1932

Abstract

The plant hormone auxin is certainly the most studied developmental regulator in plants. The many functions of auxin during development, from the embryo to the root and shoot construction, are mediated by an ever-growing collection of molecular regulators, with an overwhelming degree of both ubiquity and complexity that we are still far from fully understanding and that biological experiments alone cannot grasp. In this review, we discuss how bioinformatics and computational modeling approaches have helped in recent years to explore this complexity and to push the frontiers of our understanding of auxin biology. We focus on how analysis of massive amounts of genomic data and construction of computational models to simulate auxin-regulated processes at different scales have complemented wet experiments to increase the understanding of how auxin acts in the nucleus to regulate transcription and how auxin movement between cells regulates development at the tissular scale.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102720-033523
2023-05-22
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-102720-033523.html?itemId=/content/journals/10.1146/annurev-arplant-102720-033523&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abley K, De Reuille PB, Strutt D, Bangham A, Prusinkiewicz P et al. 2013. An intracellular partitioning-based framework for tissue cell polarity in plants and animals. Development 140:102061–74
    [Google Scholar]
  2. 2.
    Abley K, Sauret-Güeto S, Marée AF, Coen E 2016. Formation of polarity convergences underlying shoot outgrowths. eLife 5:e18165
    [Google Scholar]
  3. 3.
    Adamowski M, Friml J. 2015. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:120–32
    [Google Scholar]
  4. 4.
    Apelt F, Mavrothalassiti E, Gupta S, Machin F, Olas JJ et al. 2022. Shoot and root single cell sequencing reveals tissue- and daytime-specific transcriptome profiles. Plant Physiol 188:2861–78
    [Google Scholar]
  5. 5.
    Band LR. 2021. Auxin fluxes through plasmodesmata. New Phytol 231:51686–92
    [Google Scholar]
  6. 6.
    Band LR, Wells DM, Fozard JA, Ghetiu T, French AP et al. 2014. Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell 26:3862–75
    [Google Scholar]
  7. 7.
    Band LR, Wells DM, Larrieu A, Sun J, Middleton AM et al. 2012. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. PNAS 109:124668–73
    [Google Scholar]
  8. 8.
    Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A et al. 2012. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:7396119–22
    [Google Scholar]
  9. 9.
    Bartlett A, O'Malley RC, Huang SC, Galli M, Nery JR et al. 2017. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat. Protoc. 12:81659–72
    [Google Scholar]
  10. 10.
    Bayer EM, Smith RS, Mandel T, Nakayama N, Sauer M et al. 2009. Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev 23:3373–84
    [Google Scholar]
  11. 11.
    Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D et al. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:5591–602
    [Google Scholar]
  12. 12.
    Berendzen KW, Weiste C, Wanke D, Kilian J, Harter K, Dröge-Laser W. 2012. Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription. BMC Plant Biol 12:1125
    [Google Scholar]
  13. 13.
    Bhatia N, Bozorg B, Larsson A, Ohno C, Jönsson H, Heisler MG. 2016. Auxin acts through MONOPTEROS to regulate plant cell polarity and pattern phyllotaxis. Curr. Biol. 26:233202–8
    [Google Scholar]
  14. 14.
    Bilsborough GD, Runions A, Barkoulas M, Jenkins HW, Hasson A et al. 2011. Model for the regulation of Arabidopsis thaliana leaf margin development. PNAS 108:83424–29
    [Google Scholar]
  15. 15.
    Boer DR, Freire-Rios A, van den Berg WAM, Saaki T, Manfield IW et al. 2014. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 156:3577–89
    [Google Scholar]
  16. 16.
    Bogaert KA, Blomme J, Beeckman T, De Clerck O. 2022. Auxin's origin: Do PILS hold the key?. Trends Plant Sci 27:3227–36
    [Google Scholar]
  17. 17.
    Boot KJM, Libbenga KR, Hille SC, Offringa R, van Duijn B. 2012. Polar auxin transport: an early invention. J. Exp. Bot. 63:114213–18
    [Google Scholar]
  18. 18.
    Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:2287–304.e15
    [Google Scholar]
  19. 19.
