1932

Abstract

The discovery of C-C intermediate species nearly 50 years ago opened up a new avenue for studying the evolution of photosynthetic pathways. Intermediate species exhibit anatomical, biochemical, and physiological traits that range from C to C. A key feature of C-C intermediates that utilize C photosynthesis is the improvement in photosynthetic efficiency compared with C species. Although the recruitment of some core enzymes is shared across lineages, there is significant variability in gene expression patterns, consistent with models that suggest numerous evolutionary paths from C to C photosynthesis. Despite the many evolutionary trajectories, the recruitment of glycine decarboxylase for C photosynthesis is likely required. As technologies enable high-throughput genotyping and phenotyping, the discovery of new C-C intermediates species will enrich comparisons between evolutionary lineages. The investigation of C-C intermediate species will enhance our understanding of photosynthetic mechanisms and evolutionary processes and will potentially aid in crop improvement.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102720-114201
2022-05-20
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-102720-114201.html?itemId=/content/journals/10.1146/annurev-arplant-102720-114201&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acosta JM, Scataglini MA, Reinheimer R, Zuloaga FO 2014. A phylogenetic study of subtribe Otachyriinae (Poaceae, Panicoideae, Paspaleae). Plant Syst. Evol. 300:102155–66
    [Google Scholar]
  2. 2.
    Adwy W, Laxa M, Peterhansel C. 2015. A simple mechanism for the establishment of C2-specific gene expression in Brassicaceae. Plant J. 84:61231–38
    [Google Scholar]
  3. 3.
    Adwy W, Schlüter U, Papenbrock J, Peterhansel C, Offermann S. 2019. Loss of the M-box from the glycine decarboxylase P-subunit promoter in C2Moricandia species. Plant Gene 18:100176
    [Google Scholar]
  4. 4.
    Alonso-Cantabrana H, von Caemmerer S 2016. Carbon isotope discrimination as a diagnostic tool for C4 photosynthesis in C3-C4 intermediate species. J. Exp. Bot. 67:103109–21
    [Google Scholar]
  5. 5.
    Apel P. 1986. Intrageneric hybrids within the genus Flaveria Juss (Asteraceae). Kulturpflanze 34:177–84
    [Google Scholar]
  6. 6.
    Apel P, Bauwe H, Bassüner B, Maass I. 1988. Photosynthetic properties of Flaveriacronquistii, F. palmeri, and hybrids between them. Biochem. Physiol. Pflanz. 183:4291–99
    [Google Scholar]
  7. 7.
    Apel P, Bauwe H, Maass I. 1989. Photosynthetic properties of reciprocal C3 × C4Flaveria F1 hybrids. Biochem. Physiol. Pflanz. 184:1/231–36
    [Google Scholar]
  8. 8.
    Bauwe H, Kolukisaoglu Ü. 2003. Genetic manipulation of glycine decarboxylation. J. Exp. Bot. 54:3871523–35
    [Google Scholar]
  9. 9.
    Bellasio C, Farquhar GD. 2019. A leaf-level biochemical model simulating the introduction of C2 and C4 photosynthesis in C3 rice: gains, losses and metabolite fluxes. New Phytol. 223:1150–66
    [Google Scholar]
  10. 10.
    Bianconi ME, Sotelo G, Curran EV, Milenkovic V, Samaritani E et al. 2021. Upregulation of C4 characteristics does not consistently improve photosynthetic performance in intraspecific hybrids of a grass. bioRxiv 455822. https://www.biorxiv.org/content/10.1101/2021.08.10.455822v2
  11. 11.
    Bjökman O, Gauhl E, Nobs M 1969. Comparative studies of Atriplex species with and without B-carboxylation photosynthesis and their first-generation hybrid. Carnegie Inst. Wash. Yearb. 68:620–33
    [Google Scholar]
  12. 12.
    Blätke MA, Bräutigam A. 2019. Evolution of C4 photosynthesis predicted by constraint-based modelling. eLife 8e49305
    [Google Scholar]
  13. 13.
    Bolton JK, Brown RH. 1980. Photosynthesis of grass species differing in carbon dioxide fixation pathways. V. Response of Panicum maximum, Panicum milioides, and tall fescue (Festuca arundinacea) to nitrogen nutrition. Plant Physiol. 66:197–100
    [Google Scholar]
  14. 14.
