1932

Abstract

Proteins are intimately involved in executing and controlling virtually all cellular processes. To understand the molecular mechanisms that underlie plant phenotypes, it is essential to investigate protein expression, interactions, and modifications, to name a few. The proteome is highly dynamic in time and space, and a plethora of protein modifications, protein interactions, and network constellations are at play under specific conditions and developmental stages. Analysis of proteomes aims to characterize the entire protein complement of a particular cell type, tissue, or organism—a challenging task, given the dynamic nature of the proteome. Modern mass spectrometry–based proteomics technology can be used to address this complexity at a system-wide scale by the global identification and quantification of thousands of proteins. In this review, we present current methods and technologies employed in mass spectrometry–based proteomics and provide examples of dynamic changes in the plant proteome elucidated by proteomic approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102620-031308
2022-05-20
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-102620-031308.html?itemId=/content/journals/10.1146/annurev-arplant-102620-031308&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abiko M, Furuta K, Yamauchi Y, Fujita C, Taoka M et al. 2013. Identification of proteins enriched in rice egg or sperm cells by single-cell proteomics. PLOS ONE 8:e69578
    [Google Scholar]
  2. 2.
    Abraham P, Giannone RJ, Adams RM, Kalluri U, Tuskan GA, Hettich RL. 2013. Putting the pieces together: High-performance LC-MS/MS provides network-, pathway-, and protein-level perspectives in Populus. Mol. Cell. Proteom. 12:106–19
    [Google Scholar]
  3. 3.
    Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M et al. 2011. Plant organelle proteomics: collaborating for optimal cell function. Mass Spectrom. Rev. 30:772–853
    [Google Scholar]
  4. 4.
    Arabidopsis Genome Initiat 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815Describes the first sequenced plant genome.
    [Google Scholar]
  5. 5.
    Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. 2020. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol. Biochem. 156:64–77
    [Google Scholar]
  6. 6.
    Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M et al. 2008. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320:938–41
    [Google Scholar]
  7. 7.
    Bassal M, Abukhalaf M, Majovsky P, Thieme D, Herr T et al. 2020. Reshaping of the Arabidopsis thaliana proteome landscape and co-regulation of proteins in development and immunity. Mol. Plant 13:1709–32
    [Google Scholar]
  8. 8.
    Bauer NC, Doetsch PW, Corbett AH. 2015. Mechanisms regulating protein localization. Traffic 16:1039–61
    [Google Scholar]
  9. 9.
    Bekker-Jensen DB, Kelstrup CD, Batth TS, Larsen SC, Haldrup C et al. 2017. An optimized shotgun strategy for the rapid generation of comprehensive human proteomes. Cell Syst 4:587–99.e4
    [Google Scholar]
  10. 10.
    Bernhofer M, Goldberg T, Wolf S, Ahmed M, Zaugg J et al. 2018. NLSdb—major update for database of nuclear localization signals and nuclear export signals. Nucleic Acids Res 46:D503–8
    [Google Scholar]
  11. 11.
    Bhattacharya O, Ortiz I, Walling LL. 2020. Methodology: an optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins. Plant Methods 16:131
    [Google Scholar]
  12. 12.
    Bian Y, The M, Giansanti P, Mergner J, Zheng R et al. 2021. Identification of 7000–9000 proteins from cell lines and tissues by single-shot microflow LC-MS/MS. Anal. Chem. 93:8687–92
    [Google Scholar]
  13. 13.
    Bludau I, Aebersold R. 2020. Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat. Rev. Mol. Cell Biol. 21:327–40
    [Google Scholar]
  14. 14.
    Bontinck M, Van Leene J, Gadeyne A, De Rybel B, Eeckhout D et al. 2018. Recent trends in plant protein complex analysis in a developmental context. Front. Plant. Sci. 9:640
    [Google Scholar]
  15. 15.
    Breiden M, Simon R. 2016. Q&A: How does peptide signaling direct plant development?. BMC Biol 14:58
    [Google Scholar]
  16. 16.
    Bruce BD. 2000. Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol 10:440–47
    [Google Scholar]
  17. 17.
    Calderan-Rodrigues MJ, Guimaraes Fonseca J, de Moraes FE, Vaz Setem L, Carmanhanis Begossi A, Labate CA 2019. Plant cell wall proteomics: a focus on monocot species, Brachypodium distachyon, Saccharum spp. and Oryza sativa. Int. J. Mol. Sci. 20:1975
    [Google Scholar]
  18. 18.
    Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–53
    [Google Scholar]
  19. 19.
    Chapman B, Bellgard M. 2017. Plant proteogenomics: improvements to the grapevine genome annotation. Proteomics 17:1700197
    [Google Scholar]
  20. 20.
    Chen EI, Cociorva D, Norris JL, Yates JR 3rd 2007. Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J. Proteome Res. 6:2529–38
    [Google Scholar]
  21. 21.
    Chen XL, Xie X, Wu L, Liu C, Zeng L et al. 2018. Proteomic analysis of ubiquitinated proteins in rice (Oryza sativa) after treatment with pathogen-associated molecular pattern (PAMP) elicitors. Front. Plant. Sci. 9:1064
    [Google Scholar]
  22. 22.
    Chen YL, Fan KT, Hung SC, Chen YR 2020. The role of peptides cleaved from protein precursors in eliciting plant stress reactions. New Phytol 225:2267–82
    [Google Scholar]
  23. 23.
    Choudhary MK, Nomura Y, Shi H, Nakagami H, Somers DE. 2016. Circadian profiling of the Arabidopsis proteome using 2D-DIGE. Front. Plant. Sci. 7:1007
    [Google Scholar]
  24. 24.
    Conneely LJ, Mauleon R, Mieog J, Barkla BJ, Kretzschmar T. 2021. Characterization of the Cannabis sativa glandular trichome proteome. PLOS ONE 16:e0242633
    [Google Scholar]
  25. 25.
    Ctortecka C, Mechtler K. 2021. The rise of single-cell proteomics. Anal. Sci. Adv. 2:84–94
    [Google Scholar]
  26. 26.
    Dai S, Chen S. 2012. Single-cell-type proteomics: toward a holistic understanding of plant function. Mol. Cell. Proteom. 11:1622–30
    [Google Scholar]
  27. 27.
    Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S 2015. Laser capture microdissection: big data from small samples. Histol. Histopathol. 30:1255–69
    [Google Scholar]
  28. 28.
    Devani RS, Chirmade T, Sinha S, Bendahmane A, Dholakia BB et al. 2019. Flower bud proteome reveals modulation of sex-biased proteins potentially associated with sex expression and modification in dioecious Coccinia grandis. BMC Plant Biol 19:330
    [Google Scholar]
  29. 29.
    Ding Y, Shi Y, Yang S. 2019. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222:1690–704
    [Google Scholar]
  30. 30.
    Duncan O, Trösch J, Fenske R, Taylor NL, Millar AH 2017. Resource: Mapping the Triticum aestivum proteome. Plant J 89:601–16
    [Google Scholar]
  31. 31.
    Dunkley TPJ, Hester S, Shadforth IP, Runions J, Weimar T et al. 2006. Mapping the Arabidopsis organelle proteome. PNAS 103:6518–23
    [Google Scholar]
  32. 32.
    Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC 2020. A critical review of bottom-up proteomics: the good, the bad, and the future of this field. Proteomes 8:14
    [Google Scholar]
  33. 33.
    Echevarría-Zomeño S, Fernández-Calvino L, Castro-Sanz AB, López JA, Vázquez J, Castellano MM. 2016. Dissecting the proteome dynamics of the early heat stress response leading to plant survival or death in Arabidopsis. Plant Cell Environ 39:1264–78
    [Google Scholar]
  34. 34.
    Emanuelsson O, von Heijne G, Schneider G. 2001. Analysis and prediction of mitochondrial targeting peptides. Methods Cell Biol 65:175–87
    [Google Scholar]
  35. 35.
    Emenecker RJ, Holehouse AS, Strader LC. 2020. Emerging roles for phase separation in plants. Dev. Cell 55:69–83
    [Google Scholar]
  36. 36.
    Englard S, Seifter S. 1990. Precipitation techniques. Methods Enzymol 182:285–300
    [Google Scholar]
  37. 37.
    Erhard F, Halenius A, Zimmermann C, L'Hernault A, Kowalewski DJ et al. 2018. Improved Ribo-seq enables identification of cryptic translation events. Nat. Methods 15:363–66
    [Google Scholar]
  38. 38.
    Fan KT, Rendahl AK, Chen WP, Freund DM, Gray WM et al. 2016. Proteome scale-protein turnover analysis using high resolution mass spectrometric data from stable-isotope labeled plants. J. Proteome Res. 15:851–67
    [Google Scholar]
  39. 39.