    Bridge LJ, Mirams GR, Kieffer ML, King JR, Kepinski S. 2012. Distinguishing possible mechanisms for auxin-mediated developmental control in Arabidopsis: models with two Aux/IAA and ARF proteins, and two target gene-sets. Math. Biosci. 235:132–44
    [Google Scholar]
  20. 20.
    Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V et al. 2012. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:7383103–6
    [Google Scholar]
  21. 21.
    Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10:121213–18
    [Google Scholar]
  22. 22.
    Calderón Villalobos LIA, Lee S, De Oliveira C, Ivetac A, Brandt W et al. 2012. A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. Nat. Chem. Biol. 8:5477–85
    [Google Scholar]
  23. 23.
    Carpenter EJ, Matasci N, Ayyampalayam S, Wu S, Sun J et al. 2019. Access to RNA-sequencing data from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP). GigaScience 8:10giz126
    [Google Scholar]
  24. 24.
    Cheng S, Melkonian M, Smith SA, Brockington S, Archibald JM et al. 2018. 10KP: A phylodiverse genome sequencing plan. GigaScience 7:3giy013
    [Google Scholar]
  25. 25.
    Cherenkov P, Novikova D, Omelyanchuk N, Levitsky V, Grosse I et al. 2018. Diversity of cis-regulatory elements associated with auxin response in Arabidopsis thaliana. J. Exp. Bot. 69:2329–39
    [Google Scholar]
  26. 26.
    Choi H-S, Seo M, Cho H-T. 2018. Two TPL-binding motifs of ARF2 are involved in repression of auxin responses. Front. Plant Sci. 9:372
    [Google Scholar]
  27. 27.
    Cieslak M, Owens A, Prusinkiewicz P. 2022. Computational models of auxin-driven patterning in shoots. Cold Spring Harb. Perspect. Biol. 14:3a040097
    [Google Scholar]
  28. 28.
    Coudert Y, Palubicki W, Ljung K, Novak O, Leyser O, Harrison CJ 2015. Three ancient hormonal cues co-ordinate shoot branching in a moss. eLife 4:e06808
    [Google Scholar]
  29. 29.
    De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME et al. 2014. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345:61971255215
    [Google Scholar]
  30. 30.
    De Smet I, Voß U, Lau S, Wilson M, Shao N et al. 2011. Unraveling the evolution of auxin signaling. Plant Physiol 155:1209–21
    [Google Scholar]
  31. 31.
    Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R et al. 2017. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. PNAS 114:36E7641–49
    [Google Scholar]
  32. 32.
    Dindas J, Scherzer S, Roelfsema MRG, von Meyer K, Müller HM et al. 2018. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nat. Commun. 9:11174
    [Google Scholar]
  33. 33.
    Dubey SM, Serre NBC, Oulehlová D, Vittal P, Fendrych M. 2021. No time for transcription—rapid auxin responses in plants. Cold Spring Harb. Perspect. Biol. 13:8a039891
    [Google Scholar]
  34. 34.
    el-Showk S, Help-Rinta-Rahko H, Blomster T, Siligato R, Marée AFM et al. 2015. Parsimonious model of vascular patterning links transverse hormone fluxes to lateral root initiation: auxin leads the way, while cytokinin levels out. PLOS Comput. Biol. 11:10e1004450
    [Google Scholar]
  35. 35.
    Fàbregas N, Formosa-Jordan P, Confraria A, Siligato R, Alonso JM et al. 2015. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana. PLOS Genet 11:4e1005183
    [Google Scholar]
  36. 36.
    Farcot E, Lavedrine C, Vernoux T. 2015. A modular analysis of the auxin signalling network. PLOS ONE 10:3e0122231
    [Google Scholar]
  37. 37.
    Fendrych M, Akhmanova M, Merrin J, Glanc M, Hagihara S et al. 2018. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4:7453–59
    [Google Scholar]
  38. 38.
    Feraru E, Vosolsobĕ S, Feraru MI, Petrášek J, Kleine-Vehn J. 2012. Evolution and structural diversification of PILS putative auxin carriers in plants. Front. Plant Sci. 3:227
    [Google Scholar]
  39. 39.
