1932

Abstract

Recent observations of elevated tree mortality following climate extremes, like heat and drought, raise concerns about climate change risks to global forest health. We currently lack both sufficient data and understanding to identify whether these observations represent a global trend toward increasing tree mortality. Here, we document events of sudden and unexpected elevated tree mortality following heat and drought events in ecosystems that previously were considered tolerant or not at risk of exposure. These events underscore the fact that climate change may affect forests with unexpected force in the future. We use the events as examples to highlight current difficulties and challenges for realistically predicting such tree mortality events and the uncertainties about future forest condition. Advances in remote sensing technology and greater availably of high-resolution data, from both field assessments and satellites, are needed to improve both understanding and prediction of forest responses to future climate change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102820-012804
2022-05-20
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-102820-012804.html?itemId=/content/journals/10.1146/annurev-arplant-102820-012804&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5:1170191
    [Google Scholar]
  2. 2.
    Adams HD, Zeppel MJ, Anderegg WR, Hartmann H, Landhäusser SM et al. 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1:91285–91
    [Google Scholar]
  3. 3.
    Ainsworth EA, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:3258–70
    [Google Scholar]
  4. 4.
    Aleixo I, Norris D, Hemerik L, Barbosa A, Prata E et al. 2019. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9:5384–88
    [Google Scholar]
  5. 5.
    Allen CD. 1989. Changes in the landscape of the Jemez Mountains, New Mexico PhD thesis, Univ. Calif. Berkeley:
  6. 6.
    Allen CD. 2009. Climate-induced forest dieback: An escalating global phenomenon?. Unasylva 60:231/23243–49
    [Google Scholar]
  7. 7.
    Allen CD. 2014. Forest ecosystem re-organization underway in the southwestern United States: a preview of widespread forest changes in the Anthropocene?. Proceedings RMRS-P-71, Fort Collins, CO, pp. 103–23 US Dep. Agric. For. Serv. https://www.fs.fed.us/rm/pubs/rmrs_p071/rmrs_p071_103_123.pdf Detailed description of profound climate change impacts on southwestern US forest health, including long-term perspectives and global context.
    [Google Scholar]
  8. 8.
    Allen CD, Breshears DD. 1998. Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation. PNAS 95:2514839–42
    [Google Scholar]
  9. 9.
    Allen CD, Breshears DD, McDowell NG. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:81–55Explains that warming, especially in addition to drought, poses multiple threats to forest health and is a driver of many tree mortality events globally.
    [Google Scholar]
  10. 10.
    Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259:4660–84
    [Google Scholar]
  11. 11.
    Ammer C, Albrecht L, Borchert H, Brosinger F, Dittmar C et al. 2005. Zur Zukunft der Buche (Fagus sylvatica L.) in Mitteleuropa. Kritische Anmerkungen zu einem Beitrag von Rennenberg et al. 2004. Allg. Forst Jagdztg. 176:60–67
    [Google Scholar]
  12. 12.
    Anderegg WRL, Hicke JA, Fisher RA, Allen CD, Aukema J et al. 2015. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol 208:3674–83
    [Google Scholar]
  13. 13.
    Anderegg WRL, Konings AG, Trugman AT, Yu K, Bowling DR et al. 2018. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561:7724538–41
    [Google Scholar]
  14. 14.
    Anderson LO, Malhi Y, Aragão LE, Ladle R, Arai E et al. 2010. Remote sensing detection of droughts in Amazonian forest canopies. New Phytol 187:3733–50
    [Google Scholar]
  15. 15.
    Andrew ME, Ruthrof KX, Matusick G, Hardy GESJ 2016. Spatial configuration of drought disturbance and forest gap creation across environmental gradients. PLOS ONE 11:6e0157154
    [Google Scholar]
  16. 16.
    Argles APK, Moore JR, Huntingford C, Wiltshire AJ, Harper AB et al. 2020. Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models. Geosci. Model Dev. 13:94067–89
    [Google Scholar]
  17. 17.
    Bader MKF, Ehrenberger W, Bitter R, Stevens J, Miller BP et al. 2014. Spatio-temporal water dynamics in mature Banksia menziesii trees during drought. Physiol. Plant. 152:2301–15
    [Google Scholar]
  18. 18.