    Fernandez-Calvino L, Faulkner C, Walshaw J, Saalbach G, Bayer E et al. 2011. Arabidopsis plasmodesmal proteome. PLOS ONE 6:e18880
    [Google Scholar]
  40. 40.
    Fuchs P, Rugen N, Carrie C, Elsasser M, Finkemeier I et al. 2020. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. Plant J 101:420–41Investigates the absolute protein content of a single organelle.
    [Google Scholar]
  41. 41.
    Fukao T, Barrera-Figueroa BE, Juntawong P, Pena-Castro JM 2019. Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects. Front. Plant Sci. 10:340
    [Google Scholar]
  42. 42.
    Geladaki A, Kočevar Britovšek N, Breckels LM, Smith TS, Vennard OL et al. 2019. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics. Nat. Commun. 10:331
    [Google Scholar]
  43. 43.
    Gemperline DC, Marshall RS, Lee K-H, Zhao Q, Hu W et al. 2019. Proteomic analysis of affinity-purified 26S proteasomes identifies a suite of assembly chaperones in Arabidopsis. J. Biol. Chem. 294:17570–92
    [Google Scholar]
  44. 44.
    Gessulat S, Schmidt T, Zolg DP, Samaras P, Schnatbaum K et al. 2019. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat. Methods 16:509–18Describes the use of machine-learning algorithms for spectrum prediction and improved peptide scoring.
    [Google Scholar]
  45. 45.
    Goto C, Hashizume S, Fukao Y, Hara-Nishimura I, Tamura K. 2019. Comprehensive nuclear proteome of Arabidopsis obtained by sequential extraction. Nucleus 10:81–92
    [Google Scholar]
  46. 46.
    Gu H, Wang Y, Xie H, Qiu C, Zhang S et al. 2020. Drought stress triggers proteomic changes involving lignin, flavonoids and fatty acids in tea plants. Sci. Rep. 10:15504
    [Google Scholar]
  47. 47.
    Guerra-Guimarães L, Pinheiro C, Chaves I, Barros DR, Ricardo CP 2016. Protein dynamics in the plant extracellular space. Proteomes 4:22
    [Google Scholar]
  48. 48.
    Han C, Yang P, Sakata K, Komatsu S 2014. Quantitative proteomics reveals the role of protein phosphorylation in rice embryos during early stages of germination. J. Proteome Res. 13:1766–82
    [Google Scholar]
  49. 49.
    He D, Li M, Damaris RN, Bu C, Xue J, Yang P 2020. Quantitative ubiquitylomics approach for characterizing the dynamic change and extensive modulation of ubiquitylation in rice seed germination. Plant J 101:1430–47
    [Google Scholar]
  50. 50.
    Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH. 2007. SUBA: the Arabidopsis subcellular database. Nucleic Acids Res 35:D213–18Describes a collection of subcellular protein localization information in a centralized database.
    [Google Scholar]
  51. 51.
    Heinemann B, Kunzler P, Eubel H, Braun HP, Hildebrandt TM. 2021. Estimating the number of protein molecules in a plant cell: protein and amino acid homeostasis during drought. Plant Physiol 185:385–404
    [Google Scholar]
  52. 52.
    Hu S, Ding Y, Zhu C. 2020. Sensitivity and responses of chloroplasts to heat stress in plants. Front. Plant Sci. 11:375
    [Google Scholar]
  53. 53.
    Huang M, Friso G, Nishimura K, Qu X, Olinares PDB et al. 2013. Construction of plastid reference proteomes for maize and Arabidopsis and evaluation of their orthologous relationships; the concept of orthoproteomics. J. Proteome Res. 12:491–504
    [Google Scholar]
  54. 54.
    Hughes C, Krijgsveld J. 2012. Developments in quantitative mass spectrometry for the analysis of proteome dynamics. Trends Biotechnol 30:668–76
    [Google Scholar]
  55. 55.
    Hughes CS, Moggridge S, Muller T, Sorensen PH, Morin GB, Krijgsveld J. 2019. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 14:68–85Describes the development of the SP3 method for protein sample preparation.
    [Google Scholar]
  56. 56.
    Int. Wheat Genome Seq. Consort 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788
    [Google Scholar]
  57. 57.
    Ishihara H, Obata T, Sulpice R, Fernie AR, Stitt M. 2015. Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein. Plant Physiol 168:74–93
    [Google Scholar]
  58. 58.
    Jarzab A, Kurzawa N, Hopf T, Moerch M, Zecha J et al. 2020. Meltome atlas—thermal proteome stability across the tree of life. Nat. Methods 17:495–503
    [Google Scholar]
  59. 59.