    Bouton JH, Brown RH, Evans PT, Jernstedt JA. 1986. Photosynthesis, leaf anatomy, and morphology of progeny from hybrids between C3 and C3/C4Panicum species. Plant Physiol. 80:2487–92
    [Google Scholar]
  15. 15.
    Bräutigam A, Gowik U. 2016. Photorespiration connects C3 and C4 photosynthesis. J. Exp. Bot. 67:102953–62
    [Google Scholar]
  16. 16.
    Brown RH, Bouton JH, Evans PT, Malter HE, Rigsby LL. 1985. Photosynthesis, morphology, leaf anatomy, and cytogenetics of hybrids between C3 and C3/C4Panicum species. Plant Physiol. 77:653–58
    [Google Scholar]
  17. 17.
    Brown RH, Simmons RE. 1979. Photosynthesis of grass species differing in CO2 fixation pathways. I. Water-use efficiency. Crop Sci. 19:3375–79
    [Google Scholar]
  18. 18.
    Byrd GT, Brown RH, Bouton JH, Bassett CL, Black CC. 1992. Degree of C4 photosynthesis in C4 and C3-C4Flaveria species and their hybrids. 1. CO2 assimilation and metabolism and activities of phosphoenolpyruvate carboxylase and NADP-malic enzyme. Plant Physiol. 100:939–46
    [Google Scholar]
  19. 19.
    Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quadek J et al. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–58
    [Google Scholar]
  20. 20.
    Christin PA, Osborne CP, Chatelet DS, Columbus JT, Besnard G et al. 2013. Anatomical enablers and the evolution of C4 photosynthesis in grasses. PNAS 110:41381–86
    [Google Scholar]
  21. 21.
    Christin PA, Besnard G, Samaritani E, Duvall MR, Hodkinson TR et al. 2008. Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr. Biol. 18:137–43
    [Google Scholar]
  22. 22.
    Conlan B, Whitney S. 2018. Preparing Rubisco for a tune up. Nat. Plants 4:112–13
    [Google Scholar]
  23. 23.
    Devi MT, Rajagopalan AV, Raghavendra AS. 1995. Predominant localization of mitochondria enriched with glycine-decarboxylating enzymes in bundle sheath cells of Alternanthera tenella, a C3-C4 intermediate species. Plant Cell Environ. 18:589–94
    [Google Scholar]
  24. 24.
    Dunning LT, Moreno-Villena JJ, Lundgren MR, Dionora J, Salazar P et al. 2019. Key changes in gene expression identified for different stages of C4 evolution in Alloteropsissemialata. J. Exp. Bot. 70:123255–68
    [Google Scholar]
  25. 25.
    Dunning LT, Olofsson JK, Parisod C, Choudhury RR, Moreno-Villena JJ et al. 2019. Lateral transfers of large DNA fragments spread functional genes among grasses. PNAS 116:104416–25
    [Google Scholar]
  26. 26.
    Edwards EJ. 2014. The inevitability of C4 photosynthesis. eLife3e03702
    [Google Scholar]
  27. 27.
    Edwards EJ, Osborne CP, Strömberg CAE, Smith SA C4 Grass. Consort. et al. 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:5978587–91
    [Google Scholar]
  28. 28.
    Edwards GE, Ku MSB. 1987. Biochemistry of C3-C4 intermediates.. Photosynthesis 10:275–325
    [Google Scholar]
  29. 29.
    Ellis RP. 1974. The significance of the occurrence of both Kranz and non-Kranz leaf anatomy in the grass species Alloteropsis semialata. S. Afr. J. Sci. 70:169–73
    [Google Scholar]
  30. 30.
    Engelmann S, Wiludda C, Burscheidt J, Gowik U, Schlue U et al. 2008. The gene for the P-subunit of glycine decarboxylase from the C4 species Flaveria trinervia: analysis of transcriptional control in transgenic Flaveria bidentis (C4) and Arabidopsis (C3). Plant Physiol. 146:41773–85
    [Google Scholar]
  31. 31.
    Ermakova M, Arrivault S, Giuliani R, Danila F, Alonso-Cantabrana H et al. 2021. Installation of C4 photosynthetic pathway enzymes in rice using a single construct. Plant Biotechnol. J. 19:3575–88
    [Google Scholar]
  32. 32.
    Ermakova M, Danila FR, Furbank RT, von Caemmerer S 2020. On the road to C4 rice: advances and perspectives. Plant J. 101:4940–50
    [Google Scholar]
  33. 33.
