1932

Abstract

The advent of high-throughput sequencing-based methods for chromatin conformation, accessibility, and immunoprecipitation assays has been a turning point in 3D genomics. Altogether, these new tools have been pushing upward the interpretation of pioneer cytogenetic evidence for a higher order in chromatin packing. Here, we review the latest development in our understanding of plant spatial genome structures and different levels of organization and discuss their functional implications. Then, we spotlight the complexity of organellar (i.e., mitochondria and plastids) genomes and discuss their 3D packing into nucleoids. Finally, we propose unaddressed research axes to investigate functional links between chromatin-like dynamics and transcriptional regulation within organellar nucleoids.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102720-022810
2022-05-20
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-102720-022810.html?itemId=/content/journals/10.1146/annurev-arplant-102720-022810&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Archibald JM. 2015. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25:19PR911–21
    [Google Scholar]
  2. 2.
    Ariel F, Jegu T, Latrasse D, Romero-Barrios N, Christ A et al. 2014. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol. Cell 55:3383–96
    [Google Scholar]
  3. 3.
    Arnould C, Rocher V, Finoux A-L, Clouaire T, Li K et al. 2021. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 590:7847660–65
    [Google Scholar]
  4. 4.
    Barkan A, Martienssen RA. 1991. Inactivation of maize transposon Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end of Mu1. PNAS 88:83502–6
    [Google Scholar]
  5. 5.
    Barth R, Bystricky K, Shaban HA. 2020. Coupling chromatin structure and dynamics by live super-resolution imaging. Sci Adv 6:27eaaz2196
    [Google Scholar]
  6. 6.
    Beagan JA, Phillips-Cremins JE. 2020. On the existence and functionality of topologically associating domains. Nat. Genet. 52:18–16
    [Google Scholar]
  7. 7.
    Bi X, Cheng YJ, Hu B, Ma X, Wu R et al. 2017. Nonrandom domain organization of the Arabidopsis genome at the nuclear periphery. Genome Res 27:71162–73
    [Google Scholar]
  8. 8.
    Bintu B, Mateo LJ, Su J-H, Sinnott-Armstrong NA, Parker M et al. 2018. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362:6413eaau1783
    [Google Scholar]
  9. 9.
    Boettiger A, Murphy S. 2020. Advances in chromatin imaging at kilobase-scale resolution. Trends Genet 36:4273–87
    [Google Scholar]
  10. 10.
    Bourbousse C, Barneche F, Laloi C. 2020. Plant chromatin catches the sun. Front. Plant Sci. 10:1728
    [Google Scholar]
  11. 11.
    Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:2287–304.e15
    [Google Scholar]
  12. 12.
    Briand N, Collas P. 2020. Lamina-associated domains: peripheral matters and internal affairs. Genome Biol 21:185
    [Google Scholar]
  13. 13.
    Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S et al. 2012. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:31242–55
    [Google Scholar]
  14. 14.
    Charlesworth D. 2016. Plant sex chromosomes. Annu. Rev. Plant Biol. 67:397–420
    [Google Scholar]
  15. 15.
    Chen B, Zou W, Xu H, Liang Y, Huang B. 2018. Efficient labeling and imaging of protein-coding genes in living cells using CRISPR-Tag. Nat. Commun. 9:15065
    [Google Scholar]
  16. 16.
    Chen C-H, Zheng R, Tokheim C, Dong X, Fan J et al. 2020. Determinants of transcription factor regulatory range. Nat. Commun. 11:12472
    [Google Scholar]
  17. 17.
    Chiba Y. 1951. Cytochemical studies on chloroplasts. I. Cytologic demonstration of nucleic acids in chloroplasts. Cytologia 16:3259–64
    [Google Scholar]
  18. 18.
    Chung PJ, Kim YS, Park SH, Nahm BH, Kim JK. 2009. Subcellular localization of rice histone deacetylases in organelles. FEBS Lett 583:132249–54
    [Google Scholar]
  19. 19.
    Collings DA, Carter CN, Rink JC, Scott AC, Wyatt SE, Allen NS. 2000. Plant nuclei can contain extensive grooves and invaginations [W]. Plant Cell 12:122425–39
    [Google Scholar]
  20. 20.
    Concia L, Veluchamy A, Ramirez-Prado JS, Martin-Ramirez A, Huang Y et al. 2020. Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biol 21:1104
    [Google Scholar]
  21. 21.
    Crevillén P, Sonmez C, Wu Z, Dean C. 2013. A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO J 32:1140–48
    [Google Scholar]
  22. 22.
    Dekker J, Rippe K, Dekker M, Kleckner N. 2002. Capturing chromosome conformation. Science 295:55581306–11
    [Google Scholar]
  23. 23.
