1932

Abstract

Apomixis is a form of reproduction leading to clonal seeds and offspring that are genetically identical to the maternal plant. While apomixis naturally occurs in hundreds of plant species distributed across diverse plant families, it is absent in major crop species. Apomixis has a revolutionary potential in plant breeding, as it could allow the instant fixation and propagation though seeds of any plant genotype, most notably F hybrids. Mastering and implementing apomixis would reduce the cost of hybrid seed production, facilitate new types of hybrid breeding, and make it possible to harness hybrid vigor in crops that are not presently cultivated as hybrids. Synthetic apomixis can be engineered by combining modifications of meiosis and fertilization. Here, we review the current knowledge and recent major achievements toward the development of efficient apomictic systems usable in agriculture.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102720-013958
2022-05-20
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-102720-013958.html?itemId=/content/journals/10.1146/annurev-arplant-102720-013958&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agashe B, Prasad CK, Siddiqi I. 2002. Identification and analysis of DYAD: a gene required for meiotic chromosome organisation and female meiotic progression in Arabidopsis. Development 129:163935–43
    [Google Scholar]
  2. 2.
    Aida M, Beis D, Heidstra R, Willemsen V, Blilou I et al. 2004. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:1109–20
    [Google Scholar]
  3. 3.
    Anderson SN, Johnson CS, Chesnut J, Jones DS, Khanday I et al. 2017. The zygotic transition is initiated in unicellular plant zygotes with asymmetric activation of parental genomes. Dev. Cell 43:3349–358.e4
    [Google Scholar]
  4. 4.
    Bai X, Peirson BN, Dong F, Xue C, Makaroff CA 1999. Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis. Plant Cell 11:3417–30
    [Google Scholar]
  5. 5.
    Balboni M, Yang C, Komaki S, Brun J, Schnittger A. 2020. COMET functions as a PCH2 cofactor in regulating the HORMA domain protein ASY1. Curr. Biol. 30:214113–27.e6
    [Google Scholar]
  6. 6.
    Begcy K, Nosenko T, Zhou LZ, Fragner L, Weckwerth W, Dresselhaus T. 2019. Male sterility in maize after transient heat stress during the tetrad stage of pollen development. Plant Physiol 181:2683–700
    [Google Scholar]
  7. 7.
    Benyahya F, Nadaud I, Da Ines O, Rimbert H, White C, Sourdille P 2020. SPO11.2 is essential for programmed double-strand break formation during meiosis in bread wheat (Triticum aestivum L.). Plant J 104:130–43
    [Google Scholar]
  8. 8.
    Bonnafous F, Fievet G, Blanchet N, Boniface MC, Carrère S et al. 2018. Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids. Theor. Appl. Genet. 131:2319–32
    [Google Scholar]
  9. 9.
    Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D et al. 2020. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat. Cell Biol. 22:6621–29
    [Google Scholar]
  10. 10.
    Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T et al. 2002. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:81737–49
    [Google Scholar]
  11. 11.
    Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ 1997. Fertilization-independent seed development in Arabidopsis thaliana. PNAS 94:84223–28
    [Google Scholar]
  12. 12.
    Chelysheva L, Diallo S, Vezon D, Gendrot G, Vrielynck N et al. 2005. AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J. Cell Sci. 118:Part 204621–32
    [Google Scholar]
  13. 13.
    Cheng Z, Sun Y, Yang S, Zhi H, Yin T et al. 2021. Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol. J. 19:61089–91
    [Google Scholar]
  14. 14.
    Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ et al. 2002. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:133–42
    [Google Scholar]
  15. 15.
    Cifuentes M, Jolivet S, Cromer L, Harashima H, Bulankova P et al. 2016. TDM1 regulation determines the number of meiotic divisions. PLOS Genet 12:2e1005856
    [Google Scholar]
  16. 16.
    Cifuentes M, Rivard M, Pereira L, Chelysheva L, Mercier R 2013. Haploid meiosis in Arabidopsis: double-strand breaks are formed and repaired but without synapsis and crossovers. PLOS ONE 8:8e72431
    [Google Scholar]
  17. 17.
    Coe EH. 1959. A line of maize with high haploid frequency. Am. Nat. 93:873381–82
    [Google Scholar]
  18. 18.