    Faralli M, Lawson T. 2020. Natural genetic variation in photosynthesis: an untapped resource to increase crop yield potential?. Plant J. 101:3518–28
    [Google Scholar]
  34. 34.
    Fick S, Hijmans R. 2017. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37:124302–15
    [Google Scholar]
  35. 35.
    Food Agric. Organ 2017. The Future of Food and Agriculture: Trends and Challenges Rome: Food Agric. Organ.
    [Google Scholar]
  36. 36.
    Gardeström P, Edwards GE, Henricson D, Ericson I et al. 1985. The localization of serine hydroxy-methyltransferase in leaves of C3 and C4 species. Physiol. Plant. 64:29–33
    [Google Scholar]
  37. 37.
    GBIF.org (Glob. Biodivers. Inf. Facil.) 2021. Filtered export of GBIF occurrence data: Anthaenantia. Data Set, GBIF.org. https://doi.org/10.15468/dl.mhw9aw
    [Crossref]
  38. 38.
    GBIF.org (Glob. Biodivers. Inf. Facil.) 2021. Filtered export of GBIF occurrence data: Hymenachne. Data Set, GBIF.org. https://doi.org/10.15468/dl.d42nbx
    [Crossref]
  39. 39.
    GBIF.org (Glob. Biodivers. Inf. Facil.) 2021. Filtered export of GBIF occurrence data: Otachyrium. Data Set, GBIF.org. https://doi.org/10.15468/dl.xhwpqh
    [Crossref]
  40. 40.
    GBIF.org (Glob. Biodivers. Inf. Facil.) 2021. Filtered export of GBIF occurrence data: Steinchisma. Data Set, GBIF.org. https://doi.org/10.15468/dl.s5r3mm
    [Crossref]
  41. 41.
    Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P. 2011. Evolution of C4 photosynthesis in the genus Flaveria. How many and which genes does it take to make C4?. Plant Cell 23:62087–105Discusses the results of an analysis of Flaveria species that span all photosynthetic classes.
    [Google Scholar]
  42. 42.
    Hall LN, Rossini L, Cribb L, Langdale JA 1998. GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell 10:925–36
    [Google Scholar]
  43. 43.
    Heckmann D. 2016. C4 photosynthesis evolution: the conditional Mt. Fuji. Curr. Opin. Plant Biol. 31:149–54Discusses the photosynthetic fitness landscape and the placement of C3-C4 intermediates in the evolution of C4 photosynthesis.
    [Google Scholar]
  44. 44.
    Heckmann D, Schulze S, Denton A, Gowik U, Westhoff P et al. 2013. Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell 153:71579–88
    [Google Scholar]
  45. 45.
    Heyduk K, Moreno-Villena JJ, Gilman IS, Christin PA, Edwards EJ 2019. The genetics of convergent evolution: insights from plant photosynthesis. Nat. Rev. Genet. 20:8485–93
    [Google Scholar]
  46. 46.
    Hibberd JM, Sheehy JE, Langdale JA. 2008. Using C4 photosynthesis to increase the yield of rice—rationale and feasibility. Curr. Opin. Plant Biol. 11:2228–31
    [Google Scholar]
  47. 47.
    Hijmans R, van Etten J. 2012. Raster: geographic analysis and modeling with raster data. R Package version 3.4-5. http://CRAN.R-project.org/package=raster
    [Google Scholar]
  48. 48.
    Holaday AS, Chollet R. 1984. Photosynthetic/photorespiratory characteristics of C3-C4 intermediate species. Photosynth. Res. 5:4307–23
    [Google Scholar]
  49. 49.
    Hua L, Stevenson SR, Reyna-Llorens I, Xiong H, Kopriva S, Hibberd JM 2021. The bundle sheath of rice is conditioned to play an active role in water transport as well as sulfur assimilation and jasmonic acid synthesis. Plant J. 107:268–286
    [Google Scholar]
  50. 50.
    Hylton CM, Rawsthorne S, Smith AM, Jones DA, Woolhouse HW. 1988. Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3-C4 intermediate species. Planta 175:452–59
    [Google Scholar]
  51. 51.
    Kadereit G, Bohley K, Lauterbach M, Tefarikis DT, Kadereit JW. 2017. C3-C4 intermediates may be of hybrid origin—a reminder. New Phytol. 215:170–76
    [Google Scholar]
  52. 52.
    Karki S, Rizal G, Quick WP 2013. Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway. Rice 6:28
    [Google Scholar]
  53. 53.
