa) after anthesis, as related to nutrient transport in embryo sac. Jpn. J. Crop Sci. 65:340–51
    [Google Scholar]
  114. 113. 
    Mao Y, Gabel A, Nakel T, Viehöver P, Baum T et al. 2020. Selective egg cell polyspermy bypasses the triploid block. eLife 9:e52976
    [Google Scholar]
  115. 114. 
    Marks GE. 1966. The origin and significance of intraspecific polyploidy: experimental evidence from Solanum chacoense. Evolution 20:552–57
    [Google Scholar]
  116. 115. 
    Martin MV, Fiol DF, Sundaresan V, Zabaleta EJ, Pagnussat GC 2013. oiwa, a female gametophytic mutant impaired in a mitochondrial manganese-superoxide dismutase, reveals crucial roles for reactive oxygen species during embryo sac development and fertilization in Arabidopsis. Plant Cell 25:1573–91
    [Google Scholar]
  117. 116. 
    Martón ML, Cordts S, Broadhvest J, Dresselhaus T 2005. Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–76
    [Google Scholar]
  118. 117. 
    Maruyama D, Endo T, Nishikawa S 2010. BiP-mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in Arabidopsis thaliana. PNAS 107:1684–89
    [Google Scholar]
  119. 118. 
    Maruyama D, Hamamura Y, Takeuchi H, Susaki D, Nishimaki M et al. 2013. Independent control by each female gamete prevents the attraction of multiple pollen tubes. Dev. Cell 25:317–23
    [Google Scholar]
  120. 119. 
    Maruyama D, Higashiyama T. 2016. The end of temptation: the elimination of persistent synergid cell identity. Curr. Opin. Plant Biol. 34:122–26
    [Google Scholar]
  121. 120. 
    Maruyama D, Völz R, Takeuchi H, Mori T, Igawa T et al. 2015. Rapid elimination of the persistent synergid through a cell fusion mechanism. Cell 161:907–18
    [Google Scholar]
  122. 121. 
    Mason AS, Pires JC. 2015. Unreduced gametes: meiotic mishap or evolutionary mechanism. Trends Genet 31:5–10
    [Google Scholar]
  123. 122. 
    McCue AD, Cresti M, Feijó JA, Slotkin RK 2011. Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited. J. Exp. Bot. 62:1621–31
    [Google Scholar]
  124. 123. 
    Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A et al. 2017. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science 358:1600–3
    [Google Scholar]
  125. 124. 
    Mendes MA, Guerra RF, Castelnovo B, Silva-Velazquez Y, Morandini P et al. 2016. Live and let die: a REM complex promotes fertilization through synergid cell death in Arabidopsis. Development 143:2780–90
    [Google Scholar]
  126. 125. 
    Michard E, Simon AA, Tavares B, Wudick MM, Feijó JA 2017. Signaling with ions: the keystone for apical cell growth and morphogenesis in pollen tubes. Plant Physiol 173:91–111
    [Google Scholar]
  127. 126. 
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA et al. 1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–87
    [Google Scholar]
  128. 127. 
    Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T et al. 2009. ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr. Biol. 19:1327–31
    [Google Scholar]
  129. 128. 
    Mizukami Akane G, Inatsugi R, Jiao J, Kotake T, Kuwata K et al. 2016. The AMOR arabinogalactan sugar chain induces pollen-tube competency to respond to ovular guidance. Curr. Biol. 26:1091–97
    [Google Scholar]
  130. 129. 
    Mogensen HL, Suthar HK. 1979. Ultrastructure of the egg apparatus of Nicotiana tabacum (Solanaceae) before and after fertilization. Bot. Gaz. 140:168–79
    [Google Scholar]
  131. 130. 
    Moll C, von Lyncker L, Zimmermann S, Kägi C, Baumann N et al. 2008. CLO/GFA1 and ATO are novel regulators of gametic cell fate in plants. Plant J 56:913–21
    [Google Scholar]
  132. 131. 
    Mori T, Igawa T, Tamiya G, Miyagishima SY, Berger F 2014. Gamete attachment requires GEX2 for successful fertilization in Arabidopsis. Curr. Biol 24:170–75
    [Google Scholar]
  133. 132. 
    Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T 2006. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat. Cell Biol. 8:64–71
    [Google Scholar]
  134. 133. 