    Conner JA, Goel S, Gunawan G, Cordonnier-Pratt MM, Johnson VE et al. 2008. Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus. Plant Physiol 147:31396–411
    [Google Scholar]
  19. 19.
    Conner JA, Mookkan M, Huo H, Chae K, Ozias-Akins P 2015. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. PNAS 112:3611205–10The characterization of a parthenogenesis gene (PsASGR-BBML) from Pennisetum and its application in pearl millet.
    [Google Scholar]
  20. 20.
    Conner JA, Podio M, Ozias-Akins P. 2017. Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes. Plant Reprod 30:141–52
    [Google Scholar]
  21. 21.
    Corrado G, Karali M. 2009. Inducible gene expression systems and plant biotechnology. Biotechnol. Adv. 27:6733–43
    [Google Scholar]
  22. 22.
    Crismani W, Girard C, Mercier R. 2013. Tinkering with meiosis. J. Exp. Bot. 64:155–65
    [Google Scholar]
  23. 23.
    Cromer L, Heyman J, Touati S, Harashima H, Araou E et al. 2012. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM. PLOS Genet 8:7e1002865
    [Google Scholar]
  24. 24.
    Darwin CR. 1876. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom London: John Murray
  25. 25.
    De Muyt A, Pereira L, Vezon D, Chelysheva L, Gendrot G et al. 2009. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana. PLOS Genet 5:9e1000654
    [Google Scholar]
  26. 26.
    De Muyt A, Vezon D, Gendrot G, Gallois J-L, Stevens R, Grelon M. 2007. AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. EMBO J 26:184126–37
    [Google Scholar]
  27. 27.
    d'Erfurth I, Cromer L, Jolivet S, Girard C, Horlow C et al. 2010. The CYCLIN-A CYCA1;2/TAM is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. PLOS Genet 6:6e1000989
    [Google Scholar]
  28. 28.
    d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M et al. 2008. Mutations in AtPS1 (Arabidopsis thaliana Parallel Spindle 1) lead to the production of diploid pollen grains. PLOS Genet 4:111000274
    [Google Scholar]
  29. 29.
    d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R 2009. Turning meiosis into mitosis. PLOS Biol 7:6e1000124The original description of the MiMe system for turning meiosis into meiosis.
    [Google Scholar]
  30. 30.
    D'Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F et al. 2012. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:7410213–17
    [Google Scholar]
  31. 31.
    Dickinson H, Scott R. 2002. DEMETER, goddess of the harvest, activates maternal MEDEA to produce the perfect seed. Mol. Cell 10:15–7
    [Google Scholar]
  32. 32.
    Dong F, Cai X, Makaroff CA. 2001. Cloning and characterization of two Arabidopsis genes that belong to the RAD21/REC8 family of chromosome cohesin proteins. Gene 271:199–108
    [Google Scholar]
  33. 33.
    Dresselhaus T, Jürgens G. 2021. Comparative embryogenesis in angiosperms: activation and patterning of embryonic cell lineages. Annu. Rev. Plant Biol. 72:641–76
    [Google Scholar]
  34. 34.
    Du M, Luo M, Zhang R, Finnegan EJ, Koltunow AMG. 2014. Imprinting in rice: the role of DNA and histone methylation in modulating parent-of-origin specific expression and determining transcript start sites. Plant J 79:2232–42
    [Google Scholar]
  35. 35.
    Dunwell JM. 2010. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J. 8:4377–424
    [Google Scholar]
  36. 36.
    Erilova A, Brownfield L, Exner V, Rosa M, Twell D et al. 2009. Imprinting of the Polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLOS Genet 5:91000663
    [Google Scholar]
  37. 37.
    Fayos I, Meunier AC, Vernet A, Navarro-Sanz S, Portefaix M et al. 2020. Assessment of the roles of SPO11-2 and SPO11-4 in meiosis in rice using CRISPR/Cas9 mutagenesis. J. Exp. Bot. 71:227046–58
    [Google Scholar]
  38. 38.
    Figueiredo DD, Batista RA, Roszak PJ, Köhler C. 2015. Auxin production couples endosperm development to fertilization. Nat. Plants 1:1215184In Arabidopsis, auxin biosynthesis in central cells can trigger cell division and endosperm development.
    [Google Scholar]
  39. 39.