    Kennedy RA, Laetsch WM. 1974. Plant species intermediate for C3. C4 photosynthesis. Science 184:41411087–89
    [Google Scholar]
  54. 54.
    Khoshravesh R, Stata M, Busch FA, Saladié M, Castelli JM et al. 2020. The evolutionary origin of C4 photosynthesis in the grass subtribe Neurachninae. Plant Physiol. 182:1566–83
    [Google Scholar]
  55. 55.
    Khoshravesh R, Stinson CR, Stata M, Busch FA, Sage RF et al. 2016. C3-C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis. J. Exp. Bot. 67:103065–78
    [Google Scholar]
  56. 56.
    Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M et al. 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:6314857–61
    [Google Scholar]
  57. 57.
    Ku MSB, Monson RK, Littlejohn RO, Nakamoto H, Fisher DB, Edwards GE. 1983. Photosynthetic characteristics of C3-C4 intermediate Flaveria species. I. Leaf anatomy, photosynthetic responses to O2 and CO2 and activities of key enzymes in the C3 and C4 pathways. Plant Physiol. 71:4944–48
    [Google Scholar]
  58. 58.
    Ku MSB, Wu J, Dai Z, Scott RA, Chu C, Edwards GE 1991. Photosynthetic and photorespiratory characteristics of Flaveria species. Plant Physiol. 96:518–28
    [Google Scholar]
  59. 59.
    Lauterbach M, Schmidt H, Billakurthi K, Hankeln T, Westhoff P et al. 2017. De novo transcriptome assembly and comparison of C3, C3-C4, and C4 species of tribe Salsoleae (Chenopodiaceae). Front. Plant Sci. 8:01939
    [Google Scholar]
  60. 60.
    Li X, Wang P, Li J, Wei S, Yan Y et al. 2020. Maize GOLDEN2-LIKE genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition. Commun. Biol. 3:151
    [Google Scholar]
  61. 61.
    Lin HC, Arrivault S, Coe RA, Karki S, Covshoff S et al. 2020. A partial C4 photosynthetic biochemical pathway in rice. Front. Plant Sci. 11:564463
    [Google Scholar]
  62. 62.
    Lin M-Y. 2020. Studies into the genetic architecture of C3-C4 characteristics in Moricandia PhD Thesis Heinrich Heine Univ. Düsseldorf, Ger.:
    [Google Scholar]
  63. 63.
    Lin M-Y, Koppers N, Denton A, Schlüter U, Weber APM. 2021. Whole genome sequencing and assembly data of Moricandia moricandioides and M. arvensis. Data Brief 35:106922
    [Google Scholar]
  64. 64.
    Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR 2014. A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:7519547–50
    [Google Scholar]
  65. 65.
    Lin Y, Schlüter U, Stich B, Weber APM. 2021. Cis-regulatory divergence underpins the evolution of C3-C4 intermediate photosynthesis in Moricandia. bioRxiv 443365. https://doi.org/10.1101/2021.05.10.443365 Suggests that cis-regulatory divergence is a key player in the evolution of photosynthetic pathways in Moricandia species.
    [Crossref]
  66. 66.
    Liu Y, Mauve C, Lamothe-Sibold M, Guérard F, Glab N et al. 2019. Photorespiratory serine hydroxy-methyltransferase 1 activity impacts abiotic stress tolerance and stomatal closure. Plant Cell Environ. 42:92567–83
    [Google Scholar]
  67. 67.
    Long BM, Hee WY, Sharwood RE, Rae BD, Kaines S et al. 2018. Carboxysome encapsulation of the CO2-fixing enzyme Rubisco in tobacco chloroplasts. Nat. Commun. 9:3570
    [Google Scholar]
  68. 68.
    Long SP, Marshall-Colon A, Zhu XG. 2015. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:156–66
    [Google Scholar]
  69. 69.
    Lundgren MR. 2020. C2 photosynthesis: a promising route towards crop improvement?. New Phytol. 228:61734–40
    [Google Scholar]
  70. 70.
    Lundgren MR, Besnard G, Ripley BS, Lehmann CER, Chatelet DS et al. 2015. Photosynthetic innovation broadens the niche within a single species. Ecol. Lett. 18:101021–29
    [Google Scholar]
  71. 71.