    Mühlhausen S, Kollmar M. 2013. Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins. BMC Evol. Biol. 13:202
    [Google Scholar]
  135. 134. 
    Munnik T. 2014. PI-PLC: phosphoinositide-phospholipase C in plant signaling. Phospholipases in Plant Signaling X Wang 27–54 Berlin: Springer
    [Google Scholar]
  136. 135. 
    Murgia M, Huang B-Q, Tucker SC, Musgrave ME 1993. Embryo sac lacking antipodal cells in Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 80:824–38
    [Google Scholar]
  137. 136. 
    Nakajima K. 2018. Be my baby: patterning toward plant germ cells. Curr. Opin. Plant Biol. 41:110–15
    [Google Scholar]
  138. 137. 
    Nakel T, Tekleyohans DG, Mao Y, Fuchert G, Vo D, Groß-Hardt R 2017. Triparental plants provide direct evidence for polyspermy induced polyploidy. Nat. Commun. 8:1033
    [Google Scholar]
  139. 138. 
    Ngo QA, Vogler H, Lituiev DS, Nestorova A, Grossniklaus U 2014. A calcium dialog mediated by the FERONIA signal transduction pathway controls plant sperm delivery. Dev. Cell 29:491–500
    [Google Scholar]
  140. 139. 
    Oda Y, Fukuda H. 2012. Initiation of cell wall pattern by a rho- and microtubule-driven symmetry breaking. Science 337:1333–36
    [Google Scholar]
  141. 140. 
    Oh SA, Johnson A, Smertenko A, Rahman D, Park SK et al. 2005. A divergent cellular role for the FUSED kinase family in the plant-specific cytokinetic phragmoplast. Curr. Biol. 15:2107–11
    [Google Scholar]
  142. 141. 
    Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H et al. 2009. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–61
    [Google Scholar]
  143. 142. 
    Pagnussat GC, Alandete-Saez M, Bowman JL, Sundaresan V 2009. Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324:1684–89
    [Google Scholar]
  144. 143. 
    Pagnussat GC, Yu HJ, Sundaresan V 2007. Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. Plant Cell 19:3578–92
    [Google Scholar]
  145. 144. 
    Park GT, Frost JM, Park JS, Kim TH, Lee JS et al. 2014. Nucleoporin MOS7/Nup88 is required for mitosis in gametogenesis and seed development in Arabidopsis. PNAS 111:18393–98
    [Google Scholar]
  146. 145. 
    Park SK, Rahman D, Oh SA, Twell D 2004. gemini pollen 2, a male and female gametophytic cytokinesis defective mutation. Sex. Plant Reprod. 17:63–70
    [Google Scholar]
  147. 146. 
    Pekarova B, Klumpler T, Triskova O, Horak J, Jansen S et al. 2011. Structure and binding specificity of the receiver domain of sensor histidine kinase CKI1 from Arabidopsis thaliana. Plant J 67:827–39
    [Google Scholar]
  148. 147. 
    Pereira AM, Lopes AL, Coimbra S 2016. JAGGER, an AGP essential for persistent synergid degeneration and polytubey block in Arabidopsis. Plant Signal. Behav. 11:e1209616
    [Google Scholar]
  149. 148. 
    Pereira AM, Nobre MS, Pinto SC, Lopes AL, Costa ML et al. 2016.. “ Love is strong, and you're so sweet”: JAGGER is essential for persistent synergid degeneration and polytubey block in Arabidopsis thaliana. Mol. Plant 9:601–14
    [Google Scholar]
  150. 149. 
    Pischke MS, Jones LG, Otsuga D, Fernandez DE, Drews GN, Sussman MR 2002. An Arabidopsis histidine kinase is essential for megagametogenesis. PNAS 99:15800–5
    [Google Scholar]
  151. 150. 
    Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, Drews GN 2006. AGL80 is required for central cell and endosperm development in Arabidopsis. Plant Cell 18:1862–72
    [Google Scholar]
  152. 151. 
    Punwani JA, Rabiger DS, Drews GN 2007. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins. Plant Cell 19:2557–68
    [Google Scholar]
  153. 152. 
    Punwani JA, Rabiger DS, Lloyd A, Drews GN 2008. The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98. Plant J 55:406–14
    [Google Scholar]
  154. 153. 