    Figueiredo DD, Köhler C. 2018. Auxin: a molecular trigger of seed development. Genes Dev 32:7–8479–90
    [Google Scholar]
  40. 40.
    Frost KE, Groves RL, Charkowski AO. 2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Dis 97:101268–80
    [Google Scholar]
  41. 41.
    Fukagawa T, Earnshaw WC. 2014. The centromere: chromatin foundation for the kinetochore machinery. Dev. Cell 30:5496–508
    [Google Scholar]
  42. 42.
    Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I et al. 2007. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:71651053–57
    [Google Scholar]
  43. 43.
    Garcia-Aguilar M, Michaud C, Leblanc O, Grimanelli D. 2010. Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. Plant Cell 22:103249–67
    [Google Scholar]
  44. 44.
    Gehring M, Satyaki PR. 2017. Endosperm and imprinting, inextricably linked. Plant Physiol 173:1143–54
    [Google Scholar]
  45. 45.
    Gilles LM, Calhau ARM, La Padula V, Jacquier NMA, Lionnet C et al. 2021. Lipid anchoring and electrostatic interactions target NOT-LIKE-DAD to pollen endo-plasma membrane. J. Cell Biol. 220:10e202010077
    [Google Scholar]
  46. 46.
    Gilles LM, Khaled A, Laffaire J-B, Chaignon S, Gendrot G et al. 2017. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36:6707–17
    [Google Scholar]
  47. 47.
    Glover J, Grelon M, Craig S, Chaudhury A, Dennis E 1998. Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J 15:3345–56
    [Google Scholar]
  48. 48.
    Golubovskaya IN, Avalkina N, Sheridan WF. 1997. New insights into the role of the maize ameiotic1 locus. Genetics 147:31339–50
    [Google Scholar]
  49. 49.
    Golubovskaya IN, Hamant O, Timofejeva L, Wang C-JR, Braun D et al. 2006. Alleles of afd1 dissect REC8 functions during meiotic prophase I. J. Cell Sci. 119:Part 163306–15
    [Google Scholar]
  50. 50.
    Grelon M, Vezon D, Gendrot G, Pelletier G 2001. AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20:3589–600
    [Google Scholar]
  51. 51.
    Grimanelli D, Leblanc O, Espinosa E, Perotti E, González De León D, Savidan Y. 1998. Non-Mendelian transmission of apomixis in maize–Tripsacum hybrids caused by a transmission ratio distortion. Heredity 80:140–47
    [Google Scholar]
  52. 52.
    Grossniklaus U, Vielle-Calzada J-P, Hoeppner MA, Gagliano WB. 1998. Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280:5362446–50
    [Google Scholar]
  53. 53.
    Guitton AE, Page DR, Chambrier P, Lionnet C, Faure JE et al. 2004. Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131:122971–81
    [Google Scholar]
  54. 54.
    Gutierrez-Marcos JF, Pennington PD, Costa LM, Dickinson HG 2003. Imprinting in the endosperm: a possible role in preventing wide hybridization. Philos. Trans. R. Soc. Lond. B 358:1105–11
    [Google Scholar]
  55. 55.
    Hanna WW, Bashaw EC. 1987. Apomixis: its identification and use in plant breeding. Crop Sci. 27:61136–39
    [Google Scholar]
  56. 56.
    He Y, Zhao Y 2020. Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants. aBIOTECH 1:188–96
    [Google Scholar]
  57. 57.
    Heyman J, Van den Daele H, De Wit K, Boudolf V, Berckmans B et al. 2011. Arabidopsis ULTRAVIOLET-B-INSENSITIVE4 maintains cell division activity by temporal inhibition of the anaphase-promoting complex/cyclosome. Plant Cell 23:124394–410
    [Google Scholar]
  58. 58.
    Hochholdinger F, Baldauf JA. 2018. Heterosis in plants. Curr. Biol. 28:18R1089–92
    [Google Scholar]
  59. 59.
    Horstman A, Bemer M, Boutilier K. 2017. A transcriptional view on somatic embryogenesis. Regeneration 4:4201–16
    [Google Scholar]
  60. 60.