    Bastos A, Orth R, Reichstein M, Ciais P, Viovy N et al. 2021. Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth Syst. Dyn. 12:1015–35
    [Google Scholar]
  19. 19.
    Bates BC, Hope P, Ryan B, Smith I, Charles S 2008. Key findings from the Indian Ocean Climate Initiative and their impact on policy development in Australia. Clim. Change 89:3–4339–54
    [Google Scholar]
  20. 20.
    Batllori E, Cáceres MD, Brotons L, Ackerly DD, Moritz MA, Lloret F. 2019. Compound fire-drought regimes promote ecosystem transitions in Mediterranean ecosystems. J. Ecol. 107:31187–98
    [Google Scholar]
  21. 21.
    Batllori E, Lloret F, Aakala T, Anderegg WRL, Aynekulu E et al. 2020. Forest and woodland replacement patterns following drought-related mortality. PNAS 117:4729720–29
    [Google Scholar]
  22. 22.
    Becerra JX. 2015. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. PNAS 112:196098–103
    [Google Scholar]
  23. 23.
    Becknell JM, Vargas G. G, Pérez-Aviles D, Medvigy D, Powers JS 2021. Above-ground net primary productivity in regenerating seasonally dry tropical forest: contributions of rainfall, forest age, and soil. J. Ecol. 109:113903–15
    [Google Scholar]
  24. 24.
    Berenguer E, Lennox GD, Ferreira J, Malhi Y, Aragão LEOC et al. 2021. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. PNAS 118:30e2019377118
    [Google Scholar]
  25. 25.
    Biedermann PHW, Müller J, Grégoire J-C, Gruppe A, Hagge J et al. 2019. Bark beetle population dynamics in the Anthropocene: challenges and solutions. Trends Ecol. Evol. 34:10914–24
    [Google Scholar]
  26. 26.
    BMEL (Bundesminister. Ernähr. Landwirtsch.) 2021. Ergebnisse der Waldzustandserhebung 2020 Rep. 515, Bundesminister. Ernähr. Landwirtsch. Berlin, Ger:.
  27. 27.
    Bolte A. 2016. Chancen und Risiken der Buche im Klimawandel. AFZ DerWald 71:17–19
    [Google Scholar]
  28. 28.
    Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE et al. 2014. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. PNAS 111:176347–52Shows that drought alone kills a proportion of vulnerable trees in tropical forests, and drought–fire interactions kill large numbers of trees.
    [Google Scholar]
  29. 29.
    Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD et al. 2005. Regional vegetation die-off in response to global-change-type drought. PNAS 102:4215144–48
    [Google Scholar]
  30. 30.
    Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR et al. 2015. Long-term decline of the Amazon carbon sink. Nature 519:7543344–48
    [Google Scholar]
  31. 31.
    Brodrick PG, Asner GP. 2017. Remotely sensed predictors of conifer tree mortality during severe drought. Environ. Res. Lett. 12:11115013
    [Google Scholar]
  32. 32.
    Brouwers NC, Coops NC. 2016. Decreasing Net Primary Production in forest and shrub vegetation across southwest Australia. Ecol. Indic. 66:10–19
    [Google Scholar]
  33. 33.
    Brouwers NC, Matusick G, Ruthrof K, Lyons T, Hardy G. 2013. Landscape-scale assessment of tree crown dieback following extreme drought and heat in a Mediterranean eucalypt forest ecosystem. Landsc. Ecol. 28:169–80
    [Google Scholar]
  34. 34.
    Bush ER, Whytock RC, Bahaa-el-din L, Bourgeois S, Bunnefeld N et al. 2020. Long-term collapse in fruit availability threatens Central African forest megafauna. Science 370:65211219–22
    [Google Scholar]
  35. 35.
    Cai W, van Rensch P, Borlace S, Cowan T 2011. Does the Southern Annular Mode contribute to the persistence of multidecade-long drought over southwest Western Australia?. Geophys. Res. Lett. 38:L14712
    [Google Scholar]
  36. 36.
    Camarero JJ, Bigler C, Linares JC, Gil-Pelegrín E. 2011. Synergistic effects of past historical logging and drought on the decline of Pyrenean silver fir forests. For. Ecol. Manag. 262:5759–69
    [Google Scholar]
  37. 37.
    Challis A, Stevens JC, McGrath G, Miller BP. 2016. Plant and environmental factors associated with drought-induced mortality in two facultative phreatophytic trees. Plant Soil 404:1–2157–72
    [Google Scholar]
  38. 38.