    Del Cortona A, Leliaert F, Bogaert KA, Turmel M, Boedeker C et al. 2017. The plastid genome in Cladophorales green algae is encoded by hairpin chromosomes. Curr. Biol. 27:243771–82.e6
    [Google Scholar]
  24. 24.
    Dillon SC, Dorman CJ. 2010. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 8:3185–95
    [Google Scholar]
  25. 25.
    Ding M, Chen ZJ. 2018. Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Curr. Opin. Plant Biol. 42:37–48
    [Google Scholar]
  26. 26.
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:7398376–80
    [Google Scholar]
  27. 27.
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:115–21
    [Google Scholar]
  28. 28.
    Doğan ES, Liu C. 2018. Three-dimensional chromatin packing and positioning of plant genomes. Nat. Plants 4:8521–29
    [Google Scholar]
  29. 29.
    Dong F, Jiang J 1998. Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res. 6:7551–58
    [Google Scholar]
  30. 30.
    Dong P, Tu X, Chu PY, Lu P, Zhu N et al. 2017. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant 10:121497–509Reports Hi-C patterns in a collection of five crop species.
    [Google Scholar]
  31. 31.
    Dong Q, Li N, Li X, Yuan Z, Xie D et al. 2018. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. Plant J 94:61141–56
    [Google Scholar]
  32. 32.
    Dostie J, Dekker J. 2007. Mapping networks of physical interactions between genomic elements using 5C technology. Nat. Protoc. 2:4988–1002
    [Google Scholar]
  33. 33.
    Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL et al. 2006. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:101299–309
    [Google Scholar]
  34. 34.
    Drosou V, Kapazoglou A, Koidou V, Merkouropoulos G, Hilioti Z 2018. Spatial and temporal expression of cytosine-5 DNA methyltransferase and DNA demethylase gene families of the Ricinus communis during seed development and drought stress.. 84:81–94. Correction. 2020 Plant Growth Regul 92:441
    [Google Scholar]
  35. 35.
    Dumur T, Duncan S, Graumann K, Desset S, Randall RS et al. 2019. Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and solutions. Nucleus 10:1181–212
    [Google Scholar]
  36. 36.
    Ehara T, Ogasawara Y, Osafune T, Hase E 1990. Behavior of chloroplast nucleoids during the cell cycle of Chlamydomonas reinhardtii (Chlorophyta) in synchronized culture. J. Phycol. 26:2317–23
    [Google Scholar]
  37. 37.
    Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR et al. 2019. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570:7761395–99
    [Google Scholar]
  38. 38.
    Fauron C, Allen J, Clifton S, Newton K 2004. Plant mitochondrial genomes. Molecular Biology and Biotechnology of Plant Organelles H Daniell, C Chase 151–77 Dordrecht, Neth: Springer
    [Google Scholar]
  39. 39.
    Feldman M, Levy AA. 2012. Genome evolution due to allopolyploidization in wheat. Genetics 192:3763–74
    [Google Scholar]
  40. 40.
    Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE. 2014. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 55:5694–707
    [Google Scholar]
  41. 41.
    Feric M, Demarest TG, Tian J, Croteau DL, Bohr VA, Misteli T. 2021. Self-assembly of multi-component mitochondrial nucleoids via phase separation. EMBO J. 40:6e107165Demonstrates liquid-liquid phase separation as the driving force of nucleoid assembly.
    [Google Scholar]
  42. 42.
    Feric M, Misteli T. 2021. Phase separation in genome organization across evolution. Trends Cell Biol. 31:8671–85
    [Google Scholar]
  43. 43.
    Flores-Sandoval E, Romani F, Bowman JL 2018. Co-expression and transcriptome analysis of Marchantia polymorpha transcription factors supports class C ARFs as independent actors of an ancient auxin regulatory module. Front. Plant Sci. 9:1345
    [Google Scholar]
  44. 44.
    Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I. 2002. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. PNAS 99:2214584–89
    [Google Scholar]
  45. 45.
    Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H et al. 2009. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462:726958–64
    [Google Scholar]
  46. 46.
    Golin S, Negroni YL, Bennewitz B, Klösgen RB, Mulisch M et al. 2020. WHIRLY2 plays a key role in mitochondria morphology, dynamics, and functionality in Arabidopsis thaliana. Plant Direct 4:5e00229
    [Google Scholar]
  47. 47.
    Golov AK, Abashkin DA, Kondratyev NV, Razin SV, Gavrilov AA, Golimbet VE. 2020. A modified protocol of Capture-C allows affordable and flexible high-resolution promoter interactome analysis. Sci. Rep. 10:115491
    [Google Scholar]
  48. 48.
    Greiner S, Golczyk H, Malinova I, Pellizzer T, Bock R et al. 2019. Chloroplast nucleoids are highly dynamic in ploidy, number, and structure during angiosperm leaf development. Plant J 102:4730–46
    [Google Scholar]
  49. 49.