    Iwata E, Ikeda S, Matsunaga S, Kurata M, Yoshioka Y et al. 2011. GIGAS CELL1, a novel negative regulator of the anaphase-promoting complex/cyclosome, is required for proper mitotic progression and cell fate determination in Arabidopsis. Plant Cell 23:124382–93
    [Google Scholar]
  61. 61.
    Jacquier NMA, Gilles LM, Pyott DE, Martinant JP, Rogowsky PM, Widiez T. 2020. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat. Plants 6:6610–19
    [Google Scholar]
  62. 62.
    Ji J, Tang D, Shen Y, Xue Z, Wang H et al. 2016. P31comet, a member of the synaptonemal complex, participates in meiotic DSB formation in rice. PNAS 113:10577–82
    [Google Scholar]
  63. 63.
    Kalinowska K, Chamas S, Unkel K, Demidov D, Lermontova I et al. 2019. State-of-the-art and novel developments of in vivo haploid technologies. Theor. Appl. Genet. 132:3593–605
    [Google Scholar]
  64. 64.
    Karami O, Rahimi A, Mak P, Horstman A, Boutilier K et al. 2021. An Arabidopsis AT-hook motif nuclear protein mediates somatic embryogenesis and coinciding genome duplication. Nat. Commun. 12:12508
    [Google Scholar]
  65. 65.
    Karpechenko GD. 1935. Experimental polyploidy and haploidy. Theoretical Bases of Plant Breeding, Vol. 1398–434 Moscow/Leningrad: State Agr. Publ.
    [Google Scholar]
  66. 66.
    Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B et al. 2017. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:7639105–9The identification of the maize MATRILINEAL maternal haploid inducer (see also 46 and 86).
    [Google Scholar]
  67. 67.
    Kelliher T, Starr D, Su X, Tang G, Chen Z et al. 2019. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 37:3287–92
    [Google Scholar]
  68. 68.
    Kelliher T, Starr D, Wang W, McCuiston J, Zhong H et al. 2016. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front. Plant Sci. 7:414
    [Google Scholar]
  69. 69.
    Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V 2019. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:773791–95The first demonstration of synthetic apomixis in a crop, using MiMe and OsBBM1.
    [Google Scholar]
  70. 70.
    Khanday I, Sundaresan V. 2021. Plant zygote development: recent insights and applications to clonal seeds. Curr. Opin. Plant Biol. 59:101993
    [Google Scholar]
  71. 71.
    Kim J, Ishiguro K-I, Nambu A, Akiyoshi B, Yokobayashi S et al. 2014. Meikin is a conserved regulator of meiosis-I-specific kinetochore function. Nature 517:466–71
    [Google Scholar]
  72. 72.
    Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J et al. 1999. Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. PNAS 96:74186–91
    [Google Scholar]
  73. 73.
    Köhler C, Dziasek K, Del Toro-De León G. 2021. Postzygotic reproductive isolation established in the endosperm: mechanisms, drivers and relevance. Philos. Trans. R. Soc. B 376:20200118
    [Google Scholar]
  74. 74.
    Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W 2003. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22:184804–14
    [Google Scholar]
  75. 75.
    Köhler C, Wolff P, Spillane C. 2012. Epigenetic mechanisms underlying genomic imprinting in plants. Annu. Rev. Plant Biol. 63:331–52
    [Google Scholar]
  76. 76.
    Kölreuter JG. 1766. Vorläufige Nachricht von einigen das Geschlecht der Pflanzen betreffenden Versuchen und Beobachtungen—Dritte Fortsetzung Leipzig, Germany: Wilhelm Engelmann
  77. 77.
    Koltunow AM, Grossniklaus U. 2003. Apomixis: a developmental perspective. Annu. Rev. Plant Biol. 54:547–74
    [Google Scholar]
  78. 78.
    Kotani Y, Henderson ST, Suzuki G, Johnson SD, Okada T et al. 2014. The LOSS OF APOMEIOSIS (LOA) locus in Hieracium praealtum can function independently of the associated large-scale repetitive chromosomal structure. New Phytol 201:3973–81
    [Google Scholar]
  79. 79.
    Kuppu S, Tan EH, Nguyen H, Rodgers A, Comai L et al. 2015. Point mutations in centromeric histone induce post-zygotic incompatibility and uniparental inheritance. PLOS Genet 11:9e1005494
    [Google Scholar]
  80. 80.