    Finet C, Berne-Dedieu A, Scutt CP, Marlétaz F. 2013. Evolution of the ARF gene family in land plants: old domains, new tricks. Mol. Biol. Evol. 30:145–56
    [Google Scholar]
  40. 40.
    Flores-Sandoval E, Eklund DM, Hong S, Alvarez JP, Fisher TJ et al. 2018. Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. New Phytol 218:41612–30
    [Google Scholar]
  41. 41.
    Freire-Rios A, Tanaka K, Crespo I, van der Wijk E, Sizentsova Y et al. 2020. Architecture of DNA elements mediating ARF transcription factor binding and auxin-responsive gene expression in Arabidopsis. PNAS 117:3924557–66
    [Google Scholar]
  42. 42.
    Galli M, Khakhar A, Lu Z, Chen Z, Sen S et al. 2018. The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nat. Commun. 9:14526DAP-seq revealed different preferences for DNA of ARFs from different clades at the genome-wide scale (see also References 103 and 129).
    [Google Scholar]
  43. 43.
    Galvan-Ampudia CS, Cerutti G, Legrand J, Brunoud G, Martin-Arevalillo R et al. 2020. Temporal integration of auxin information for the regulation of patterning. eLife 9:e55832
    [Google Scholar]
  44. 44.
    Gao B, Wang L, Oliver M, Chen M, Zhang J 2020. Phylogenomic synteny network analyses reveal ancestral transpositions of auxin response factor genes in plants. Plant Methods 16:170
    [Google Scholar]
  45. 45.
    Gao C, Liu X, De Storme N, Jensen KH, Xu Q et al. 2020. Directionality of plasmodesmata-mediated transport in Arabidopsis leaves supports auxin channeling. Curr. Biol. 30:101970–77.e4
    [Google Scholar]
  46. 46.
    Geisler M, Aryal B, di Donato M, Hao P. 2017. A critical view on ABC transporters and their interacting partners in auxin transport. Plant Cell Physiol 58:101601–14
    [Google Scholar]
  47. 47.
    Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B. 2007. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:71651008–13
    [Google Scholar]
  48. 48.
    Hajný J, Prát T, Rydza N, Rodriguez L, Tan S et al. 2020. Receptor kinase module targets PIN-dependent auxin transport during canalization. Science 370:6516550–57
    [Google Scholar]
  49. 49.
    Han H, Verstraeten I, Roosjen M, Mazur E, Rýdza N et al. 2021. Rapid auxin-mediated phosphorylation of Myosin regulates trafficking and polarity in Arabidopsis. bioRxiv 2021.04.13.439603. https://doi.org/10.1101/2021.04.13.439603
    [Crossref]
  50. 50.
    Han X, Hyun TK, Zhang M, Kumar R, Koh E et al. 2014. Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Dev. Cell 28:2132–46
    [Google Scholar]
  51. 51.
    Havens KA, Guseman JM, Jang SS, Pierre-Jerome E, Bolten N et al. 2012. A synthetic approach reveals extensive tunability of auxin signaling. Plant Physiol 160:1135–42
    [Google Scholar]
  52. 52.
    Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C et al. 2010. Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLOS Biol 8:10e1000516
    [Google Scholar]
  53. 53.
    Herud-Sikimić O, Stiel AC, Kolb M, Shanmugaratnam S, Berendzen KW et al. 2021. A biosensor for the direct visualization of auxin. Nature 592:7856768–72
    [Google Scholar]
  54. 54.
    Hohm T, Demarsy E, Quan C, Allenbach Petrolati L, Preuten T et al. 2014. Plasma membrane H+-ATPase regulation is required for auxin gradient formation preceding phototropic growth. Mol. Syst. Biol. 10:9751
    [Google Scholar]
  55. 55.
    Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N et al. 2014. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 5:13978
    [Google Scholar]
  56. 56.
    Ibañes M, Fàbregas N, Chory J, Caño-Delgado AI. 2009. Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles. PNAS 106:3213630–35
    [Google Scholar]
  57. 57.
    Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E. 2006. An auxin-driven polarized transport model for phyllotaxis. PNAS 103:51633–38
    [Google Scholar]
  58. 58.