    Rabiger DS, Drews GN. 2013. MYB64 and MYB119 are required for cellularization and differentiation during female gametogenesis in Arabidopsis thaliana. PLOS Genet 9:e1003783
    [Google Scholar]
  155. 154. 
    Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29:467–501
    [Google Scholar]
  156. 155. 
    Rodrigo-Peiris T, Xu XM, Zhao Q, Wang HJ, Meier I 2011. RanGAP is required for post-meiotic mitosis in female gametophyte development in Arabidopsis thaliana. J. Exp. Bot 62:2705–14
    [Google Scholar]
  157. 156. 
    Ron M, Alandete Saez M, Eshed Williams L, Fletcher JC, McCormick S 2010. Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev 24:1010–21
    [Google Scholar]
  158. 157. 
    Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE 2003. Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr. Biol 13:432–36
    [Google Scholar]
  159. 158. 
    Rövekamp M, Bowman JL, Grossniklaus U 2016. Marchantia MpRKD regulates the gametophyte-sporophyte transition by keeping egg cells quiescent in the absence of fertilization. Curr. Biol. 26:1782–89
    [Google Scholar]
  160. 159. 
    Sandaklie-Nikolova L, Palanivelu R, King EJ, Copenhaver GP, Drews GN 2007. Synergid cell death in Arabidopsis is triggered following direct interaction with the pollen tube. Plant Physiol 144:1753–62
    [Google Scholar]
  161. 160. 
    Sasabe M, Ishibashi N, Haruta T, Minami A, Kurihara D et al. 2015. The carboxyl-terminal tail of the stalk of Arabidopsis NACK1/HINKEL kinesin is required for its localization to the cell plate formation site. J. Plant Res. 128:327–36
    [Google Scholar]
  162. 161. 
    Sattler MC, Carvalho CR, Clarindo WR 2016. The polyploidy and its key role in plant breeding. Planta 243:281–96
    [Google Scholar]
  163. 162. 
    Scheible N, McCubbin A. 2019. Signaling in pollen tube growth: beyond the tip of the polarity iceberg. Plants 8:156
    [Google Scholar]
  164. 163. 
    Schneitz K, Hülskamp M, Pruitt RE 1995. Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J 7:731–49
    [Google Scholar]
  165. 164. 
    Schoenaers S, Balcerowicz D, Costa A, Vissenberg K 2017. The kinase ERULUS controls pollen tube targeting and growth in Arabidopsis thaliana. Front. Plant Sci 8:1942
    [Google Scholar]
  166. 165. 
    Scott RJ, Armstrong SJ, Doughty J, Spielman M 2008. Double fertilization in Arabidopsis thaliana involves a polyspermy block on the egg but not the central cell. Mol. Plant 1:611–19
    [Google Scholar]
  167. 166. 
    Scott RJ, Spielman M, Dickinson HG 2004. Stamen structure and function. Plant Cell 16:Suppl.S46–60
    [Google Scholar]
  168. 167. 
    Shaw B, Mantle PG. 1980. Host infection by Claviceps purpurea. Trans. Br. Mycol. Soc 75:77–90
    [Google Scholar]
  169. 168. 
    Shi DQ, Liu J, Xiang YH, Ye D, Sundaresan V, Yang WC 2005. SLOW WALKER1, essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis. Plant Cell 17:2340–54
    [Google Scholar]
  170. 169. 
    Shi DQ, Yang WC. 2011. Ovule development in Arabidopsis: progress and challenge. Curr. Opin. Plant Biol. 14:74–80
    [Google Scholar]
  171. 170. 
    Shimizu KK, Okada K. 2000. Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development 127:4511–18
    [Google Scholar]
  172. 171. 
    Soltis DE, Visger CJ, Marchant DB, Soltis PS 2016. Polyploidy: pitfalls and paths to a paradigm. Am. J. Bot. 103:1146–66
    [Google Scholar]
  173. 172. 
    Song X, Yuan L, Sundaresan V 2014. Antipodal cells persist through fertilization in the female gametophyte of Arabidopsis. Plant Reprod 27:197–203
    [Google Scholar]
  174. 173. 
    Spielman M, Scott RJ. 2008. Polyspermy barriers in plants: from preventing to promoting fertilization. Sex. Plant Reprod. 21:53–65
    [Google Scholar]
  175. 174. 