    Jung H, Ventura T, Chung JS, Kim WJ, Nam BH et al. 2020. Twelve quick steps for genome assembly and annotation in the classroom. PLOS Comput. Biol. 16:e1008325
    [Google Scholar]
  60. 60.
    Kapp LD, Lorsch JR. 2004. The molecular mechanics of eukaryotic translation. Annu. Rev. Biochem. 73:657–704
    [Google Scholar]
  61. 61.
    Kilambi HV, Manda K, Sanivarapu H, Maurya VK, Sharma R, Sreelakshmi Y. 2016. Shotgun proteomics of tomato fruits: evaluation, optimization and validation of sample preparation methods and mass spectrometric parameters. Front. Plant Sci. 7:969
    [Google Scholar]
  62. 62.
    Kim D-Y, Scalf M, Smith LM, Vierstra RD. 2013. Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Plant Cell 25:1523–40
    [Google Scholar]
  63. 63.
    Kim EJ. 2015. The utilities of chemical reactions and molecular tools for O-GlcNAc proteomic studies. ChemBioChem 16:1397–409
    [Google Scholar]
  64. 64.
    Korbei B, Luschnig C. 2013. Plasma membrane protein ubiquitylation and degradation as determinants of positional growth in plants. J. Integr. Plant Biol. 55:809–23
    [Google Scholar]
  65. 65.
    Kosova K, Vitamvas P, Urban MO, Prasil IT, Renaut J 2018. Plant abiotic stress proteomics: the major factors determining alterations in cellular proteome. Front. Plant Sci. 9:122
    [Google Scholar]
  66. 66.
    Kristensen AR, Gsponer J, Foster LJ 2012. A high-throughput approach for measuring temporal changes in the interactome. Nat. Methods 9:907–9
    [Google Scholar]
  67. 67.
    Kuhlman B, Bradley P. 2019. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 20:681–97
    [Google Scholar]
  68. 68.
    Kurotani A, Yamada Y, Shinozaki K, Kuroda Y, Sakurai T. 2015. Plant-PrAS: a database of physicochemical and structural properties and novel functional regions in plant proteomes. Plant Cell Physiol 56:e11
    [Google Scholar]
  69. 69.
    Kustatscher G, Grabowski P, Schrader TA, Passmore JB, Schrader M, Rappsilber J. 2019. Co-regulation map of the human proteome enables identification of protein functions. Nat. Biotechnol. 37:1361–71
    [Google Scholar]
  70. 70.
    Lewandowska D, ten Have S, Hodge K, Tillemans V, Lamond AI, Brown JWS. 2013. Plant SILAC: stable-isotope labelling with amino acids of Arabidopsis seedlings for quantitative proteomics. PLOS ONE 8:e72207
    [Google Scholar]
  71. 71.
    Li M, Li D, Feng F, Zhang S, Ma F, Cheng L 2016. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple. J. Exp. Bot. 67:5145–57
    [Google Scholar]
  72. 72.
    Liang Y, Zhu Y, Dou M, Xu K, Chu RK et al. 2018. Spatially resolved proteome profiling of <200 cells from tomato fruit pericarp by integrating laser-capture microdissection with nanodroplet sample preparation. Anal. Chem. 90:11106–14
    [Google Scholar]
  73. 73.
    Libault M, Pingault L, Zogli P, Schiefelbein J 2017. Plant systems biology at the single-cell level. Trends Plant Sci 22:949–60
    [Google Scholar]
  74. 74.
    Mair A, Xu S-L, Branon TC, Ting AY, Bergmann DC 2019. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. eLife 8:e47864
    [Google Scholar]
  75. 75.
    Marx H, Minogue CE, Jayaraman D, Richards AL, Kwiecien NW et al. 2016. A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nat. Biotechnol. 34:1198–205
    [Google Scholar]
  76. 76.
    McBride Z, Chen D, Lee Y, Aryal UK, Xie J, Szymanski DB. 2019. A label-free mass spectrometry method to predict endogenous protein complex composition. Mol. Cell. Proteom. 18:1588–606
    [Google Scholar]
  77. 77.
    McWhite CD, Papoulas O, Drew K, Cox RM, June V et al. 2020. A pan-plant protein complex map reveals deep conservation and novel assemblies. Cell 181:460–74.e14Investigates protein complexes using correlation profiling in multiple plant species.
    [Google Scholar]
  78. 78.