    Lafon-Placette C, Köhler C. 2014. Embryo and endosperm, partners in seed development. Curr. Opin. Plant Biol. 17:164–69
    [Google Scholar]
  81. 81.
    Lambing C, Osman K, Nuntasoontorn K, West A, Higgins JD et al. 2015. Arabidopsis PCH2 mediates meiotic chromosome remodeling and maturation of crossovers. PLOS Genet 11:7e1005372
    [Google Scholar]
  82. 82.
    Lewers KS, St. Martin SK, Hedges BR, Widrlechner MP, Palmer RG 1996. Hybrid soybean seed production: comparison of three methods. Crop Sci 36:61560–67
    [Google Scholar]
  83. 83.
    Lewis EB. 1978. A gene complex controlling segmentation in Drosophila. Nature 276:5688565–70
    [Google Scholar]
  84. 84.
    Li S, Zhou B, Peng X, Kuang Q, Huang X et al. 2014. OsFIE2 plays an essential role in the regulation of rice vegetative and reproductive development. New Phytol 201:166–79
    [Google Scholar]
  85. 85.
    Li X, Dawe RK 2009. Fused sister kinetochores initiate the reductional division in meiosis I. Nat. Cell Biol. 11:91103–8
    [Google Scholar]
  86. 86.
    Liu C, Li X, Meng D, Zhong Y, Chen C et al. 2017. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol. Plant. 10:3520–22
    [Google Scholar]
  87. 87.
    Liu C, Zhong Y, Qi X, Chen M, Liu Z et al. 2020. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol. J. 18:2316–18
    [Google Scholar]
  88. 88.
    Liu C-M, McElver J, Tzafrir I, Joosen R, Wittich P et al. 2002. Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype. Plant J 29:4405–15
    [Google Scholar]
  89. 89.
    Liu H, Wang K, Jia Z, Gong Q, Lin Z et al. 2020. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J. Exp. Bot. 71:41337–49
    [Google Scholar]
  90. 90.
    Lloyd AH, Ranoux M, Vautrin S, Glover N, Fourment J et al. 2014. Meiotic gene evolution: can you teach a new dog new tricks?. Mol. Biol. Evol. 31:71724–27
    [Google Scholar]
  91. 91.
    Lowe K, Wu E, Wang N, Hoerster G, Hastings C et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:91998–2015
    [Google Scholar]
  92. 92.
    Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM. 1999. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. PNAS 96:1296–301
    [Google Scholar]
  93. 93.
    Luo M, Taylor JM, Spriggs A, Zhang H, Wu X et al. 2011. A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLOS Genet 7:61002125
    [Google Scholar]
  94. 94.
    Lv J, Yu K, Wei J, Gui H, Liu C et al. 2020. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat. Biotechnol. 38:121397–401
    [Google Scholar]
  95. 95.
    Marimuthu MPA, Jolivet S, Ravi M, Pereira L, Davda JN et al. 2011. Synthetic clonal reproduction through seeds. Science 331:6019876First demonstration of synthetic apomixis, combining MiMe or dyad with a CENH3-inducer line.
    [Google Scholar]
  96. 96.
    Marimuthu MPA, Maruthachalam R, Bondada R, Kuppu S, Tan EH et al. 2021. Epigenetically mismatched parental centromeres trigger genome elimination in hybrids. Sci. Adv. 7:eabk1151
    [Google Scholar]
  97. 97.
    Marston AL, Amon A. 2004. Meiosis: cell-cycle controls shuffle and deal. Nat. Rev. Mol. Cell Biol. 5:12983–97
    [Google Scholar]
  98. 98.
    Mercier R, Armstrong SJ, Horlow C, Jackson NP, Makaroff CA et al. 2003. The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis. Development 130:143309–18
    [Google Scholar]
  99. 99.
    Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M 2015. The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66:297–327
    [Google Scholar]
  100. 100.
    Mercier R, Vezon D, Bullier E, Motamayor JC, Sellier A et al. 2001. SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes Dev 15:141859–71
    [Google Scholar]
  101. 101.
    Miao C, Tang D, Zhang H, Wang M, Li Y et al. 2013. CENTRAL REGION COMPONENT1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice. Plant Cell 25:82998–3009
    [Google Scholar]
  102. 102.