    Spoelhof JP, Soltis PS, Soltis DE 2017. Pure polyploidy: closing the gaps in autopolyploid research. J. Syst. Evol. 55:340–52
    [Google Scholar]
  176. 175. 
    Sprunck S, Groß-Hardt R. 2011. Nuclear behavior, cell polarity, and cell specification in the female gametophyte. Sex. Plant Reprod. 24:123–36
    [Google Scholar]
  177. 176. 
    Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T 2012. Egg cell–secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–97
    [Google Scholar]
  178. 177. 
    Stebbins GL. 1956. Artificial polyploidy as a tool in plant breeding. Genetics in Plant Breeding37–52 Upton, NY: Brookhaven Natl. Lab.
    [Google Scholar]
  179. 178. 
    Steffen JG, Kang IH, Portereiko MF, Lloyd A, Drews GN 2008. AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiol 148:259–68
    [Google Scholar]
  180. 179. 
    Susaki D, Takeuchi H, Tsutsui H, Kurihara D, Higashiyama T 2015. Live imaging and laser disruption reveal the dynamics and cell-cell communication during Torenia fournieri female gametophyte development. Plant Cell Physiol 56:1031–41
    [Google Scholar]
  181. 180. 
    Tagliasacchi AM, Andreucci AC, Giraldi E, Felici C, Ruberti F, Forino LMC 2007. Structure, DNA content and DNA methylation of synergids during ovule development in Malus domestica Borkh. Caryologia 60:290–98
    [Google Scholar]
  182. 181. 
    Takahashi T, Mori T, Ueda K, Yamada L, Nagahara S et al. 2018. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants. Development 145:dev170076
    [Google Scholar]
  183. 182. 
    Takahashi Y, Soyano T, Kosetsu K, Sasabe M, Machida Y 2010. HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana. Plant Cell Physiol 51:1766–76
    [Google Scholar]
  184. 183. 
    Takatsuka H, Umeda-Hara C, Umeda M 2015. Cyclin-dependent kinase-activating kinases CDKD;1 and CDKD;3 are essential for preserving mitotic activity in Arabidopsis thaliana. Plant J 82:1004–17
    [Google Scholar]
  185. 184. 
    Takeuchi H, Higashiyama T. 2012. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLOS Biol 10:e1001449
    [Google Scholar]
  186. 185. 
    Takeuchi H, Higashiyama T. 2016. Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245–48
    [Google Scholar]
  187. 186. 
    Tanaka H, Ishikawa M, Kitamura S, Takahashi Y, Soyano T et al. 2004. The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 9:1199–211
    [Google Scholar]
  188. 187. 
    Tayale A, Parisod C. 2013. Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet. Genome Res. 140:79–96
    [Google Scholar]
  189. 188. 
    Tedeschi F, Rizzo P, Rutten T, Altschmied L, Baumlein H 2017. RWP-RK domain-containing transcription factors control cell differentiation during female gametophyte development in Arabidopsis. New Phytol 213:1909–24
    [Google Scholar]
  190. 189. 
    Tekleyohans DG, Mao Y, Kägi C, Stierhof YD, Groß-Hardt R 2017. Polyspermy barriers: a plant perspective. Curr. Opin. Plant Biol. 35:131–37
    [Google Scholar]
  191. 190. 
    Tekleyohans DG, Nakel T, Groß-Hardt R 2017. Patterning the female gametophyte of flowering plants. Plant Physiol 173:122–29
    [Google Scholar]
  192. 191. 
    Tian H, Russell S. 1997. Calcium distribution in fertilized and unfertilized ovules and embryo sacs of Nicotiana tabacum L. Planta 202:93–105
    [Google Scholar]
  193. 192. 
    Toda E, Ohnishi Y, Okamoto T 2016. Development of polyspermic rice zygotes. Plant Physiol 171:206–14
    [Google Scholar]
  194. 193. 
    Toda E, Ohnishi Y, Okamoto T 2018. An imbalanced parental genome ratio affects the development of rice zygotes. J. Exp. Bot. 69:10260919
    [Google Scholar]
  195. 194. 
    Tsutsui H, Sato Y, Susaki D, Higashiyama T 2019. Microtubule depletion domain 1 localizes at the boundary between female gametes in Arabidopsis thaliana. Mol. Reprod. Dev 86:925
    [Google Scholar]
  196. 195. 