    Grob S, Schmid MW, Grossniklaus U. 2014. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55:5678–93
    [Google Scholar]
  50. 50.
    Gualberto JM, Mileshina D, Wallet C, Niazi AK, Weber-Lotfi F, Dietrich A 2014. The plant mitochondrial genome: dynamics and maintenance. Biochimie 100:107–20
    [Google Scholar]
  51. 51.
    Guilhas B, Walter JC, Rech J, David G, Walliser NO et al. 2020. ATP-driven separation of liquid phase condensates in bacteria. Mol. Cell 79:2293–303.e4
    [Google Scholar]
  52. 52.
    Han S, Udeshi ND, Deerinck TJ, Svinkina T, Ellisman MH et al. 2017. Proximity biotinylation as a method for mapping proteins associated with mtDNA in living cells. Cell Chem. Biol. 24:3404–14
    [Google Scholar]
  53. 53.
    Hansen AS. 2020. CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism. Nucleus 11:1132–48
    [Google Scholar]
  54. 54.
    Hansmann P, Falk H, Ronai K, Sitte P 1985. Structure, composition, and distribution of plastid nucleoids in Narcissus pseudonarcissus. Planta 164:4459–72
    [Google Scholar]
  55. 55.
    Hao Z, Wu T, Cui X, Zhu P, Tan C et al. 2020. N6-Deoxyadenosine methylation in mammalian mitochondrial DNA. Mol. Cell 78:3382–95.e86mA is an epigenetic mark negatively influencing organellar gene expression.
    [Google Scholar]
  56. 56.
    Harr B, Karakoc E, Neme R, Teschke M, Pfeifle C et al. 2016. Genomic resources for wild populations of the house mouse, Mus musculus and its close relative Mus spretus. Sci. Data 3:160075
    [Google Scholar]
  57. 57.
    Hirsch CD, Springer NM. 2017. Transposable element influences on gene expression in plants. Biochim. Biophys. Acta Gene Regul. Mech. 1860:1157–65
    [Google Scholar]
  58. 58.
    Hoencamp C, Dudchenko O, Elbatsh AMO, Brahmachari S, Raaijmakers JA et al. 2021. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 372:6545984–89
    [Google Scholar]
  59. 59.
    Hu B, Wang N, Bi X, Karaaslan ES, Weber AL et al. 2019. Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery. Genome Biol 20:187
    [Google Scholar]
  60. 60.
    Huang M, Friso G, Nishimura K, Qu X, Olinares PDB et al. 2013. Construction of plastid reference proteomes for maize and Arabidopsis and evaluation of their orthologous relationships; the concept of orthoproteomics. J. Proteome Res. 12:1491–504
    [Google Scholar]
  61. 61.
    Huang Y, Sicar S, Ramirez-Prado JS, Manza-Mianza D, Antunez-Sanchez J et al. 2021. Polycomb-dependent differential chromatin compartmentalization determines gene coregulation in Arabidopsis. Genome Res 31:71230–44
    [Google Scholar]
  62. 62.
    Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E et al. 2014. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46:2205–12
    [Google Scholar]
  63. 63.
    Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J. 2011. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:7341115–19
    [Google Scholar]
  64. 64.
    Jalal ASB, Le TBK. 2020. Bacterial chromosome segregation by the ParABS system. Open Biol 10:6200097
    [Google Scholar]
  65. 65.
    Jégu T, Latrasse D, Delarue M, Hirt H, Domenichini S et al. 2014. The BAF60 subunit of the SWI/SNF chromatin-remodeling complex directly controls the formation of a gene loop at FLOWERING LOCUS C in Arabidopsis. Plant Cell 26:2538–51
    [Google Scholar]
  66. 66.
    Jerkovic I, Cavalli G. 2021. Understanding 3D genome organization by multidisciplinary methods. Nat. Rev. Mol. Cell Biol. 22:8511–28
    [Google Scholar]
  67. 67.
    Jia J, Xie Y, Cheng J, Kong C, Wang M et al. 2021. Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression. Genome Biol 22:1 ). 26Demonstrates the contribution of transposable elements to the spatial organization of a polyploid genome and draws attention to the effect of mapping strategy on Hi-C analysis interpretation.
    [Google Scholar]
  68. 68.
    Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:734597–100
    [Google Scholar]
  69. 69.
    Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L et al. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1D1040–45
    [Google Scholar]
  70. 70.
    Jourdain AA, Boehm E, Maundrell K, Martinou JC. 2016. Mitochondrial RNA granules: compartmentalizing mitochondrial gene expression. J. Cell Biol. 212:6611–14
    [Google Scholar]
  71. 71.