    Mergner J, Frejno M, List M, Papacek M, Chen X et al. 2020. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579:409–14Describes a comprehensive (phospho-)proteomic tissue map study in Arabidopsis.
    [Google Scholar]
  79. 79.
    Mergner J, Frejno M, Messerer M, Lang D, Samaras P et al. 2020. Proteomic and transcriptomic profiling of aerial organ development in Arabidopsis. Sci. Data 7:334
    [Google Scholar]
  80. 80.
    Michael TP, VanBuren R. 2015. Progress, challenges and the future of crop genomes. Curr. Opin. Plant Biol. 24:71–81
    [Google Scholar]
  81. 81.
    Miki Y, Takahashi D, Kawamura Y, Uemura M. 2019. Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. J. Proteom. 197:71–81
    [Google Scholar]
  82. 82.
    Mikulášek K, Konečná H, Potěšil D, Holánková R, Havliš J, Zdráhal Z. 2021. SP3 protocol for proteomic plant sample preparation prior LC-MS/MS. Front. Plant Sci. 12:635550
    [Google Scholar]
  83. 83.
    Millar AH, Heazlewood JL, Giglione C, Holdsworth MJ, Bachmair A, Schulze WX. 2019. The scope, functions, and dynamics of posttranslational protein modifications. Annu. Rev. Plant Biol. 70:119–51
    [Google Scholar]
  84. 84.
    Millar AH, Taylor NL. 2017. The isolation of plant organelles and structures in the post-genomic era. Methods Mol. Biol. 1511:1–11
    [Google Scholar]
  85. 85.
    Muller JB, Geyer PE, Colaco AR, Treit PV, Strauss MT et al. 2020. The proteome landscape of the kingdoms of life. Nature 582:592–96
    [Google Scholar]
  86. 86.
    Nelissen H, Gonzalez N, Inze D. 2016. Leaf growth in dicots and monocots: so different yet so alike. Curr. Opin. Plant Biol. 33:72–76
    [Google Scholar]
  87. 87.
    Nelson CJ, Alexova R, Jacoby RP, Millar AH. 2014. Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labeling. Plant Physiol 166:91–108
    [Google Scholar]
  88. 88.
    Nelson CJ, Li L, Millar AH 2014. Quantitative analysis of protein turnover in plants. Proteomics 14:579–92
    [Google Scholar]
  89. 89.
    Nelson CJ, Millar AH. 2015. Protein turnover in plant biology. Nat. Plants 1:15017
    [Google Scholar]
  90. 90.
    Nesvizhskii AI. 2014. Proteogenomics: concepts, applications and computational strategies. Nat. Methods 11:1114–25Describes the concept of genome annotation using proteomics information.
    [Google Scholar]
  91. 91.
    Ogden AJ, Boukari W, Nava A, Lucinda N, Sunter G et al. 2020. Characterization of local and systemic impact of whitefly (Bemisia tabaci) feeding and whitefly-transmitted Tomato mottle virus infection on tomato leaves by comprehensive proteomics. Int. J. Mol. Sci. 21:7241
    [Google Scholar]
  92. 92.
    Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M. 2013. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nat. Commun. 4:2191
    [Google Scholar]
  93. 93.
    Okekeogbu IO, Pattathil S, González Fernández-Niño SM, Aryal UK, Penning BW et al. 2019. Glycome and proteome components of Golgi membranes are common between two angiosperms with distinct cell-wall structures. Plant Cell 31:1094–112
    [Google Scholar]
  94. 94.
    Omidbakhshfard MA, Sokolowska EM, Di Vittori V, Perez de Souza L, Kuhalskaya A et al. 2021. Multi-omics analysis of early leaf development in Arabidopsis thaliana. Patterns 2:100235
    [Google Scholar]
  95. 95.
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H et al. 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 1:376–86
    [Google Scholar]
  96. 96.
    Pan R, Liu J, Wang S, Hu J 2020. Peroxisomes: versatile organelles with diverse roles in plants. New Phytol 225:1410–27
    [Google Scholar]
  97. 97.
    Pappireddi N, Martin L, Wuhr M 2019. A review on quantitative multiplexed proteomics. ChemBioChem 20:1210–24
    [Google Scholar]
  98. 98.
    Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW et al. 2005. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol. Biol. Cell 16:260–69
    [Google Scholar]
  99. 99.
    Peng Z, He S, Gong W, Xu F, Pan Z et al. 2018. Integration of proteomic and transcriptomic profiles reveals multiple levels of genetic regulation of salt tolerance in cotton. BMC Plant Biol 18:128
    [Google Scholar]
  100. 100.