    Van de Peer Y, Mizrachi E, Marchal K 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18:411–24
    [Google Scholar]
  197. 196. 
    Völz R, Heydlauff J, Ripper D, von Lyncker L, Groß-Hardt R 2013. Ethylene signaling is required for synergid degeneration and the establishment of a pollen tube block. Dev. Cell 25:310–16
    [Google Scholar]
  198. 197. 
    Völz R, von Lyncker L, Baumann N, Dresselhaus T, Sprunck S, Groß-Hardt R 2012. LACHESIS-dependent egg-cell signaling regulates the development of female gametophytic cells. Development 139:498–502
    [Google Scholar]
  199. 198. 
    von Besser K, Frank AC, Johnson MA, Preuss D 2006. Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133:4761–69
    [Google Scholar]
  200. 199. 
    Waki T, Hiki T, Watanabe R, Hashimoto T, Nakajima K 2011. The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Curr. Biol. 21:1277–81
    [Google Scholar]
  201. 200. 
    Wang T, Liang L, Xue Y, Jia P-F, Chen W et al. 2016. A receptor heteromer mediates the male perception of female attractants in plants. Nature 531:241–44
    [Google Scholar]
  202. 201. 
    Wang Y, Hou Y, Gu H, Kang D, Chen Z et al. 2012. The Arabidopsis APC4 subunit of the anaphase-promoting complex/cyclosome (APC/C) is critical for both female gametogenesis and embryogenesis. Plant J 69:227–40
    [Google Scholar]
  203. 202. 
    Weterings K, Russell SD. 2004. Experimental analysis of the fertilization process. Plant Cell 16:Suppl.S107–18
    [Google Scholar]
  204. 203. 
    Willemse MTM, van Went JL 1984. The female gametophyte. Embryology of Angiosperms BM Johri 159–96 Berlin: Springer
    [Google Scholar]
  205. 204. 
    Wu J-J, Peng X-B, Li W-W, He R, Xin H-P, Sun M-X 2012. Mitochondrial GCD1 dysfunction reveals reciprocal cell-to-cell signaling during the maturation of Arabidopsis female gametes. Dev. Cell 23:1043–58
    [Google Scholar]
  206. 205. 
    Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J et al. 2010. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr. Biol. 20:506–12
    [Google Scholar]
  207. 206. 
    Yuan J, Ju Y, Jones DS, Zhang W, Lucca N et al. 2019. Redistribution of NORTIA in response to pollen tube arrival facilitates fertilization in Arabidopsis thaliana. bioRxiv 621599. https://doi.org/10.1101/621599v2.full
    [Crossref]
  208. 207. 
    Yuan L, Liu Z, Song X, Johnson C, Yu X, Sundaresan V 2016. The CKI1 histidine kinase specifies the female gametic precursor of the endosperm. Dev. Cell 37:34–46
    [Google Scholar]
  209. 208. 
    Zhang D, Yang L. 2014. Specification of tapetum and microsporocyte cells within the anther. Curr. Opin. Plant Biol. 17:49–55
    [Google Scholar]
  210. 209. 
    Zhao X, Bramsiepe J, Van Durme M, Komaki S, Prusicki MA et al. 2017. RETINOBLASTOMA RELATED1 mediates germline entry in Arabidopsis. Science 356:eaaf6532
    [Google Scholar]
  211. 210. 
    Zheng RH, Su S, Xiao H, Tian HQ 2019. Calcium: a critical factor in pollen germination and tube elongation. Int. J. Mol. Sci. 20:420
    [Google Scholar]
  212. 211. 
    Zhong S, Liu M, Wang Z, Huang Q, Hou S et al. 2019. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 364:eaau9564
    [Google Scholar]
  213. 212. 
    Zhou LZ, Dresselhaus T. 2019. Friend or foe: signaling mechanisms during double fertilization in flowering seed plants. Curr. Top. Dev. Biol. 131:453–96
    [Google Scholar]
  214. 213. 
    Zsogon A, Szakonyi D, Shi X, Byrne ME 2014. Ribosomal protein RPL27a promotes female gametophyte development in a dose-dependent manner. Plant Physiol 165:1133–43
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-081519-035943
Loading
/content/journals/10.1146/annurev-arplant-081519-035943
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error