    Kaaij LJT, Mohn F, van der Weide RH, de Wit E, Bühler M. 2019. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178:61437–51.e14
    [Google Scholar]
  72. 72.
    Kabeya Y, Nakanishi H, Suzuki K, Ichikawa T, Kondou Y et al. 2010. The YlmG protein has a conserved function related to the distribution of nucleoids in chloroplasts and cyanobacteria. BMC Plant Biol 10:57
    [Google Scholar]
  73. 73.
    Kalinina NO, Makarova S, Makhotenko A, Love AJ, Taliansky M. 2018. The multiple functions of the nucleolus in plant development, disease and stress responses. Front. Plant Sci. 9:132
    [Google Scholar]
  74. 74.
    Kamimura Y, Tanaka H, Kobayashi Y, Shikanai T, Nishimura Y. 2018. Chloroplast nucleoids as a transformable network revealed by live imaging with a microfluidic device. Commun. Biol. 1:47
    [Google Scholar]
  75. 75.
    Karaaslan ES, Wang N, Faiß N, Liang Y, Montgomery SA et al. 2020. Marchantia TCP transcription factor activity correlates with three-dimensional chromatin structure. Nat. Plants 6:101250–61Reports TADs in a small plant genome; a subset of Marchantia TADs shows intensive interactions with the TCP1 transcription factor.
    [Google Scholar]
  76. 76.
    Kim M, Schulz V, Brings L, Schoeller T, Kühn K, Vierling E 2021. mTERF18 and ATAD3 are required for mitochondrial nucleoid structure and their disruption confers heat tolerance in Arabidopsis thaliana. New Phytol 232:52026–42
    [Google Scholar]
  77. 77.
    Kishi JY, Lapan SW, Beliveau BJ, West ER, Zhu A et al. 2019. SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat. Methods 16:6533–44
    [Google Scholar]
  78. 78.
    Kobayashi Y, Takusagawa M, Harada N, Fukao Y, Yamaoka S et al. 2015. Eukaryotic components remodeled chloroplast nucleoid organization during the green plant evolution. Genome Biol. Evol. 8:11–16
    [Google Scholar]
  79. 79.
    Korbel JO, Lee C. 2013. Genome assembly and haplotyping with Hi-C. Nat. Biotechnol. 31:121099–101
    [Google Scholar]
  80. 80.
    Krupinska K, Blanco NE, Oetke S, Zottini M. 2020. Genome communication in plants mediated by organelle-nucleus-located proteins. Philos. Trans. R. Soc. B 375:180120190397
    [Google Scholar]
  81. 81.
    Krupinska K, Melonek J, Krause K. 2013. New insights into plastid nucleoid structure and functionality. Planta 237:3653–64
    [Google Scholar]
  82. 82.
    Kuroiwa T. 1991. The replication, differentiation, and inheritance of plastids with emphasis on the concept of organelle nuclei. Int. Rev. Cytol. 128:1–62
    [Google Scholar]
  83. 83.
    Kuroiwa T, Fujie M, Kuroiwa H 1992. Studies on the behavior of mitochondrial DNA: synthesis of mitochondrial DNA occurs actively in a specific region just above the quiescent center in the root meristem of Pelargonium zonale. J. Cell Sci. 101:3483–93
    [Google Scholar]
  84. 84.
    Kuroiwa T, Kuroiwa H, Mita T, Fujie M 1990. Fluorescence microscopic study of the formation of giant mitochondrial nuclei in the young ovules of Pelargonium zonale. Protoplasma 158:3191–94
    [Google Scholar]
  85. 85.
    Kuroiwa T, Suzuki T, Ogawa K, Kawano S. 1981. The chloroplast nucleus: distribution, number, size, and shape, and a model for the multiplication of the chloroplast genome during chloroplast development. Plant Cell Physiol 22:3381–96
    [Google Scholar]
  86. 86.
    Ladouceur AM, Parmar BS, Biedzinski S, Wall J, Tope SG et al. 2020. Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid-liquid phase separation. PNAS 117:3118540–49
    [Google Scholar]
  87. 87.
    Lakadamyali M, Cosma MP. 2020. Visualizing the genome in high resolution challenges our textbook understanding. Nat. Methods 17:4371–79
    [Google Scholar]
  88. 88.
    Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB et al. 2017. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547:7662236–40
    [Google Scholar]
  89. 89.
    Lavin M, Herendeen PS, Wojciechowski MF. 2005. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst. Biol. 54:4575–94
    [Google Scholar]
  90. 90.
    Le TBK, Imakaev MV, Mirny LA, Laub MT. 2013. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342:6159731–34
    [Google Scholar]
  91. 91.
    Li C, Zhang C, Rong T, Lu Y, Wang J et al. 2017. Insight into the maize CMS-associated mitochondrial-nuclear interaction at the DNA methylation level. Can. J. Plant Sci. 97:4665–73
    [Google Scholar]
  92. 92.