    Mieulet D, Jolivet S, Rivard M, Cromer L, Vernet A et al. 2016. Turning rice meiosis into mitosis. Cell Res 26:111242–54
    [Google Scholar]
  103. 103.
    Mozgova I, Hennig L. 2015. The polycomb group protein regulatory network. Annu. Rev. Plant Biol. 66:269–96
    [Google Scholar]
  104. 104.
    Mudunkothge JS, Krizek BA. 2012. Three Arabidopsis AIL/PLT genes act in combination to regulate shoot apical meristem function. Plant J 71:1108–21
    [Google Scholar]
  105. 105.
    Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A et al. 2002. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111:2197–208
    [Google Scholar]
  106. 106.
    Nonomura K, Nakano M, Fukuda T, Eiguchi M, Miyao A et al. 2004. The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 16:41008–20
    [Google Scholar]
  107. 107.
    Nowack MK, Shirzadi R, Dissmeyer N, Dolf A, Endl E et al. 2007. Bypassing genomic imprinting allows seed development. Nature 447:7142312–15
    [Google Scholar]
  108. 108.
    Ohad N, Margossian L, Hsu YC, Williams C, Repetti P, Fischer RL. 1996. A mutation that allows endosperm development without fertilization. PNAS 93:115319–24
    [Google Scholar]
  109. 109.
    Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D et al. 1999. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:3407–15
    [Google Scholar]
  110. 110.
    Ozias-Akins P, van Dijk PJ. 2007. Mendelian genetics of apomixis in plants. Annu. Rev. Genet. 41:509–37
    [Google Scholar]
  111. 111.
    Nogler GA 1984. Gametophytic apomixis. Embryology of Angiosperms BM Johri 475–518 Berlin: Springer
    [Google Scholar]
  112. 112.
    Pawlowski WP, Wang C-JR, Golubovskaya IN, Szymaniak JM, Shi L et al. 2009. Maize AMEIOTIC1 is essential for multiple early meiotic processes and likely required for the initiation of meiosis. PNAS 106:93603–8
    [Google Scholar]
  113. 113.
    Radoeva T, Vaddepalli P, Zhang Z, Weijers D. 2019. Evolution, initiation, and diversity in early plant embryogenesis. Dev. Cell 50:5533–43
    [Google Scholar]
  114. 114.
    Ravi M, Chan SWL 2010. Haploid plants produced by centromere-mediated genome elimination. Nature 464:7288615–18Plants with genetic modifications to CENH3 can act as maternal and paternal haploid inducers.
    [Google Scholar]
  115. 115.
    Ravi M, Marimuthu MPA, Siddiqi I. 2008. Gamete formation without meiosis in Arabidopsis. Nature 451:71821121–24
    [Google Scholar]
  116. 116.
    Ravi M, Shibata F, Ramahi JS, Nagaki K, Chen C et al. 2011. Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana. PLOS Genet 7:61002121
    [Google Scholar]
  117. 117.
    Rieu I, Twell D, Firon N 2017. Pollen development at high temperature: from acclimation to collapse. Plant Physiol 173:41967–76
    [Google Scholar]
  118. 118.
    Ross KJ, Fransz P, Armstrong SJ, Vizir I, Mulligan B et al. 1997. Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines. Chromosome Res 5:8551–59
    [Google Scholar]
  119. 119.
    Sailer C, Schmid B, Grossniklaus U. 2016. Apomixis allows the transgenerational fixation of phenotypes in hybrid plants. Curr. Biol. 26:3331–37Multiple traits of hybrids are stable over multiple generations in the naturally apomictic Hieracium pilosella.
    [Google Scholar]
  120. 120.
    Sanei M, Pickering R, Kumke K, Nasuda S, Houben A 2011. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. PNAS 108:33E498–505
    [Google Scholar]
  121. 121.
    Shao T, Tang D, Wang K, Wang M, Che L et al. 2011. OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiol 156:31386–96
    [Google Scholar]
  122. 122.
    Shi W, Ji J, Xue Z, Zhang F, Miao Y et al. 2021. PRD1, a homologous recombination initiation factor, is involved in spindle assembly in rice meiosis. New Phytol 230:2585–600
    [Google Scholar]
  123. 123.
    Shull GH. 1908. The composition of a field of maize. J. Hered os-4:1296–301
    [Google Scholar]
  124. 124.