    Chaparro D, Vayreda J, Vall-llossera M, Banque M, Piles M et al. 2016. The role of climatic anomalies and soil moisture in the decline of drought-prone forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10:2503–14
    [Google Scholar]
  39. 39.
    Christoffersen BO, Gloor M, Fauset S, Fyllas NM, Galbraith DR et al. 2016. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geosci. Model Dev. 9:114227–55
    [Google Scholar]
  40. 40.
    Cobb RC, Ruthrof KX, Breshears DD, Lloret F, Aakala T et al. 2017. Ecosystem dynamics and management after forest die-off: a global synthesis with conceptual state-and-transition models. Ecosphere 8:12e02034
    [Google Scholar]
  41. 41.
    Condit R, Hubbell SP, Foster RB. 1995. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr. 65:4419–39
    [Google Scholar]
  42. 42.
    Cooley SS, Williams CA, Fisher JB, Halverson GH, Perret J, Lee CM 2019. Assessing regional drought impacts on vegetation and evapotranspiration: a case study in Guanacaste, Costa Rica. Ecol. Appl. 29:2e01834
    [Google Scholar]
  43. 43.
    Coop JD, Parks SA, Stevens-Rumann CS, Crausbay SD, Higuera PE et al. 2020. Wildfire-driven forest conversion in western North American landscapes. BioScience 70:8659–73
    [Google Scholar]
  44. 44.
    Cramer W, Kicklighter DW, Bondeau A, Moore B III, Churkina G et al. 1999. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Change Biol. 5:11–15
    [Google Scholar]
  45. 45.
    Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC 2018. Classifying drivers of global forest loss. Science 361:64071108–11
    [Google Scholar]
  46. 46.
    da Luz NB, Garrastazu M, Rosot M, Maran J, Malheiros de Oliveira Y et al. 2018. Brazilian National Forest Inventory—a landscape scale approach to monitoring and assessing forested landscapes. Pesqui. Florest. Bras. 38:e201701493
    [Google Scholar]
  47. 47.
    Das AJ, Ampersee NJ, Pfaff AH, Stephenson NL, Swiecki TJ et al. 2020. Tree mortality in blue oak woodland during extreme drought in Sequoia National Park, California. Madroño 66:4164–75
    [Google Scholar]
  48. 48.
    De Kauwe MG, Medlyn BE, Tissue DT. 2021. To what extent can rising [CO2] ameliorate plant drought stress?. New Phytol 231:62118–24
    [Google Scholar]
  49. 49.
    Dell B, Havel JJ 1989. The jarrah forest, an introduction. The Jarrah Forest: A Complex Mediterranean Ecosystem B Dell, JJ Havel, N Malajczuk 1–10 Dordrecht: Kluwer Academic
    [Google Scholar]
  50. 50.
    Durrant TH, de Rigo D, Caudullo G 2016. Pinus sylvestris in Europe: distribution, habitat, usage and threats. European Atlas of Forest Tree Species TH Durrant, de Rigo D, Caudullo G, pp. e016b94 Luxembourg: Publ. Off. EU
    [Google Scholar]
  51. 51.
    Edmonds RL, Agee JK, Gara RI. 2000. Forest Health and Protection New York: McGraw Hill
  52. 52.
    Eller CB, Rowland L, Oliveira RS, Bittencourt PRL, Barros FV et al. 2018. Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Philos. Trans. R. Soc. B 373:176020170315
    [Google Scholar]
  53. 53.
    Enright NJ, Fontaine JB, Bowman D, Bradstock RA, Williams RJ. 2015. Interval squeeze: Altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13:5265–72
    [Google Scholar]
  54. 54.
    Enright NJ, Fontaine JB, Lamont BB, Miller BP, Westcott VC. 2014. Resistance and resilience to changing climate and fire regime depend on plant functional traits. J. Ecol. 102:61572–81
    [Google Scholar]
  55. 55.
    Esquivel-Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJW et al. 2019. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25:139–56
    [Google Scholar]
  56. 56.
    Esquivel-Muelbert A, Baker TR, Dexter KG, Lewis SL, ter Steege H et al. 2017. Seasonal drought limits tree species across the Neotropics. Ecography 40:5618–29
    [Google Scholar]
  57. 57.