    Pepelnjak M, de Souza N, Picotti P. 2020. Detecting protein-small molecule interactions using limited proteolysis-mass spectrometry (LiP-MS). Trends Biochem. Sci. 45:919–20
    [Google Scholar]
  101. 101.
    Petricka JJ, Schauer MA, Megraw M, Breakfield NW, Thompson JW et al. 2012. The protein expression landscape of the Arabidopsis root. PNAS 109:6811–18
    [Google Scholar]
  102. 102.
    Petrovska B, Jerabkova H, Chamrad I, Vrana J, Lenobel R et al. 2014. Proteomic analysis of barley cell nuclei purified by flow sorting. Cytogenet. Genome Res. 143:78–86
    [Google Scholar]
  103. 103.
    Ren Z, Qi D, Pugh N, Li K, Wen B et al. 2019. Improvements to the Rice genome annotation through large-scale analysis of RNA-Seq and proteomics data sets. Mol. Cell. Proteom. 18:86–98
    [Google Scholar]
  104. 104.
    Rodríguez-Celma J, Ceballos-Laita L, Grusak MA, Abadía J, López-Millán AF. 2016. Plant fluid proteomics: delving into the xylem sap, phloem sap and apoplastic fluid proteomes. Biochim. Biophys. Acta Proteins Proteom. 1864:991–1002
    [Google Scholar]
  105. 105.
    Rugen N, Schaarschmidt F, Eirich J, Finkemeier I, Braun HP, Eubel H. 2021. Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light. Biochim. Biophys. Acta Bioenerg. 1862:148443
    [Google Scholar]
  106. 106.
    Rutter BD, Innes RW. 2017. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol 173:728–41
    [Google Scholar]
  107. 107.
    Saijo Y, Loo EP. 2020. Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol 225:87–104
    [Google Scholar]
  108. 108.
    Salih KJ, Duncan O, Li L, Trosch J, Millar AH 2020. The composition and turnover of the Arabidopsis thaliana 80S cytosolic ribosome. Biochem. J. 477:3019–32
    [Google Scholar]
  109. 109.
    Salvato F, Loziuk P, Kiyota E, Daneluzzi GS, Araujo P et al. 2019. Label-free quantitative proteomics of enriched nuclei from sugarcane (Saccharum ssp) stems in response to drought stress. Proteomics 19:1900004
    [Google Scholar]
  110. 110.
    San Clemente H, Jamet E 2015. WallProtDB, a database resource for plant cell wall proteomics. Plant Methods 11:2
    [Google Scholar]
  111. 111.
    Sano N, Ono H, Murata K, Yamada T, Hirasawa T, Kanekatsu M. 2015. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice. J. Exp. Bot. 66:4035–46
    [Google Scholar]
  112. 112.
    Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O 2012. Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. Plant J 69:529–41
    [Google Scholar]
  113. 113.
    Seaton DD, Graf A, Baerenfaller K, Stitt M, Millar AJ, Gruissem W. 2018. Photoperiodic control of the Arabidopsis proteome reveals a translational coincidence mechanism. Mol. Syst. Biol. 14:e7962
    [Google Scholar]
  114. 114.
    Sharma B, Joshi D, Yadav PK, Gupta AK, Bhatt TK. 2016. Role of ubiquitin-mediated degradation system in plant biology. Front. Plant Sci. 7:806
    [Google Scholar]
  115. 115.
    Shevchenko A, Wilm M, Vorm O, Mann M. 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68:850–58
    [Google Scholar]
  116. 116.
    Shingaki-Wells R, Millar AH, Whelan J, Narsai R. 2014. What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation. Plant Cell Environ 37:2260–77
    [Google Scholar]
  117. 117.
    Simm S, Papasotiriou DG, Ibrahim M, Leisegang MS, Müller B et al. 2013. Defining the core proteome of the chloroplast envelope membranes. Front. Plant Sci. 4:11
    [Google Scholar]
  118. 118.
    Smith LM, Kelleher NL, Consort. Top Down Proteom. 2013. Proteoform: a single term describing protein complexity. Nat. Methods 10:186–87
    [Google Scholar]
  119. 119.
    Song G, Hsu PY, Walley JW. 2018. Assessment and refinement of sample preparation methods for deep and quantitative plant proteome profiling. Proteomics 18:e1800220
    [Google Scholar]
  120. 120.