    Lundgren MR, Christin PA. 2017. Despite phylogenetic effects, C3-C4 lineages bridge the ecological gap to C4 photosynthesis. J. Exp. Bot. 68:2241–54Shows factors that could influence the presence or absence of closely related C4 plants in different species of C3-C4 intermediates.
    [Google Scholar]
  72. 72.
    Lyu MJA, Gowik U, Kelly S, Covshoff S, Mallmann J et al. 2015. RNA-seq based phylogeny recapitulates previous phylogeny of the genus Flaveria (Asteraceae) with some modifications. BMC Evol. Biol. 15:116
    [Google Scholar]
  73. 73.
    Mallmann J, Heckmann D, Bräutigam A, Lercher MJ, Weber APM et al. 2014. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. eLife3e02478
    [Google Scholar]
  74. 74.
    Marshall-Colón A, Kliebenstein DJ. 2019. Plant networks as traits and hypotheses: moving beyond description. Trends Plant Sci. 24:9840–52
    [Google Scholar]
  75. 75.
    McGrath JM, Long SP. 2014. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol. 164:42247–61
    [Google Scholar]
  76. 76.
    McKown AD, Moncalvo JM, Dengler NG. 2005. Phylogeny of Flaveria (Asteraceae) and inference of C4 photosynthesis evolution. Am. J. Bot. 92:111911–28
    [Google Scholar]
  77. 77.
    Michael TP, VanBuren R. 2020. Building near-complete plant genomes. Curr. Opin. Plant Biol. 54:26–33
    [Google Scholar]
  78. 78.
    Mitchell PL, Sheehy JE. 2008. The case for C4 rice. Charting New Pathways to C4 Rice B Hardy, JE Sheehy, PL Mitchell 27–36 Singapore: World Sci.
    [Google Scholar]
  79. 79.
    Monson RK. 2003. Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. Int. J. Plant Sci. 164:343–54
    [Google Scholar]
  80. 80.
    Monson RK, Edwards GE, Ku MSB. 1984. C3-C4 intermediate photosynthesis in plants. BioScience 34:9563–74
    [Google Scholar]
  81. 81.
    Monson RK, Moore B, Monsoti RK 1989. On the significance of C3-C4 intermediate photosynthesis to the evolution of C4 photosynthesis. Plant Cell Environ. 12:689–99
    [Google Scholar]
  82. 82.
    Monson RK, Rawsthorne S. 2000. CO2 assimilation in C3-C4 intermediate plants. Photosynthesis R Leegood, T Sharkey, S von Caemmerer 533–50 Dordrecht, Neth.: Springer
    [Google Scholar]
  83. 83.
    Monson RK, Teeri JA, Ku B, Gurevitch J, Mets LJ, Dudley S. 1988. Carbon-isotope discrimination by leaves of Flaveria species exhibiting different amounts of C3-and C4-cycle co-function. Planta 174:145–51
    [Google Scholar]
  84. 84.
    Morgan CL, Turner SR, Rawsthorne S. 1993. Coordination of the cell-specific distribution of the four subunits of glycine decarboxylase and of serine hydroxymethyltransferase in leaves of C3-C4 intermediate species from different genera. Planta 190:4468–73
    [Google Scholar]
  85. 85.
    Morgan JA, Brown RH. 1979. Photosynthesis in grass species differing in carbon dioxide fixation pathways. II. A search for species with intermediate gas exchange and anatomical characteristics. Plant Physiol. 64:2257–62
    [Google Scholar]
  86. 86.
    Nakamura H, Muramatsu M, Hakata M, Ueno O, Nagamura Y et al. 2009. Ectopic overexpression of the transcription factor Osglk1 induces chloroplast development in non-green rice cells. Plant Cell Physiol. 50:111933–49
    [Google Scholar]
  87. 87.
    O'Leary MH. 1981. Carbon isotope fractionation in plants. Phytochemistry 20:4553–67
    [Google Scholar]
  88. 88.
    Oakley JC, Sultmanis S, Stinson CR, Sage TL, Sage RF 2014. Comparative studies of C3 and C4Atriplex hybrids in the genomics era: physiological assessments. J. Exp. Bot. 65:133637–47
    [Google Scholar]
  89. 89.
    Ohnishi J-I, Kanai R. 1983. Differentiation of photorespiratory activity between mesophyll and bundle sheath cells of C4 plants. I. Glycine oxidation by mitochondria. Plant Cell Physiol. 24:81411–20
    [Google Scholar]
  90. 90.