    Kato H, Ishizaki K, Kouno M, Shirakawa M, Bowman JL et al. 2015. Auxin-mediated transcriptional system with a minimal set of components is critical for morphogenesis through the life cycle in Marchantia polymorpha. PLOS Genet 11:5e1005084
    [Google Scholar]
  59. 59.
    Kato H, Mutte SK, Suzuki H, Crespo I, Das S et al. 2020. Design principles of a minimal auxin response system. Nat. Plants 6:5473–82
    [Google Scholar]
  60. 60.
    Kierzkowski D, Runions A, Vuolo F, Strauss S, Lymbouridou R et al. 2019. A growth-based framework for leaf shape development and diversity. Cell 177:61405–18.e17
    [Google Scholar]
  61. 61.
    Kim Y, Park C, Cha S, Han M, Ryu K-S, Suh J-Y. 2020. Determinants of PB1 domain interactions in auxin response factor ARF5 and repressor IAA17. J. Mol. Biol. 432:144010–22
    [Google Scholar]
  62. 62.
    Kleine-Vehn J, Wabnik K, Martinière A, Łangowski Ł, Willig K et al. 2011. Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol. Syst. Biol. 7:1540
    [Google Scholar]
  63. 63.
    Kneuper I, Teale W, Dawson JE, Tsugeki R, Katifori E et al. 2021. Auxin biosynthesis and cellular efflux act together to regulate leaf vein patterning. J. Exp. Bot. 72:41151–65
    [Google Scholar]
  64. 64.
    Korasick DA, Westfall CS, Lee SG, Nanao MH, Dumas R et al. 2014. Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. PNAS 111:145427–32
    [Google Scholar]
  65. 65.
    Krogan NT, Marcos D, Weiner AI, Berleth T 2016. The auxin response factor MONOPTEROS controls meristem function and organogenesis in both the shoot and root through the direct regulation of PIN genes. New Phytol 212:142–50
    [Google Scholar]
  66. 66.
    Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K et al. 2010. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell 18:6927–37
    [Google Scholar]
  67. 67.
    Lai X, Stigliani A, Vachon G, Carles C, Smaczniak C et al. 2019. Building transcription factor binding site models to understand gene regulation in plants. Mol. Plant 12:6743–63
    [Google Scholar]
  68. 68.
    Lanassa Bassukas AE, Xiao Y, Schwechheimer C 2022. Phosphorylation control of PIN auxin transporters. Curr. Opin. Plant Biol. 65:102146
    [Google Scholar]
  69. 69.
    Łangowski Ł, Wabnik K, Li H, Vanneste S, Naramoto S et al. 2016. Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells. Cell Discov 2:116018
    [Google Scholar]
  70. 70.
    Laskowski M, ten Tusscher KH. 2017. Periodic lateral root priming: What makes it tick?. Plant Cell 29:3432–44
    [Google Scholar]
  71. 71.
    Lau S, Smet ID, Kolb M, Meinhardt H, Jürgens G. 2011. Auxin triggers a genetic switch. Nat. Cell Biol. 13:5611–15Mathematical modeling predicts bistability in auxin responses.
    [Google Scholar]
  72. 72.
    Lavy M, Prigge MJ, Tao S, Shain S, Kuo A et al. 2016. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. eLife 5:e13325
    [Google Scholar]
  73. 73.
    Legrand J, Léger J-B, Robin S, Vernoux T, Guédon Y 2016. Modelling the influence of dimerisation sequence dissimilarities on the auxin signalling network. BMC Syst. Biol. 10:122
    [Google Scholar]
  74. 74.
    Levernier N, Pouliquen O, Forterre Y. 2021. An integrative model of plant gravitropism linking statoliths position and auxin transport. Front. Plant Sci. 12:651928
    [Google Scholar]
  75. 75.
    Leyser O. 2018. Auxin signaling. Plant Physiol 176:1465–79
    [Google Scholar]
  76. 76.
    Li X-R, Vroomans RMA, Fox S, Grieneisen VA, Østergaard L, Marée AFM. 2019. Systems biology approach pinpoints minimum requirements for auxin distribution during fruit opening. Mol. Plant 12:6863–78
    [Google Scholar]
  77. 77.