    Li E, Liu H, Huang L, Zhang X, Dong X et al. 2019. Long-range interactions between proximal and distal regulatory regions in maize. Nat. Commun. 10:12633
    [Google Scholar]
  93. 93.
    Li Q, Gent JI, Zynda G, Song J, Makarevitch I et al. 2015. RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. PNAS 112:4714728–33
    [Google Scholar]
  94. 94.
    Li S, Chang L, Zhang J 2021. Advancing organelle genome transformation and editing for crop improvement. Plant Commun 2:2100141
    [Google Scholar]
  95. 95.
    Liao Y, Zhang X, Chakraborty M, Emerson JJ. 2021. Topologically associating domains and their role in the evolution of genome structure and function in Drosophila. Genome Res 31:3397–410
    [Google Scholar]
  96. 96.
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:5950289–93
    [Google Scholar]
  97. 97.
    Lilly JW, Havey MJ, Jackson SA, Jiang J 2001. Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13:2245–54
    [Google Scholar]
  98. 98.
    Liu C, Cheng YJ, Wang JW, Weigel D 2017. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat. Plants 3:9742–48
    [Google Scholar]
  99. 99.
    Liu C, Wang C, Wang G, Becker C, Zaidem M, Weigel D 2016. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res 26:81057–68
    [Google Scholar]
  100. 100.
    Liu H, Ren D, Jiang L, Li X, Yao Y et al. 2020. A natural variation in PLEIOTROPIC DEVELOPMENTAL DEFECTS uncovers a crucial role for chloroplast tRNA modification in translation and plant development. Plant Cell 32:72345–66
    [Google Scholar]
  101. 101.
    Lo YS, Cheng N, Hsiao LJ, Annamalai A, Jauh GY et al. 2011. Actin in mung bean mitochondria and implications for its function. Plant Cell 23:103727–44
    [Google Scholar]
  102. 102.
    Louwers M, Bader R, Haring M, van Driel R, de Laat W, Stam M. 2009. Tissue- and expression level-specific chromatin looping at maize b1 epialleles. Plant Cell 21:3832–42
    [Google Scholar]
  103. 103.
    Lu JY, Chang L, Li T, Wang T, Yin Y et al. 2021. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res 31:6613–30
    [Google Scholar]
  104. 104.
    Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F et al. 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:51012–25
    [Google Scholar]
  105. 105.
    MacIntosh GC, Castandet B. 2020. Organellar and secretory ribonucleases: major players in plant RNA homeostasis. Plant Physiol 183:41438–52
    [Google Scholar]
  106. 106.
    Maier RM, Schmitz-Linneweber C 2004. Plastid genomes. Molecular Biology and Biotechnology of Plant Organelles H Daniell, C Chase 115–50 Dordrecht, Neth: Springer
    [Google Scholar]
  107. 107.
    Majeran W, Friso G, Asakura Y, Qu X, Huang M et al. 2012. Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. Plant Physiol 158:1156–89
    [Google Scholar]
  108. 108.
    Major LA, Sauterer R. 2019. Demonstration of exogenous nuclear histone H3 binding to mitochondria and subsequent cytochrome c release in cauliflower. Cell Biol. Int. 43:111323–29
    [Google Scholar]
  109. 109.
    Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN et al. 2015. Transposable elements contribute to activation of maize genes in response to abiotic stress. PLOS Genet 11:1e1004915
    [Google Scholar]
  110. 110.
    Marchal C, Sima J, Gilbert DM 2019. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20:12721–37
    [Google Scholar]
  111. 111.
    Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO et al. 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature 544:7651427–33
    [Google Scholar]
  112. 112.
    Mattout A, Cabianca DS, Gasser SM. 2015. Chromatin states and nuclear organization in development—a view from the nuclear lamina. Genome Biol 16:1174
    [Google Scholar]
  113. 113.
    Mechta M, Ingerslev LR, Fabre O, Picard M, Barrès R. 2017. Evidence suggesting absence of mitochondrial DNA methylation. Front. Genet. 8:166
    [Google Scholar]
  114. 114.
    Melonek J, Oetke S, Krupinska K 2016. Multifunctionality of plastid nucleoids as revealed by proteome analyses. Biochim. Biophys. Acta Proteins Proteom. 1864:81016–38
    [Google Scholar]
  115. 115.
    Miyamura S, Nagata T, Kuroiwa T. 1986. Quantitative fluorescence microscopy on dynamic changes of plastid nucleoids during wheat development. Protoplasma 133:66–72
    [Google Scholar]
  116. 116.
    Montgomery SA, Tanizawa Y, Galik B, Wang N, Ito T et al. 2020. Chromatin organization in early land plants reveals an ancestral association between H3K27me3, transposons, and constitutive heterochromatin. Curr. Biol. 30:4573–88.e7
    [Google Scholar]
  117. 117.