    Esquivel-Muelbert A, Phillips OL, Brienen RJW, Fauset S, Sullivan MJP et al. 2020. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11:15515Argues that forest inventories can provide large-scale assessments of tree mortality risk factors, affording a basis for improved modeling.
    [Google Scholar]
  58. 58.
    Etzold S, Ziemińska K, Rohner B, Bottero A, Bose AK et al. 2019. One century of forest monitoring data in Switzerland reveals species- and site-specific trends of climate-induced tree mortality. Front. Plant Sci. 10:307
    [Google Scholar]
  59. 59.
    Fauset S, Baker TR, Lewis SL, Feldpausch TR, Affum-Baffoe K et al. 2012. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 15:101120–29
    [Google Scholar]
  60. 60.
    Feldpausch TR, Phillips OL, Brienen RJW, Gloor E, Lloyd J et al. 2016. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30:7964–82
    [Google Scholar]
  61. 61.
    Fine PV, Ree RH. 2006. Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. Am. Nat. 168:6796–804
    [Google Scholar]
  62. 62.
    ForestPlots.net Blundo C, Carilla J, Grau R, Malizia A et al. 2021. Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biol. Conserv. 260:108849
    [Google Scholar]
  63. 63.
    Forzieri G, Girardello M, Ceccherini G, Spinoni J, Feyen L et al. 2021. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12:11081
    [Google Scholar]
  64. 64.
    Freitas J, Oliveira Y, Rosot M, Gomide G, Mattos P 2010. Development of the National Forest Inventory of Brazil. National Forest Inventories: Pathways for Common Reporting E Tomppo, T Gschwantner, M Lawrence, RE McRoberts 89–95 Dordrecht, Neth: Springer
    [Google Scholar]
  65. 65.
    Galiano L, Martínez-Vilalta J, Lloret F. 2010. Drought-induced multifactor decline of Scots pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 13:7978–91
    [Google Scholar]
  66. 66.
    García-Herrera R, Garrido-Perez JM, Barriopedro D, Ordóñez C, Vicente-Serrano SM et al. 2019. The European 2016/17 drought. J. Clim. 32:113169–87
    [Google Scholar]
  67. 67.
    Gely C, Laurance SGW, Stork NE 2020. How do herbivorous insects respond to drought stress in trees?. Biol. Rev. 95:2434–48
    [Google Scholar]
  68. 68.
    Griffin D, Anchukaitis KJ 2014. How unusual is the 2012–2014 California drought?. Geophys. Res. Lett. 41:249017–23
    [Google Scholar]
  69. 69.
    Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B et al. 2020. Plant responses to rising vapor pressure deficit. New Phytol 226:61550–66
    [Google Scholar]
  70. 70.
    Gschwantner T, Alberdi I, Bauwens S, Bender S, Borota D et al. 2022. Growing stock monitoring by European National Forest Inventories: historical origins, current methods and harmonization. Forest Ecol. Manag. 505:119868
    [Google Scholar]
  71. 71.
    Haffey C, Sisk TD, Allen CD, Thode AE, Margolis EQ. 2018. Limits to ponderosa pine regeneration following large high-severity forest fires in the United States Southwest. Fire Ecol 14:1143–63
    [Google Scholar]
  72. 72.
    Hammond WM, Williams AP, Abatzoglou JT, Adams HD, Klein T et al. 2022. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth's forests. Nat. Commun. In press
    [Google Scholar]
  73. 73.
    Harris I, Jones PD, Osborn TJ, Lister DH 2014. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34:3623–42
    [Google Scholar]
  74. 74.
    Harris I, Osborn TJ, Jones P, Lister D. 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7:1109
    [Google Scholar]
  75. 75.
    Hartmann H. 2021. Dem Forst eine Chance geben!. AFZ Wald 6:38–40
    [Google Scholar]
  76. 76.
    Hartmann H, Adams HD, Anderegg WR, Jansen S, Zeppel MJ 2015. Research frontiers in drought-induced tree mortality: crossing scales and disciplines. New Phytol 205:3965–69
    [Google Scholar]
  77. 77.
    Hartmann H, Messier C. 2008. The role of forest tent caterpillar defoliations and partial harvest in the decline and death of sugar maple. Ann. Bot. 102:3377–87
    [Google Scholar]
  78. 78.