    Li ZP, Paterlini A, Glavier M, Bayer EM. 2021. Intercellular trafficking via plasmodesmata: molecular layers of complexity. Cell Mol. Life Sci. 78:3799–816
    [Google Scholar]
  78. 78.
    Liu J, Mehdi S, Topping J, Tarkowski P, Lindsey K. 2010. Modelling and experimental analysis of hormonal crosstalk in Arabidopsis. Mol. Syst. Biol. 6:1373A representative model exploring the complexity of how auxin crosstalks with other hormones.
    [Google Scholar]
  79. 79.
    Lv B, Yu Q, Liu J, Wen X, Yan Z et al. 2020. Non-canonical AUX /IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling. EMBO J 39:1e101515
    [Google Scholar]
  80. 80.
    Mähönen AP, ten Tusscher K, Siligato R, Smetana O, Díaz-Triviño S et al. 2014. PLETHORA gradient formation mechanism separates auxin responses.. Nature 515:7525125–29A mechanism to allow auxin to act at different time scales during development.
    [Google Scholar]
  81. 81.
    Marconi M, Gallemi M, Benkova E, Wabnik K 2021. A coupled mechano-biochemical model for cell polarity guided anisotropic root growth. eLife 10:e72132
    [Google Scholar]
  82. 82.
    Martin-Arevalillo R, Thévenon E, Jégu F, Vinos-Poyo T, Vernoux T et al. 2019. Evolution of the Auxin Response Factors from charophyte ancestors. PLOS Genet 15:9e1008400
    [Google Scholar]
  83. 83.
    Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. 2021. Auxin interactions with other hormones in plant development. Cold Spring Harb. Perspect. Biol. 13:10a039990
    [Google Scholar]
  84. 84.
    Mellor NL, Voẞ U, Ware A, Janes G, Barrack D et al. 2022. Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux. Plant Cell 34:2309–27A recent model showing that the control of auxin distribution requires more than just PIN transporters.
    [Google Scholar]
  85. 85.
    Mellor NL, Voß U, Janes G, Bennett MJ, Wells DM, Band LR. 2020. Auxin fluxes through plasmodesmata modify root-tip auxin distribution. Development 147:6dev181669
    [Google Scholar]
  86. 86.
    Merks RMH, Van de Peer Y, Inzé D, Beemster GTS. 2007. Canalization without flux sensors: a traveling-wave hypothesis. Trends Plant Sci 12:9384–90
    [Google Scholar]
  87. 87.
    Middleton AM, Dal Bosco C, Chlap P, Bensch R, Harz H et al. 2018. Data-driven modeling of intracellular auxin fluxes indicates a dominant role of the ER in controlling nuclear auxin uptake. Cell Rep 22:113044–57
    [Google Scholar]
  88. 88.
    Middleton AM, King JR, Bennett MJ, Owen MR. 2010. Mathematical modelling of the Aux/IAA negative feedback loop. Bull. Math. Biol. 72:61383–407An auxin signalling mathematical model predicting an oscillatory behavior.
    [Google Scholar]
  89. 89.
    Moore S, Liu J, Zhang X, Lindsey K. 2017. A recovery principle provides insight into auxin pattern control in the Arabidopsis root. Sci. Rep. 7:143004
    [Google Scholar]
  90. 90.
    Moore S, Zhang X, Mudge A, Rowe JH, Topping JF et al. 2015. Spatiotemporal modelling of hormonal crosstalk explains the level and patterning of hormones and gene expression in Arabidopsis thaliana wild-type and mutant roots. New Phytol 207:41110–22
    [Google Scholar]
  91. 91.
    Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN. 2010. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:59971306–11
    [Google Scholar]
  92. 92.
    Moret B, Marhava P, Aliaga Fandino AC, Hardtke CS, ten Tusscher KHW 2020. Local auxin competition explains fragmented differentiation patterns. Nat. Commun. 11:12965
    [Google Scholar]
  93. 93.
    Moss BL, Mao H, Guseman JM, Hinds TR, Hellmuth A et al. 2015. Rate motifs tune auxin/indole-3-acetic acid degradation dynamics. Plant Physiol 169:1803–13
    [Google Scholar]
  94. 94.