    Morley SA, Ahmad N, Nielsen BL 2019. Plant organelle genome replication. Plants 8:10358
    [Google Scholar]
  118. 118.
    Mower JP, Sloan DB, Alverson AJ 2012. Plant mitochondrial genome diversity: the genomics revolution. Plant Genome Diversity J Wendel, J Greilhuber, J Dolezel, I Leitch pp. 123–44 Vienna: Springer
    [Google Scholar]
  119. 119.
    Mullingan RM 2004. RNA editing in plant organelles. Molecular Biology and Biotechnology of Plant Organelles H Daniell, C Chase 239–60 Dordrecht, Neth: Springer
    [Google Scholar]
  120. 120.
    Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA et al. 2016. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13:11919–22
    [Google Scholar]
  121. 121.
    Nass MMK, Nass S. 1963. Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. J. Cell Biol. 19:3593–611
    [Google Scholar]
  122. 122.
    Nass S, Nass MMK. 1963. Intramitochondrial fibers with DNA characteristics. II. Enzymatic and other hydrolytic treatments. J. Cell Biol. 19:3613–29
    [Google Scholar]
  123. 123.
    Nemoto Y, Kawano S, Kondoh K, Nagata T, Kuroiwa T 1990. Studies on plastid-nuclei (nucleoids) in Nicotiana tabacum L. III. Isolation of chloroplast-nuclei from mesophyll protoplasts and identification of chloroplast DNA-binding proteins. Plant Cell Physiol 31:6767–76
    [Google Scholar]
  124. 124.
    Nemoto Y, Kawano S, Nagata T, Kuroiwa T 1991. Studies on plastid-nuclei (nucleoids) in Nicotiana tabacum L. IV. Association of chloroplast-DNA with proteins at several specific sites in isolated chloroplast-nuclei. Plant Cell Physiol 32:1131–41
    [Google Scholar]
  125. 125.
    Nemoto Y, Kawano S, Nakamura S, Mita T, Nagata T, Kuroiwa T 1988. Studies on plastid-nuclei (nucleoids) in Nicotiana tabacum L. I. Isolation of proplastid-nuclei from cultured cells and identification of proplastid-nuclear proteins. Plant Cell Physiol 29:1167–77
    [Google Scholar]
  126. 126.
    Nishiyama R, Ito M, Yamaguchi Y, Koizumi N, Sano H 2002. A chloroplast-resident DNA methyltransferase is responsible for hypermethylation of chloroplast genes in Chlamydomonas maternal gametes. PNAS 99:95925–30
    [Google Scholar]
  127. 127.
    Nützmann H-W, Doerr D, Ramírez-Colmenero A, Sotelo-Fonseca JE, Wegel E et al. 2020. Active and repressed biosynthetic gene clusters have spatially distinct chromosome states. PNAS 117:2413800–9
    [Google Scholar]
  128. 128.
    Oetke S, Scheidig AJ, Krupinska K. 2021. WHIRLY1 of barley and maize share a PRAPP motif conferring nucleoid compaction. Plant Cell Physiol https://doi.org/10.1093/pcp/pcab164
    [Crossref] [Google Scholar]
  129. 129.
    Ouyang W, Xiong D, Li G, Li X 2020. Unraveling the 3D genome architecture in plants: present and future. Mol. Plant 13:121676–93
    [Google Scholar]
  130. 130.
    Paszkiewicz G, Gualberto JM, Benamar A, Macherel D, Logan DC 2017. Arabidopsis seed mitochondria are bioenergetically active immediately upon imbibition and specialize via biogenesis in preparation for autotrophic growth. Plant Cell 29:1109–28
    [Google Scholar]
  131. 131.
    Pei L, Li G, Lindsey K, Zhang X, Wang M. 2021. Plant 3D genomics: the exploration and application of chromatin organization. New Phytol 230:51772–86
    [Google Scholar]
  132. 132.
    Peng Y, Xiong D, Zhao L, Ouyang W, Wang S et al. 2019. Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nat. Commun. 10:12632
    [Google Scholar]
  133. 133.
    Pontvianne F, Carpentier MC, Durut N, Pavlištová V, Jaške K et al. 2016. Identification of nucleolus-associated chromatin domains reveals a role for the nucleolus in 3D organization of the A. thaliana genome. Cell Rep 16:61574–87
    [Google Scholar]
  134. 134.
    Powikrowska M, Oetke S, Jensen PE, Krupinska K. 2014. Dynamic composition, shaping and organization of plastid nucleoids. Front. Plant Sci. 5:424
    [Google Scholar]
  135. 135.