    Hartmann H, Moura CF, Anderegg WRL, Ruehr NK, Salmon Y et al. 2018. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol 218:115–28
    [Google Scholar]
  79. 79.
    Hartmann H, Schuldt B, Sanders TG, Macinnis-Ng C, Boehmer HJ et al. 2018. Monitoring global tree mortality patterns and trends. Report from the VW symposium ‘Crossing scales and disciplines to identify global trends of tree mortality as indicators of forest health. .’ New Phytol 217:3984–87
    [Google Scholar]
  80. 80.
    He Q, Silliman BR, Liu Z, Cui B. 2017. Natural enemies govern ecosystem resilience in the face of extreme droughts. Ecol. Lett. 20:2194–201
    [Google Scholar]
  81. 81.
    Hlásny T, Krokene P, Liebhold A, Montagné-Huck C, Müller J et al. 2019. Living with bark beetles: impacts, outlook and management options Rep. From Science to Policy 8 Eur. For. Inst., Sarjanr, Finl. https://efi.int/publications-bank/living-bark-beetles-impacts-outlook-and-management-options
  82. 82.
    Huang J, Kautz M, Trowbridge AM, Hammerbacher A, Raffa KF et al. 2020. Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytol 225:126–36
    [Google Scholar]
  83. 83.
    IPCC (Intergov. Panel Clim. Chang.) 2019. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems Rep. In press https://www.ipcc.ch/srccl/
  84. 84.
    Jakob D, Imielska A, Charles S, Fu G, Frederiksen C et al. 2012. Western Australia's weather and climate: a synthesis of Indian Ocean Climate Initiative stage 3 research Rep., Commonweal. Sci. Ind. Res. Organ. and Bur. Meteorol. Perth, Aust:.
  85. 85.
    Jump AS, Ruiz-Benito P, Greenwood S, Allen CD, Kitzberger T et al. 2017. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23:93742–57
    [Google Scholar]
  86. 86.
    Keil P, Chase JM 2019. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3:3390–99
    [Google Scholar]
  87. 87.
    Kennedy D, Swenson S, Oleson KW, Lawrence DM, Fisher R et al. 2019. Implementing plant hydraulics in the Community Land Model, Version 5. J. Adv. Model. Earth Syst. 11:2485–513
    [Google Scholar]
  88. 88.
    Klein T, Hartmann H. 2018. Climate change drives tree mortality. Science 362:6416758
    [Google Scholar]
  89. 89.
    Kolb TE, Wagner MR, Covington WW. 1995. Forest health from different perspectives. Forest Health Through Silviculture: Proceedings of the 1995 National Silviculture Workshop, Mescalero, New Mexico, May 8–11, 1995 Gen. Tech. Rep. RM-GTR-267 5–13 US Dep. Agric., For. Serv., Rocky Mt. For. Range Exp. Stn.: Fort Collins, CO
    [Google Scholar]
  90. 90.
    Koven CD, Knox RG, Fisher RA, Chambers JQ, Christoffersen BO et al. 2020. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17:113017–44
    [Google Scholar]
  91. 91.
    Krokene P 2015. Conifer defense and resistance to bark beetles. Bark Beetles FE Vega, RW Hofstetter 177–207 San Diego: Academic
    [Google Scholar]
  92. 92.
    LaBau VJ, Bones JT, Kingsley NP, Lund G, Smith W. 2007. A history of the Forest Survey in the United States: 1830–2004 Rep. FS-877, US Dep. Agric., For. Serv. Washington: http://www.fs.fed.us/emc/rig/documents/HFSbook_FINAL_07_0625.pdf
  93. 93.
    Linares JC, Camarero JJ, Carreira JA. 2009. Interacting effects of changes in climate and forest cover on mortality and growth of the southernmost European fir forests. Glob. Ecol. Biogeogr. 18:4485–97
    [Google Scholar]
  94. 94.
    Liu X, Chen L, Liu M, García-Guzmán G, Gilbert GS, Zhou S 2020. Dilution effect of plant diversity on infectious diseases: latitudinal trend and biological context dependence. Oikos 129:4457–65
    [Google Scholar]
  95. 95.
    Lloret F, Siscart D, Dalmases C. 2004. Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob. Change Biol. 10122092–99
    [Google Scholar]
  96. 96.