    Srivastava V, Malm E, Sundqvist G, Bulone V. 2013. Quantitative proteomics reveals that plasma membrane microdomains from poplar cell suspension cultures are enriched in markers of signal transduction, molecular transport, and callose biosynthesis. Mol. Cell. Proteom. 12:3874–85
    [Google Scholar]
  121. 121.
    Struk S, Jacobs A, Sánchez Martín-Fontecha E, Gevaert K, Cubas P, Goormachtig S 2019. Exploring the protein–protein interaction landscape in plants. Plant Cell Environ 42:387–409
    [Google Scholar]
  122. 122.
    Sulpice R, Flis A, Ivakov AA, Apelt F, Krohn N et al. 2014. Arabidopsis coordinates the diurnal regulation of carbon allocation and growth across a wide range of photoperiods. Mol. Plant 7:137–55
    [Google Scholar]
  123. 123.
    Svozil J, Gruissem W, Baerenfaller K 2015. Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues. Front. Plant Sci. 6:376
    [Google Scholar]
  124. 124.
    Szymanski J, Levin Y, Savidor A, Breitel D, Chappell-Maor L et al. 2017. Label-free deep shotgun proteomics reveals protein dynamics during tomato fruit tissues development. Plant J 90:396–417
    [Google Scholar]
  125. 125.
    Tamary E, Nevo R, Naveh L, Levin-Zaidman S, Kiss V et al. 2019. Chlorophyll catabolism precedes changes in chloroplast structure and proteome during leaf senescence. Plant Direct 3:e00127
    [Google Scholar]
  126. 126.
    Tan L, Chen S, Wang T, Dai S 2013. Proteomic insights into seed germination in response to environmental factors. Proteomics 13:1850–70
    [Google Scholar]
  127. 127.
    Tang H, Zhang X, Gong B, Yan Y, Shi Q 2020. Proteomics and metabolomics analysis of tomato fruit at different maturity stages and under salt treatment. Food Chem 311:126009
    [Google Scholar]
  128. 128.
    Uhrig RG, Echevarría-Zomeño S, Schlapfer P, Grossmann J, Roschitzki B et al. 2021. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. Plant Cell Environ 44:821–41
    [Google Scholar]
  129. 129.
    van Wijk KJ, Friso G, Walther D, Schulze WX 2014. Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26:2367–89
    [Google Scholar]
  130. 130.
    VanWallendael A, Soltani A, Emery NC, Peixoto MM, Olsen J, Lowry DB. 2019. A molecular view of plant local adaptation: incorporating stress-response networks. Annu. Rev. Plant Biol. 70:559–83
    [Google Scholar]
  131. 131.
    Vo KTX, Rahman MM, Rahman MM, Trinh KTT, Kim ST, Jeon J-S 2021. Proteomics and metabolomics studies on the biotic stress responses of rice: an update. Rice 14:30
    [Google Scholar]
  132. 132.
    Volkening JD, Stecker KE, Sussman MR. 2019. Proteome-wide analysis of protein thermal stability in the model higher plant Arabidopsis thaliana. Mol. Cell. Proteom. 18:308–19
    [Google Scholar]
  133. 133.
    Vu LD, Stes E, Van Bel M, Nelissen H, Maddelein D et al. 2016. Up-to-date workflow for plant (phospho)proteomics identifies differential drought-responsive phosphorylation events in maize leaves. J. Proteome Res. 15:4304–17
    [Google Scholar]
  134. 134.
    Walbot V, Evans MM. 2003. Unique features of the plant life cycle and their consequences. Nat. Rev. Genet. 4:369–79
    [Google Scholar]
  135. 135.
    Walley JW, Sartor RC, Shen Z, Schmitz RJ, Wu KJ et al. 2016. Integration of omic networks in a developmental atlas of maize. Science 353:814–18
    [Google Scholar]
  136. 136.
    Walley JW, Shen Z, McReynolds MR, Schmelz EA, Briggs SP. 2018. Fungal-induced protein hyperacetylation in maize identified by acetylome profiling. PNAS 115:210–15
    [Google Scholar]
  137. 137.
    Wang D, Mills ES, Deal RB. 2012. Technologies for systems-level analysis of specific cell types in plants. Plant Sci 197:21–29
    [Google Scholar]
  138. 138.
    Wang F-X, Luo Y-M, Ye Z-Q, Cao X, Liang J-N et al. 2018. iTRAQ-based proteomics analysis of autophagy-mediated immune responses against the vascular fungal pathogen Verticillium dahliae in Arabidopsis. Autophagy 14:598–618
    [Google Scholar]
  139. 139.