    Qin J, Guo Y, Xue B, Shi P, Chen Y et al. 2020. ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation. Nat. Commun. 11:14471Membrane-anchored proteins and cytoskeleton are involved in mitochondrion-nucleoid patterning.
    [Google Scholar]
  136. 136.
    Qin P, Parlak M, Kuscu C, Bandaria J, Mir M et al. 2017. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat. Commun. 8:14725
    [Google Scholar]
  137. 137.
    Rabl C. 1885. Uber Zelltheilung. Morphol. Jahrb. 10:214–330
    [Google Scholar]
  138. 138.
    Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA et al. 2020. Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat. Commun. 11:12905
    [Google Scholar]
  139. 139.
    Ren G, Jin W, Cui K, Rodrigez J, Hu G et al. 2017. CTCF-mediated enhancer-promoter interaction is a critical regulator of cell-to-cell variation of gene expression. Mol. Cell 67:61049–58.e6
    [Google Scholar]
  140. 140.
    Ris H, Singh RN. 1961. Electron microscope studies on blue-green algae. J. Biophys. Biochem. Cytol. 9:163–80
    [Google Scholar]
  141. 141.
    Ruf S, Kroop X, Bock R. 2021. Chloroplast transformation in Arabidopsis. Curr. Protoc. 1:4e103
    [Google Scholar]
  142. 142.
    Sagan L. 1967. On the origin of mitosing cells. J. Theor. Biol. 14:3225–74
    [Google Scholar]
  143. 143.
    Sakai A, Takano H, Kuroiwa T. 2004. Organelle nuclei in higher plants: structure, composition, function, and evolution. Int. Rev. Cytol. 238:59–118
    [Google Scholar]
  144. 144.
    Santos AP, Gaudin V, Mozgová I, Pontvianne F, Schubert D et al. 2020. Tidying-up the plant nuclear space: domains, functions, and dynamics. J. Exp. Bot. 71:175160–78
    [Google Scholar]
  145. 145.
    Santos AP, Shaw P. 2004. Interphase chromosomes and the Rabl configuration: Does genome size matter?. J. Microsc. 214:Part 2201–6
    [Google Scholar]
  146. 146.
    Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T et al. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463:7278178–83
    [Google Scholar]
  147. 147.
    Senchina DS, Alvarez I, Cronn RC, Liu B, Rong J et al. 2003. Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol. Biol. Evol. 20:4633–43
    [Google Scholar]
  148. 148.
    Shan W, Kubová M, Mandáková T, Lysak MA 2021. Nuclear organization in crucifer genomes: Nucleolus-associated telomere clustering is not a universal interphase configuration in Brassicaceae. Plant J. 108:2528–40
    [Google Scholar]
  149. 149.
    Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R et al. 2006. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38:111348–54
    [Google Scholar]
  150. 150.
    Skinner BM, Johnson EEP. 2017. Nuclear morphologies: their diversity and functional relevance. Chromosoma 126:2195–212
    [Google Scholar]
  151. 151.
    Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE et al. 2012. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLOS Biol 10:1e1001241
    [Google Scholar]
  152. 152.
    Soppe WJJ, Jasencakova Z, Houben A, Kakutani T, Meister A et al. 2002. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 21:236549–59
    [Google Scholar]
  153. 153.
    Stam M, Tark-Dame M, Fransz P. 2019. 3D genome organization: a role for phase separation and loop extrusion?. Curr. Opin. Plant Biol. 48:36–46
    [Google Scholar]
  154. 154.
    Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y et al. 2017. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544:764859–64
    [Google Scholar]
  155. 155.
    Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH. 2017. Phase separation drives heterochromatin domain formation. Nature 547:7662241–45
    [Google Scholar]
  156. 156.
    Sun Y, Dong L, Zhang Y, Lin D, Xu W et al. 2020. 3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biol 21:1143
    [Google Scholar]
  157. 157.
    Szabo Q, Bantignies F, Cavalli G. 2019. Principles of genome folding into topologically associating domains. Sci. Adv. 5:4eaaw1668
    [Google Scholar]
  158. 158.
    Ulianov SV, Khrameeva EE, Gavrilov AA, Flyamer IM, Kos P et al. 2016. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res 26:170–84
    [Google Scholar]
  159. 159.
    Van de Peer Y, Mizrachi E, Marchal K 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18:7411–24
    [Google Scholar]
  160. 160.
    van Steensel B, Belmont AS. 2017. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:5780–91
    [Google Scholar]
  161. 161.
    van Steensel B, Furlong EEM. 2019. The role of transcription in shaping the spatial organization of the genome. Nat. Rev. Mol. Cell Biol. 20:6327–37
    [Google Scholar]
  162. 162.