    Olofsson JK, Curran EV, Nyirenda F, Bianconi ME, Dunning LT et al. 2021. Low dispersal and ploidy differences in a grass maintain photosynthetic diversity despite gene flow and habitat overlap. Mol. Ecol. 30:92116–30
    [Google Scholar]
  91. 91.
    Oono J, Hatakeyama Y, Yabiku T, Ueno O 2021. Effects of growth temperature and nitrogen nutrition on expression of C3–C4 intermediate traits in Chenopodium album. J. Plant Res. . 135:15–27
    [Google Scholar]
  92. 92.
    Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE et al. 2015. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. PNAS 112:288529–36
    [Google Scholar]
  93. 93.
    Osteryoung KW, Stokes KD, Rutherford SM, Percival AL, Lee WY 1991. Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ. Plant Cell 10:1991–2004
    [Google Scholar]
  94. 94.
    Pinto H, Sharwood RE, Tissue DT, Ghannoum O. 2014. Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2. J. Exp. Bot. 65:133669–81
    [Google Scholar]
  95. 95.
    Pinto H, Tissue DT, Ghannoum O. 2011. Panicum milioides (C3-C4) does not have improved water or nitrogen economies relative to C3 and C4 congeners exposed to industrial-age climate change. J. Exp. Bot. 62:93223–34
    [Google Scholar]
  96. 96.
    Price DG, Pengelly JJL, Forster B, Du J, Whitney S et al. 2013. The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J. Exp. Bot. 64:3753–68
    [Google Scholar]
  97. 97.
    Ray DK, Mueller ND, West PC, Foley JA. 2013. Yield trends are insufficient to double global crop production by 2050. PLOS ONE 8:6e66428
    [Google Scholar]
  98. 98.
    Rossini L, Cribb L, Martin DJ, Langdale JA 2001. The maize Golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13:1231–44
    [Google Scholar]
  99. 99.
    Sage RF, Christin PA, Edwards EJ 2011. The C4 plant lineages of planet Earth. J. Exp. Bot. 62:93155–69
    [Google Scholar]
  100. 100.
    Sage RF, Khoshravesh R, Sage TL 2014. From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis. J. Exp. Bot. 65:133341–56Provides a detailed explanation of anatomical modifications from C3 to C4 photosynthesis using research from different intermediates.
    [Google Scholar]
  101. 101.
    Sage RF, Sage TL, Kocacinar F. 2012. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 63:19–47Comprehensively covers the evolution of C4 photosynthesis.
    [Google Scholar]
  102. 102.
    Salzberg SL. 2019. Next-generation genome annotation: We still struggle to get it right. Genome Biol. 20:92
    [Google Scholar]
  103. 103.
    Schlüter U, Bräutigam A, Gowik U, Melzer M, Christin PA et al. 2017. Photosynthesis in C3-C4 intermediate Moricandia species. J. Exp. Bot. 68:2191–206
    [Google Scholar]
  104. 104.
    Schlüter U, Weber APM. 2016. The road to C4 photosynthesis: evolution of a complex trait via intermediary states. Plant Cell Physiol. 57:5881–89
    [Google Scholar]
  105. 105.
    Schulze S, Mallmann J, Burscheidt J, Koczor M, Streubel M et al. 2013. Evolution of C4 photosynthesis in the genus Flaveria: establishment of a photorespiratory CO2 pump. Plant Cell 25:72522–35
    [Google Scholar]
  106. 106.
    Schulze S, Westhoff P, Gowik U. 2016. Glycine decarboxylase in C3, C4 and C3-C4 intermediate species. Curr. Opin. Plant Biol. 31:29–35Provides a detailed review of the role of GDC in C3, C4, and C3-C4 intermediate species.
    [Google Scholar]
  107. 107.
    Schuster WS, Monson RK. 1990. An examination of the advantages of C3-C4 intermediate photosynthesis in warm environments. Plant Cell Environ. 13:903–12
    [Google Scholar]
  108. 108.
    Simkin AJ, López-Calcagno PE, Raines CA. 2019. Feeding the world: improving photosynthetic efficiency for sustainable crop production. J. Exp. Bot. 70:41119–40
    [Google Scholar]
  109. 109.
    Slattery RA, Ort DR. 2021. Perspectives on improving light distribution and light use efficiency in crop canopies. Plant Physiol. 185:34–48
    [Google Scholar]
  110. 110.