    Malhi Y, Phillips OL, Lloyd J, Baker T, Wright J et al. 2002. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 13:3439–50
    [Google Scholar]
  97. 97.
    Manion PD. 1991. Tree Disease Concepts Engelwood Cliffs, NJ: Prentice Hall
  98. 98.
    Martinez-Vilalta J, Anderegg WRL, Sapes G, Sala A. 2019. Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. New Phytol 223:122–32
    [Google Scholar]
  99. 99.
    Martinez-Vilalta J, Pinol J. 2002. Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For. Ecol. Manag. 161:247–56
    [Google Scholar]
  100. 100.
    Matías L, Abdelaziz M, Godoy O, Gómez-Aparicio L. 2019. Disentangling the climatic and biotic factors driving changes in the dynamics of Quercus suber populations across the species’ latitudinal range. Divers Distrib 25:4524–35
    [Google Scholar]
  101. 101.
    Matusick G, Ruthrof KX, Brouwers NC, Dell B, Hardy GS 2013. Sudden forest canopy collapse corresponding with extreme drought and heat in a mediterranean-type eucalypt forest in southwestern Australia. Eur. J. For. Res. 132:3497–510
    [Google Scholar]
  102. 102.
    Matusick G, Ruthrof KX, Fontaine JB, Hardy GESJ. 2016. Eucalyptus forest shows low structural resistance and resilience to climate change-type drought. J. Veg. Sci. 27:3493–503
    [Google Scholar]
  103. 103.
    Matusick G, Ruthrof KX, Hardy G. 2012. Drought and heat triggers sudden and severe dieback in a dominant Mediterranean-type woodland species. Open J. For. 2:4183–86
    [Google Scholar]
  104. 104.
    Matusick G, Ruthrof KX, Kala J, Brouwers NC, Breshears DD, Hardy GESJ. 2018. Chronic historical drought legacy exacerbates tree mortality and crown dieback during acute heatwave-compounded drought. Environ. Res. Lett. 13:9095002
    [Google Scholar]
  105. 105.
    McDowell NG. 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–59
    [Google Scholar]
  106. 106.
    McDowell NG, Allen CD. 2015. Darcy's law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5:7669–72
    [Google Scholar]
  107. 107.
    McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B et al. 2020. Pervasive shifts in forest dynamics in a changing world. Science 368:6494aaz9463
    [Google Scholar]
  108. 108.
    McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M. 2011. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26:10523–32
    [Google Scholar]
  109. 109.
    McDowell NG, Coops NC, Beck PSA, Chambers JQ, Gangodagamage C et al. 2015. Global satellite monitoring of climate-induced vegetation disturbances. Trends Plant Sci 20:2114–23
    [Google Scholar]
  110. 110.
    McDowell NG, Williams AP, Xu C, Pockman WT, Dickman LT et al. 2016. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Change 6:3295–300
    [Google Scholar]
  111. 111.
    Miyamoto K, Aiba S, Aoyagi R, Nilus R 2021. Effects of El Niño drought on tree mortality and growth across forest types at different elevations in Borneo. For. Ecol. Manag. 490:119096
    [Google Scholar]
  112. 112.
    Moore J, Pope J, Woods M, Ellis A. 2018. 2017 Aerial Survey Results: California US Forest Service Pacific Southwest Region Tech. Rep. R5-PR-034. US For. Serv. Davis, CA:
    [Google Scholar]
  113. 113.
    Moore J, Woods M, Ellis A, Moran B 2017. 2016 Aerial Survey Results: California US Forest Service Pacific Southwest Region Tech. Rep. R5-PR-034. US For. Serv. Davis, CA:
  114. 114.
    Muller-Landau HC, Cushman KC, Arroyo EE, Martinez Cano I, Anderson-Teixeira KJ, Backiel B 2021. Patterns and mechanisms of spatial variation in tropical forest productivity, woody residence time, and biomass. New Phytol 229:63065–87
    [Google Scholar]
  115. 115.
    Nardini A, Battistuzzo M, Savi T. 2013. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol 200:2322–29
    [Google Scholar]
  116. 116.
    Netherer S, Matthews B, Katzensteiner K, Blackwell E, Henschke P et al. 2015. Do water-limiting conditions predispose Norway spruce to bark beetle attack?. New Phytol 205:31128–41
    [Google Scholar]
  117. 117.