    Velay F, Soula M, Mehrez M, D'Alessandro S, Laloi C et al. 2021. MoBiFC: development of a modular bimolecular fluorescence complementation toolkit for the analysis of chloroplast protein-protein interactions. bioRxiv 433373. https://doi.org/10.1101/2021.03.01.433373
    [Crossref]
  163. 163.
    Wang C, Liu C, Roqueiro D, Grimm D, Schwab R et al. 2015. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res 25:2246–56
    [Google Scholar]
  164. 164.
    Wang L, Gao Y, Zheng X, Liu C, Dong S et al. 2019. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell 76:4646–59.e6
    [Google Scholar]
  165. 165.
    Wang L, Jia G, Jiang X, Cao S, Chen ZJ, Song Q 2021. Altered chromatin architecture and gene expression during polyploidization and domestication of soybean. Plant Cell 33:51430–46
    [Google Scholar]
  166. 166.
    Wang M, Li J, Wang P, Liu F, Liu Z et al. 2021. Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. Mol. Biol. Evol. 38:93621–36
    [Google Scholar]
  167. 167.
    Wang M, Wang P, Lin M, Ye Z, Li G et al. 2018. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat. Plants 4:290–97
    [Google Scholar]
  168. 168.
    Wang W, Li K, Yang Z, Hou Q, Zhao WW, Sun Q. 2021. RNase H1C collaborates with ssDNA binding proteins WHY1/3 and recombinase RecA1 to fulfill the DNA damage repair in Arabidopsis chloroplasts. Nucleic Acids Res. 49:126771–87Structural proteins concomitantly act with DNA repair mechanisms within nucleoids.
    [Google Scholar]
  169. 169.
    Wright RHG, Le Dily F, Beato M 2019. ATP, Mg2+, nuclear phase separation, and genome accessibility. Trends Biochem. Sci. 44:7565–74
    [Google Scholar]
  170. 170.
    Xie T, Zhang F-G, Zhang H-Y, Wang X-T, Hu J-H, Wu X-M. 2019. Biased gene retention during diploidization in Brassica linked to three-dimensional genome organization. Nat. Plants 5:8822–32
    [Google Scholar]
  171. 171.
    Xie X, Venit T, Drou N, Percipalle P. 2018. In mitochondria β-actin regulates mtDNA transcription and is required for mitochondrial quality control. iScience 3:226–37
    [Google Scholar]
  172. 172.
    Xu J, Ma H, Ma H, Jiang W, Mela CA et al. 2020. Super-resolution imaging reveals the evolution of higher-order chromatin folding in early carcinogenesis. Nat. Commun. 11:11899
    [Google Scholar]
  173. 173.
    Yoshida T, Furihata HY, To TK, Kakutani T, Kawabe A. 2019. Genome defense against integrated organellar DNA fragments from plastids into plant nuclear genomes through DNA methylation. Sci. Rep. 9:12060
    [Google Scholar]
  174. 174.
    Zanin MKB, Donohue JM, Everitt BA. 2013. Evidence that core histone H3 is targeted to the mitochondria in Brassica oleracea. Cell Biol. Int. 34:10997–1003
    [Google Scholar]
  175. 175.
    Zhang H, Zheng R, Wang Y, Zhang Y, Hong P et al. 2019. The effects of Arabidopsis genome duplication on the chromatin organization and transcriptional regulation. Nucleic Acids Res 47:157857–69
    [Google Scholar]
  176. 176.
    Zhang Y, Li T, Preissl S, Amaral ML, Grinstein JD et al. 2019. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51:91380–88
    [Google Scholar]
  177. 177.
    Zhao L, Wang S, Cao Z, Ouyang W, Zhang Q et al. 2019. Chromatin loops associated with active genes and heterochromatin shape rice genome architecture for transcriptional regulation. Nat. Commun. 10:13640
    [Google Scholar]
  178. 178.
    Zhao S, Cheng L, Gao Y, Zhang B, Zheng X et al. 2019. Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation. Cell Res 29:154–66
    [Google Scholar]
  179. 179.
    Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P et al. 2006. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38:111341–47
    [Google Scholar]
  180. 180.
    Zhou S, Jiang W, Zhao Y, Zhou D-X. 2019. Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes. Nat. Plants 5:8795–800
    [Google Scholar]
  181. 181.
    Zhu W, Hu B, Becker C, Doğan ES, Berendzen KW et al. 2017. Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biol 18:1157
    [Google Scholar]
  182. 182.
    Zoschke R, Bock R. 2018. Chloroplast translation: structural and functional organization, operational control, and regulation. Plant Cell 30:4745–70
    [Google Scholar]
  183. 183.
    Zufferey M, Tavernari D, Oricchio E, Ciriello G 2018. Comparison of computational methods for the identification of topologically associating domains. Genome Biol 19:1217
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-102720-022810
Loading
/content/journals/10.1146/annurev-arplant-102720-022810
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error