    Muraro D, Byrne H, King J, Bennett M. 2013. The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana. J. Theor. Biol. 317:71–86
    [Google Scholar]
  95. 95.
    Muraro D, Larrieu A, Lucas M, Chopard J, Byrne H et al. 2016. A multi-scale model of the interplay between cell signalling and hormone transport in specifying the root meristem of Arabidopsis thaliana. J. Theor. Biol. 404:182–205
    [Google Scholar]
  96. 96.
    Muraro D, Mellor N, Pound MP, Help H, Lucas M et al. 2014. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots. PNAS 111:2857–62
    [Google Scholar]
  97. 97.
    Muraro D, Wilson M, Bennett MJ 2011. Root development: Cytokinin transport matters, too!. Curr. Biol. 21:11R423–25
    [Google Scholar]
  98. 98.
    Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GK-S, Weijers D. 2018. Origin and evolution of the nuclear auxin response system. eLife 7:e33399ARF ancestors originated in charophytes, but these algae lack a functional NAP.
    [Google Scholar]
  99. 99.
    Nanao MH, Vinos-Poyo T, Brunoud G, Thévenon E, Mazzoleni M et al. 2014. Structural basis for oligomerization of auxin transcriptional regulators. Nat. Commun. 5:13617
    [Google Scholar]
  100. 100.
    Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D et al. 2018. The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174:2448–64.e24
    [Google Scholar]
  101. 101.
    O'Connor DL, Runions A, Sluis A, Bragg J, Vogel JP et al. 2014. A division in PIN-mediated auxin patterning during organ initiation in grasses. PLOS Comput. Biol. 10:1e1003447
    [Google Scholar]
  102. 102.
    Oh E, Zhu J-Y, Bai M-Y, Arenhart RA, Sun Y, Wang Z-Y 2014. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 3:e03031
    [Google Scholar]
  103. 103.
    O'Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A et al. 2016. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:51280–92
    [Google Scholar]
  104. 104.
    Ötvös K, Marconi M, Vega A, O'Brien J, Johnson A et al. 2021. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO J 40:3e106862
    [Google Scholar]
  105. 105.
    Parcy F, Vernoux T, Dumas R. 2016. A glimpse beyond structures in auxin-dependent transcription. Trends Plant Sci 21:7574–83
    [Google Scholar]
  106. 106.
    Perez-Garcia P, Serrano-Ron L, Moreno-Risueno MA. 2022. The nature of the root clock at single cell resolution: principles of communication and similarities with plant and animal pulsatile and circadian mechanisms. Curr. Opin. Cell Biol. 77:102102
    [Google Scholar]
  107. 107.
    Perianez-Rodriguez J, Rodriguez M, Marconi M, Bustillo-Avendaño E, Wachsman G et al. 2021. An auxin-regulable oscillatory circuit drives the root clock in Arabidopsis. Sci. Adv. 7:1eabd4722
    [Google Scholar]
  108. 108.
    Pernisová M, Klíma P, Horák J, Válková M, Malbeck J et al. 2009. Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. PNAS 106:93609–14
    [Google Scholar]
  109. 109.
    Petrášek J, Friml J. 2009. Auxin transport routes in plant development. Development 136:162675–88
    [Google Scholar]
  110. 110.
    Pierre-Jerome E, Jang SS, Havens KA, Nemhauser JL, Klavins E 2014. Recapitulation of the forward nuclear auxin response pathway in yeast. PNAS 111:269407–12First reconstruction of a functional NAP in a heterologous system.
    [Google Scholar]
  111. 111.
    Pierre-Jerome E, Moss BL, Lanctot A, Hageman A, Nemhauser JL 2016. Functional analysis of molecular interactions in synthetic auxin response circuits. PNAS 113:4011354–59
    [Google Scholar]
  112. 112.
    Piya S, Shrestha SK, Binder B, Stewart CN Jr., Hewezi T. 2014. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis. Front. Plant Sci. 5:744
    [Google Scholar]
  113. 113.