    Somerville CR, Ogren WL. 1981. Photorespiration-deficient mutants of Arabidopsisthaliana lacking mitochondrial serine transhydroxymethylase activity. Plant Physiol. 67:666–71
    [Google Scholar]
  111. 111.
    South PF, Cavanagh AP, Liu HW, Ort DR. 2019. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363:6422aat9077
    [Google Scholar]
  112. 112.
    Stata M, Sage TL, Hoffmann N, Covshoff S, Wong GK-S, Sage RF 2016. Mesophyll chloroplast investment in C3, C4 and C2 species of the genus Flaveria. Plant Cell Physiol. 57:5904–18
    [Google Scholar]
  113. 113.
    Stata M, Sage TL, Sage RF. 2019. Mind the gap: the evolutionary engagement of the C4 metabolic cycle in support of net carbon assimilation. Curr. Opin. Plant Biol. 49:27–34
    [Google Scholar]
  114. 114.
    Stokes KD, McAndrew RS, Figueroa R, Vitha S, Osteryoung KW. 2000. Chloroplast division and morphology are differentially affected by overexpression of FtsZ1 and FtsZ2 genes in Arabidopsis. Plant Physiol. 124:41668–77
    [Google Scholar]
  115. 115.
    Sultmanis SD. 2018. Developmental and expression evolution in C3 and C4 Atriplex and their hybrids PhD Thesis Univ. Toronto Toronto, Can:.
    [Google Scholar]
  116. 116.
    Tashima M, Yabiku T, Ueno O 2021. Coleataenia prionitis, a C4-like species in the Poaceae. Photosynth. Res. 147:2211–27
    [Google Scholar]
  117. 117.
    Tcherkez GGB, Farquhar GD, Andrews TJ. 2006. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. PNAS 103:197246–51
    [Google Scholar]
  118. 118.
    Ueno O, Sentoku N. 2006. Comparison of leaf structure and photosynthetic characteristics of C3 and C4Alloteropsis semialata subspecies. Plant Cell Environ. 29:257–68
    [Google Scholar]
  119. 119.
    Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA. 2008. The age of the grasses and clusters of origins of C4 photosynthesis. Glob. Change Biol. 14:122963–77
    [Google Scholar]
  120. 120.
    Vogan PJ, Frohlich MW, Sage RF. 2007. The functional significance of C3-C4 intermediate traits in Heliotropium L. (Boraginaceae): gas exchange perspectives. Plant Cell Environ. 30:101337–45
    [Google Scholar]
  121. 121.
    Vogan PJ, Sage RF. 2011. Water-use efficiency and nitrogen-use efficiency of C3-C4 intermediate species of Flaveria Juss. (Asteraceae). Plant Cell Environ. 34:91415–30
    [Google Scholar]
  122. 122.
    von Caemmerer S 2000. Biochemical Models of Leaf Photosynthesis Clayton, Aust.: CSIRO
    [Google Scholar]
  123. 123.
    Wang P, Fouracre J, Kelly S, Karki S, Gowik U et al. 2013. Evolution of GOLDEN2-LIKE gene function in C3 and C4 plants. Planta 237:2481–95
    [Google Scholar]
  124. 124.
    Wang P, Khoshravesh R, Karki S, Tapia R, Balahadia CP et al. 2017. Re-creation of a key step in the evolutionary switch from C3 to C4 leaf anatomy. Curr. Biol. 27:213278–87.e6
    [Google Scholar]
  125. 125.
    Williams BP, Johnston IG, Covshoff S, Hibberd JM 2013. Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis. eLife 2e00961
    [Google Scholar]
  126. 126.
    Wilson RH, Alonso H, Whitney SM 2016. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth. Sci. Rep. 6:22284
    [Google Scholar]
  127. 127.
    Wray GA. 2007. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8:3206–16
    [Google Scholar]
  128. 128.
    Yadav S, Mishra A. 2020. Ectopic expression of C4 photosynthetic pathway genes improves carbon assimilation and alleviate stress tolerance for future climate change. Physiol. Mol. Biol. Plants 26:2195–209
    [Google Scholar]
  129. 129.
    Yorimitsu Y, Kadosono A, Hatakeyama Y, Yabiku T, Ueno O 2019. Transition from C3 to proto-Kranz to C3-C4 intermediate type in the genus Chenopodium (Chenopodiaceae). J. Plant Res. 132:6839–55
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-102720-114201
Loading
/content/journals/10.1146/annurev-arplant-102720-114201
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error