    Papastefanou P, Zang CS, Pugh TAM, Liu D, Grams TEE et al. 2020. A dynamic model for strategies and dynamics of plant water-potential regulation under drought conditions. Front. Plant Sci. 11:373
    [Google Scholar]
  118. 118.
    Paz-Kagan T, Brodrick PG, Vaughn NR, Das AJ, Stephenson NL et al. 2017. What mediates tree mortality during drought in the southern Sierra Nevada?. Ecol. Appl. 27:82443–57
    [Google Scholar]
  119. 119.
    Pedersen BS. 1998. The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79:79–93
    [Google Scholar]
  120. 120.
    Peñuelas J, Lloret F, Montoya R. 2001. Severe drought effects on Mediterranean woody flora in Spain. For. Sci. 47:2214–18The first study documenting the severe effects of the 1994 drought on Spanish forests.
    [Google Scholar]
  121. 121.
    Phillips OL, van der Heijden G, Lewis SL, López-González G, Aragão LEOC et al. 2010. Drought–mortality relationships for tropical forests. New Phytol 187:3631–46
    [Google Scholar]
  122. 122.
    Powell TL, Galbraith DR, Christoffersen BO, Harper A, Imbuzeiro HMA et al. 2013. Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytol 200:2350–65
    [Google Scholar]
  123. 123.
    Powers JS, Vargas G. G, Brodribb TJ, Schwartz NB, Pérez-Aviles D et al. 2020. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Change Biol. 26:53122–33
    [Google Scholar]
  124. 124.
    Pugh TAM, Rademacher T, Shafer SL, Steinkamp J, Barichivich J et al. 2020. Understanding the uncertainty in global forest carbon turnover. Biogeosciences 17:153961–89
    [Google Scholar]
  125. 125.
    Raffa KF, Aukema B, Bentz BJ, Carroll A, Erbilgin N et al. 2009. A literal use of “forest health” safeguards against misuse and misapplication. J. For. 5:276–77
    [Google Scholar]
  126. 126.
    Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA et al. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58:6501–17
    [Google Scholar]
  127. 127.
    Rödig E, Cuntz M, Heinke J, Rammig A, Huth A 2017. Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: linking remote sensing, forest modelling and field inventory. Glob. Ecol. Biogeogr. 26:111292–302
    [Google Scholar]
  128. 128.
    Rowland L, da Costa AC, Galbraith DR, Oliveira RS, Binks OJ et al. 2015. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528:7580119–22
    [Google Scholar]
  129. 129.
    Ruehr NK, Grote R, Mayr S, Arneth A. 2019. Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiol 39:81285–99
    [Google Scholar]
  130. 130.
    Ruthrof KX, Breshears DD, Fontaine JB, Froend RH, Matusick G et al. 2018. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8:113094
    [Google Scholar]
  131. 131.
    Ryan MG. 2011. Tree responses to drought. Tree Physiol 31:3237–39
    [Google Scholar]
  132. 132.
    Sakschewski B, von Bloh W, Boit A, Poorter L, Peña-Claros M et al. 2016. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6:111032–36
    [Google Scholar]
  133. 133.
    Sanders TGM, Michel A, Ferretti M 2016. 30 years of monitoring the effects of long-range transboundary air pollution on forests in Europe and beyond UNECE Rep. Int. Cooper. Program For. Eberswalde, Ger:.
  134. 134.
    Sarris D, Christodoulakis D, Körner C 2011. Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim. Change 106:2203–23
    [Google Scholar]
  135. 135.
    Sato H, Kobayashi H, Beer C, Fedorov A. 2020. Simulating interactions between topography, permafrost, and vegetation in Siberian larch forest. Environ. Res. Lett. 15:9095006
    [Google Scholar]
  136. 136.
    Schofield NJ, Stoneman GL, Loh IC 1989. Hydrology of the jarrah forest. The Jarrah Forest B Dell, JJ Havel, N Malajczuk 179–201 Dordrecht, Neth: Springer
    [Google Scholar]
  137. 137.
    Schuldt B, Buras A, Arend M, Vitasse Y, Beierkuhnlein C et al. 2020. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45:86–103
    [Google Scholar]
  138. 138.
    Schuldt B, Leuschner C, Horna V, Moser G, Köhler M et al. 2011. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics. Biogeosciences 8:82179–94
    [Google Scholar]
  139. 139.