    Rademacher EH, Möller B, Lokerse AS, Llavata-Peris CI, van den Berg W, Weijers D. 2011. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J 68:4597–606
    [Google Scholar]
  114. 114.
    Ramos JRD, Maizel A, Alim K. 2021. Tissue-wide integration of mechanical cues promotes effective auxin patterning. Eur. Phys. J. Plus 136:2250
    [Google Scholar]
  115. 115.
    Ranocha P, Dima O, Nagy R, Felten J, Corratgé-Faillie C et al. 2013. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat. Commun. 4:12625
    [Google Scholar]
  116. 116.
    Reinhardt D, Pesce E-R, Stieger P, Mandel T, Baltensperger K et al. 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426:6964255–60
    [Google Scholar]
  117. 117.
    Retzer K, Akhmanova M, Konstantinova N, Malínská K, Leitner J et al. 2019. Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter. Nat. Commun. 10:15516
    [Google Scholar]
  118. 118.
    Robert HS, Grones P, Stepanova AN, Robles LM, Lokerse AS et al. 2013. Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr. Biol. 23:242506–12
    [Google Scholar]
  119. 119.
    Rutten J, van den Berg T, ten Tusscher K. 2022. Modeling auxin signaling in roots: auxin computations. Cold Spring Harb. Perspect. Biol. 14:2a040089
    [Google Scholar]
  120. 120.
    Sachs T. 1969. Polarity and the induction of organized vascular tissues. Ann. Bot. 33:2263–75The first formal hypothesis to explain polar auxin transport.
    [Google Scholar]
  121. 121.
    Sager R, Wang X, Hill K, Yoo B-C, Caplan J et al. 2020. Auxin-dependent control of a plasmodesmal regulator creates a negative feedback loop modulating lateral root emergence. Nat. Commun. 11:1364
    [Google Scholar]
  122. 122.
    Salvi E, Rutten JP, Di Mambro R, Polverari L, Licursi V et al. 2020. A self-organized PLT/Auxin/ARR-B network controls the dynamics of root zonation development in Arabidopsis thaliana. Dev. Cell 53:4431–43.e23
    [Google Scholar]
  123. 123.
    Satterlee JW, Strable J, Scanlon MJ. 2020. Plant stem-cell organization and differentiation at single-cell resolution. PNAS 117:5233689–99
    [Google Scholar]
  124. 124.
    Shi B, Guo X, Wang Y, Xiong Y, Wang J et al. 2018. Feedback from lateral organs controls shoot apical meristem growth by modulating auxin transport. Dev. Cell 44:2204–16.e6
    [Google Scholar]
  125. 125.
    Simonini S, Bencivenga S, Trick M, Østergaard L. 2017. Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis. Plant Cell 29:81864–82
    [Google Scholar]
  126. 126.
    Simonini S, Deb J, Moubayidin L, Stephenson P, Valluru M et al. 2016. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes Dev 30:202286–96
    [Google Scholar]
  127. 127.
    Smith RS, Guyomarc'h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P. 2006. A plausible model of phyllotaxis. PNAS 103:51301–6
    [Google Scholar]
  128. 128.
    Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie D-Y et al. 2008. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:1177–91
    [Google Scholar]
  129. 129.
    Stigliani A, Martin-Arevalillo R, Lucas J, Bessy A, Vinos-Poyo T et al. 2019. Capturing auxin response factors syntax using DNA binding models. Mol. Plant 12:6822–32
    [Google Scholar]
  130. 130.
    Stoma S, Lucas M, Chopard J, Schaedel M, Traas J, Godin C. 2008. Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLOS Comput. Biol. 4:10e1000207
    [Google Scholar]
  131. 131.
    Sun L, Feraru E, Feraru MI, Waidmann S, Wang W et al. 2020. PIN-LIKES coordinate brassinosteroid signaling with nuclear auxin input in Arabidopsis thaliana. Curr. Biol. 30:91579–88.e6
    [Google Scholar]
  132. 132.
    Swarup R, Péret B. 2012. AUX/LAX family of auxin influx carriers—an overview. Front. Plant Sci. 3:225
    [Google Scholar]
  133. 133.
    ten Tusscher KH. 2021. What remains of the evidence for auxin feedback on PIN polarity patterns?. Plant Physiol 186:2804–7
    [Google Scholar]
  134. 134.