    Singh M, Goel S, Meeley RB, Dantec C, Parrinello H et al. 2011. Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein. Plant Cell 23:2443–58
    [Google Scholar]
  125. 125.
    Spillane C, Curtis MD, Grossniklaus U 2004. Apomixis technology development—virgin births in farmers’ fields?. Nat. Biotechnol. 22:6687–91
    [Google Scholar]
  126. 126.
    Stacey NJ, Kuromori T, Azumi Y, Roberts G, Breuer C et al. 2006. Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. Plant J 48:2206–16
    [Google Scholar]
  127. 127.
    Talbert PB, Henikoff S. 2010. Histone variants—ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol. 11:4264–75
    [Google Scholar]
  128. 128.
    Tan EH, Henry IM, Ravi M, Bradnam KR, Mandakova T et al. 2015. Catastrophic chromosomal restructuring during genome elimination in plants. eLife 4:e06516
    [Google Scholar]
  129. 129.
    Tóth A, Rabitsch KP, Gálová M, Schleiffer A, Buonomo SBC, Nasmyth K. 2000. Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103:71155–68
    [Google Scholar]
  130. 130.
    Underwood CJ, Vijverberg K, Rigola D, Okamoto S, Oplaat C et al. 2022. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat. Genet. 54:84–93The identification of the dandelion PARTHENOGENESIS gene and its application in lettuce.
    [Google Scholar]
  131. 131.
    van den Bosch F, Jeger MJ, Gilligan CA. 2007. Disease control and its selection for damaging plant virus strains in vegetatively propagated staple food crops; a theoretical assessment. Proc. R. Soc. B 274: 1606.11–18
    [Google Scholar]
  132. 132.
    van Dijk PJ, Rigola D, Schauer SE. 2016. Plant breeding: Surprisingly, less sex is better. Curr. Biol. 26:3R122–24
    [Google Scholar]
  133. 133.
    van Dijk PJ, Tas ICQ, Falque M, Bakx-Schotman T. 1999. Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity 83:6715–21
    [Google Scholar]
  134. 134.
    Van Leene J, Hollunder J, Eeckhout D, Persiau G, Van De Slijke E et al. 2010. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol. Syst. Biol. 6:397397
    [Google Scholar]
  135. 135.
    Vielle Calzada JP, Crane CF, Stelly DM. 1996. Apomixis: the asexual revolution. Science 274:52911322–23
    [Google Scholar]
  136. 136.
    Vijverberg K, Milanovic-Ivanovic S, Bakx-Schotman T, van Dijk PJ. 2010. Genetic fine-mapping of DIPLOSPOROUS in Taraxacum (dandelion; Asteraceae) indicates a duplicated DIP-gene. BMC Plant Biol 10:154
    [Google Scholar]
  137. 137.
    Vijverberg K, Ozias-Akins P, Schranz ME. 2019. Identifying and engineering genes for parthenogenesis in plants. Front. Plant Sci. 10:128
    [Google Scholar]
  138. 138.
    Vrielynck N, Chambon A, Vezon D, Pereira L, Chelysheva L et al. 2016. A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 351:6276939–43
    [Google Scholar]
  139. 139.
    Wang C, Liu Q, Shen Y, Hua Y, Wang J et al. 2019. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat. Biotechnol. 14:4e1007317The first demonstration of synthetic apomixis in a crop, combining MiMe and matl.
    [Google Scholar]
  140. 140.
    Wang N, Gent JI, Dawe RK. 2021. Haploid induction by a maize cenh3 null mutant. Sci. Adv. 7:4eabe2299
    [Google Scholar]
  141. 141.
    Wang N, Xia X, Jiang T, Li L, Zhang P et al. 2022. In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnol. J. 20:22–24
    [Google Scholar]
  142. 142.
    Wang S, Jin W, Wang K 2019. Centromere histone H3- and phospholipase-mediated haploid induction in plants. Plant Methods 15:42
    [Google Scholar]
  143. 143.
    Wang X, Xu Y, Zhang S, Cao L, Huang Y et al. 2017. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat. Genet. 49:5765–72
    [Google Scholar]
  144. 144.