    Wang P, Hsu CC, Du Y, Zhu P, Zhao C et al. 2020. Mapping proteome-wide targets of protein kinases in plant stress responses. PNAS 117:3270–80
    [Google Scholar]
  140. 140.
    Wang P, Zhao Y, Li Z, Hsu CC, Liu X et al. 2018. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol. Cell 69:100–12.e6
    [Google Scholar]
  141. 141.
    Wang S, Tian L, Liu H, Li X, Zhang J et al. 2020. Large-scale discovery of non-conventional peptides in maize and Arabidopsis through an integrated peptidogenomic pipeline. Mol. Plant 13:1078–93
    [Google Scholar]
  142. 142.
    Wang X, Komatsu S 2020. Review: proteomic techniques for the development of flood-tolerant soybean. Int. J. Mol. Sci. 21:7497
    [Google Scholar]
  143. 143.
    Wang X, Xu C, Cai X, Wang Q, Dai S 2017. Heat-responsive photosynthetic and signaling pathways in plants: insight from proteomics. Int. J. Mol. Sci. 18:2191
    [Google Scholar]
  144. 144.
    Willems P, Horne A, Van Parys T, Goormachtig S, De Smet I et al. 2019. The Plant PTM Viewer, a central resource for exploring plant protein modifications. Plant J 99:752–62
    [Google Scholar]
  145. 145.
    Wisniewski JR, Zougman A, Nagaraj N, Mann M. 2009. Universal sample preparation method for proteome analysis. Nat. Methods 6:359–62
    [Google Scholar]
  146. 146.
    Wu X, Gong F, Wang W. 2014. Protein extraction from plant tissues for 2DE and its application in proteomic analysis. Proteomics 14:645–58
    [Google Scholar]
  147. 147.
    Yan M, Zheng L, Li B, Shen R, Lan P. 2021. Comparative proteomics reveals new insights into the endosperm responses to drought, salinity and submergence in germinating wheat seeds. Plant Mol. Biol. 105:287–302
    [Google Scholar]
  148. 148.
    Yang X, Wen Z, Zhang D, Li Z, Li D et al. 2021. Proximity labeling: an emerging tool for probing in planta molecular interactions. Plant Commun 2:100137
    [Google Scholar]
  149. 149.
    Yang XY, Chen WP, Rendahl AK, Hegeman AD, Gray WM, Cohen JD. 2010. Measuring the turnover rates of Arabidopsis proteins using deuterium oxide: an auxin signaling case study. Plant J 63:680–95
    [Google Scholar]
  150. 150.
    Yates JR III 2019. Recent technical advances in proteomics. F1000Res 8(F1000 Faculty Rev)351
    [Google Scholar]
  151. 151.
    Zeng W, Peng Y, Zhao X, Wu B, Chen F et al. 2019. Comparative proteomics analysis of the seedling root response of drought-sensitive and drought-tolerant maize varieties to drought stress. Int. J. Mol. Sci. 20:2793
    [Google Scholar]
  152. 152.
    Zhang H, Han B, Wang T, Chen S, Li H et al. 2012. Mechanisms of plant salt response: insights from proteomics. J. Proteome Res. 11:49–67
    [Google Scholar]
  153. 153.
    Zhang H, Liu P, Guo T, Zhao H, Bensaddek D et al. 2019. Arabidopsis proteome and the mass spectral assay library. Sci. Data 6:278
    [Google Scholar]
  154. 154.
    Zhang X-L, Qi M-F, Xu T, Lu X-J, Li T-L. 2015. Proteomics profiling of ethylene-induced tomato flower pedicel abscission. J. Proteom. 121:67–87
    [Google Scholar]
  155. 155.
    Zhang Z, Hu M, Feng X, Gong A, Cheng L, Yuan H. 2017. Proteomes and phosphoproteomes of anther and pollen: availability and progress. Proteomics 17:1600458
    [Google Scholar]
  156. 156.
    Zhu Y, Li H, Bhatti S, Zhou S, Yang Y et al. 2016. Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots. Hortic. Res. 3:16026
    [Google Scholar]
  157. 157.
    Zik M, Irish VF. 2003. Flower development: initiation, differentiation, and diversification. Annu. Rev. Cell Dev. Biol. 19:119–40
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-102620-031308
Loading
/content/journals/10.1146/annurev-arplant-102620-031308
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error