    Tian H, Niu T, Yu Q, Quan T, Ding Z. 2013. Auxin gradient is crucial for the maintenance of root distal stem cell identity in Arabidopsis. Plant Signal. Behav. 8:12e26429
    [Google Scholar]
  135. 135.
    Van Berkel K, de Boer RJ, Scheres B, ten Tusscher K. 2013. Polar auxin transport: models and mechanisms. Development 140:112253–68
    [Google Scholar]
  136. 136.
    van den Berg T, Korver RA, Testerink C, ten Tusscher KHWJ. 2016. Modeling halotropism: a key role for root tip architecture and reflux loop remodeling in redistributing auxin. Development 143:3350–62
    [Google Scholar]
  137. 137.
    van den Berg T, Yalamanchili K, de Gernier H, Santos Teixeira J, Beeckman T et al. 2021. A reflux-and-growth mechanism explains oscillatory patterning of lateral root branching sites. Dev. Cell 56:152176–91.e10
    [Google Scholar]
  138. 138.
    Vernoux T, Besnard F, Godin C. 2021. What shoots can teach about theories of plant form. Nat. Plants 7:6716–24
    [Google Scholar]
  139. 139.
    Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H et al. 2011. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol. Syst. Biol. 7:1508ARF-Aux/IAA interactome, mathematical modeling and imaging predict buffering of auxin signalling by repressor ARFs.
    [Google Scholar]
  140. 140.
    Vosolsobě S, Skokan R, Petrášek J. 2020. The evolutionary origins of auxin transport: what we know and what we need to know. J. Exp. Bot. 71:113287–95
    [Google Scholar]
  141. 141.
    Wabnik K, Kleine-Vehn J, Govaerts W, Friml J. 2011. Prototype cell-to-cell auxin transport mechanism by intracellular auxin compartmentalization. Trends Plant Sci 16:9468–75
    [Google Scholar]
  142. 142.
    Wabnik K, Robert HS, Smith RS, Friml J. 2013. Modeling framework for the establishment of the apical-basal embryonic axis in plants. Curr. Biol. 23:242513–18
    [Google Scholar]
  143. 143.
    Wang S, Li L, Li H, Sahu SK, Wang H et al. 2020. Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat. Plants 6:295–106
    [Google Scholar]
  144. 144.
    Xuan W, De Gernier H, Beeckman T. 2020. The dynamic nature and regulation of the root clock. Development 147:3dev181446
    [Google Scholar]
  145. 145.
    Yu S-X, Zhou L-W, Hu L-Q, Jiang Y-T, Zhang Y-J et al. 2020. Asynchrony of ovule primordia initiation in Arabidopsis. Development 147:dev196618
    [Google Scholar]
  146. 146.
    Žádníková P, Petrášek J, Marhavý P, Raz V, Vandenbussche F et al. 2010. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137:4607–17
    [Google Scholar]
  147. 147.
    Žádníková P, Wabnik K, Abuzeineh A, Gallemi M, Van Der Straeten D et al. 2016. A model of differential growth-guided apical hook formation in plants. Plant Cell 28:102464–77
    [Google Scholar]
  148. 148.
    Zemlyanskaya EV, Wiebe DS, Omelyanchuk NA, Levitsky VG, Mironova VV. 2016. Meta-analysis of transcriptome data identified TGTCNN motif variants associated with the response to plant hormone auxin in Arabidopsis thaliana L. . J. Bioinform. Comput. Biol. 14:021641009
    [Google Scholar]
  149. 149.
    Zhang T-Q, Xu Z-G, Shang G-D, Wang J-W. 2019. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Mol. Plant 12:5648–60
    [Google Scholar]
  150. 150.
    Zhu T, O'Quinn RL, Lucas WJ, Rost TL. 1998. Directional cell-to-cell communication in the Arabidopsis root apical meristem II. Dynamics of plasmodesmatal formation. Protoplasma 204:1–284–93
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-102720-033523
Loading
/content/journals/10.1146/annurev-arplant-102720-033523
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error