    Wang Y, Copenhaver GP. 2018. Meiotic recombination: mixing it up in plants. Annu. Rev. Plant Biol. 69:577–609
    [Google Scholar]
  145. 145.
    Whitford R, Fleury D, Reif JC, Garcia M, Okada T et al. 2013. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J. Exp. Bot. 64:185411–28
    [Google Scholar]
  146. 146.
    Wijeratne AJ, Chen C, Zhang W, Timofejeva L, Ma H 2006. The Arabidopsis thaliana PARTING DANCERS gene encoding a novel protein is required for normal meiotic homologous recombination. Mol. Biol. Cell 17:31331–43
    [Google Scholar]
  147. 147.
    Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW et al. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33:111162–64
    [Google Scholar]
  148. 148.
    Wu Z, Ji J, Tang D, Wang H, Shen Y et al. 2015. OsSDS is essential for DSB formation in rice meiosis. Front. Plant Sci. 6:21
    [Google Scholar]
  149. 149.
    Xiong H, Wang W, Sun MX 2021. Endosperm development is an autonomously programmed process independent of embryogenesis. Plant Cell 33:41151–60
    [Google Scholar]
  150. 150.
    Xu X, Zhiguo E, Zhang D, Yun Q, Zhou Y et al. 2021. OsYUC11-mediated auxin biosynthesis is essential for endosperm development of rice. Plant Physiol 185:3934–50
    [Google Scholar]
  151. 151.
    Xue Z, Li Y, Zhang L, Shi W, Zhang C et al. 2016. OsMTOPVIB promotes meiotic DNA double-strand break formation in rice. Mol. Plant 9:111535–38
    [Google Scholar]
  152. 152.
    Yang C, Hamamura Y, Sofroni K, Böwer F, Stolze SC et al. 2019. SWITCH1/DYAD is a WINGS APART-LIKE antagonist that maintains sister chromatid cohesion in meiosis. Nat. Commun. 10:11755
    [Google Scholar]
  153. 153.
    Yao L, Zhang Y, Liu C, Liu Y, Wang Y et al. 2018. OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants 4:8530–33
    [Google Scholar]
  154. 154.
    Yokobayashi S, Watanabe Y 2005. The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell 123:5803–17
    [Google Scholar]
  155. 155.
    Yu H, Wang M, Tang D, Wang K, Chen F et al. 2010. OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice. Chromosoma 119:6625–36
    [Google Scholar]
  156. 156.
    Yu H-G, Dawe RK. 2000. Functional redundancy in the maize meiotic kinetochore. J. Cell Biol. 151:1131–42
    [Google Scholar]
  157. 157.
    Zhang C, Song Y, Cheng Z, Wang Y, Zhu J et al. 2012. The Arabidopsis thaliana DSB formation (AtDFO) gene is required for meiotic double-strand break formation. Plant J 72:2271–81
    [Google Scholar]
  158. 158.
    Zhang Z, Conner J, Guo Y, Ozias-Akins P. 2020. Haploidy in tobacco induced by PsASGR-BBML transgenes via parthenogenesis. Genes 11:91072
    [Google Scholar]
  159. 159.
    Zhao P, Zhou X, Shen K, Liu Z, Cheng T et al. 2019. Two-step maternal-to-zygotic transition with two-phase parental genome contributions. Dev. Cell 49:6882–893.e5
    [Google Scholar]
  160. 160.
    Zhong Y, Chen B, Li M, Wang D, Jiao Y et al. 2020. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nat. Plants 6:5466–72
    [Google Scholar]
  161. 161.
    Zhong Y, Chen B, Wang D, Zhu X, Li M et al. 2022. In vivo maternal haploid induction in tomato. Plant Biotechnol. J. 20:250–52
    [Google Scholar]
  162. 162.
    Zhong Y, Chen B, Wang D, Zhu X, Wang Y et al. 2021. A genotype independent DMP-HI system in dicot crops. bioRxiv 2021.06.21.449224. https://doi.org/10.1101/2021.06.21.449224
    [Crossref]
  163. 163.
    Zhong Y, Liu C, Qi X, Jiao Y, Wang D et al. 2019. Mutation of ZmDMP enhances haploid induction in maize. Nat. Plants 5:6575–80
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-102720-013958
Loading
/content/journals/10.1146/annurev-arplant-102720-013958
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error