    Schulze ED, Hartmann H, Lambert S, Weber U 2020. Folgen von Spätfrösten bei der Buche in montanen Lagen. AFZ Wald 18:46–48
    [Google Scholar]
  140. 140.
    Senf C, Buras A, Zang CS, Rammig A, Seidl R 2020. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11:16200
    [Google Scholar]
  141. 141.
    Senf C, Seidl R. 2021. Storm and fire disturbances in Europe: distribution and trends. Glob. Change Biol. 27:153605–19
    [Google Scholar]
  142. 142.
    Simard M, Pinto N, Fisher JB, Baccini A. 2011. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 116:G4G04021
    [Google Scholar]
  143. 143.
    Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M et al. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Change Biol. 14:2015–39
    [Google Scholar]
  144. 144.
    Smith B, Wårlind D, Arneth A, Hickler T, Leadley P et al. 2014. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11:72027–54
    [Google Scholar]
  145. 145.
    Sousa TR, Schietti J, Coelho de Souza F, Esquivel-Muelbert A, Ribeiro IO et al. 2020. Palms and trees resist extreme drought in Amazon forests with shallow water tables. J. Ecol. 108:52070–82
    [Google Scholar]
  146. 146.
    Steel E, Fontaine JB, Ruthrof KX, Burgess TI, Hardy GESJ. 2019. Changes in structure of over- and midstory tree species in a Mediterranean-type forest after an extreme drought-associated heatwave. Austral. Ecol. 44:1438–50
    [Google Scholar]
  147. 147.
    Stephenson NL, Das AJ, Ampersee NJ, Bulaon BM, Yee JL. 2019. Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 107:52383–401
    [Google Scholar]
  148. 148.
    Stephenson NL, Das AJ, Ampersee NJ, Cahill KG, Caprio AC et al. 2018. Patterns and correlates of giant sequoia foliage dieback during California's 2012–2016 hotter drought. For. Ecol. Manag. 419–420:268–78
    [Google Scholar]
  149. 149.
    Swetnam TW, Allen CD, Betancourt JL 1999. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9:41189–206
    [Google Scholar]
  150. 150.
    Swetnam TW, Betancourt JL. 1998. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J. Clim. 11:123128–47
    [Google Scholar]
  151. 151.
    Tramblay Y, Koutroulis A, Samaniego L, Vicente-Serrano SM, Volaire F et al. 2020. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci. Rev. 210:103348
    [Google Scholar]
  152. 152.
    Trugman AT, Anderegg LDL, Anderegg WRL, Das AJ, Stephenson NL. 2021. Why is tree drought mortality so hard to predict?. Trends Ecol. Evol. 36:6520–32
    [Google Scholar]
  153. 153.
    Turco M, von Hardenberg J, AghaKouchak A, Llasat MC, Provenzale A, Trigo RM 2017. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci. Rep. 7:181
    [Google Scholar]
  154. 154.
    Tyree MT, Sperry JS. 1989. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:19–36
    [Google Scholar]
  155. 155.
    van Mantgem PJ, Stephenson NL, Keifer M, Keeley J. 2004. Effects of an introduced pathogen and fire exclusion on the demography of sugar pine. Ecol. Appl. 14:51590–602
    [Google Scholar]
  156. 156.
    Vilà-Cabrera A, Martínez-Vilalta J, Galiano L, Retana J 2013. Patterns of forest decline and regeneration across Scots pine populations. Ecosystems 16:2323–35
    [Google Scholar]
  157. 157.
    Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K et al. 2021. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol 229:52413–45
    [Google Scholar]
  158. 158.
    Wallace J, Li M, Traylen A 2009. Forest vegetation monitoring and runoff in water supply catchments affected by drying climate. 2009 IEEE International Geoscience and Remote Sensing Symposium939–42 New York: IEEE
    [Google Scholar]
  159. 159.
    Warren JM, Norby RJ, Wullschleger SD. 2011. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol 31:2117–30
    [Google Scholar]
  160. 160.
    Wermelinger B, Seifert M. 1998. Analysis of the temperature dependent development of the spruce bark beetle Ips typographus (L) (Col., Scolytidae). J. Appl. Entomol. 122:1–5185–91
    [Google Scholar]
  161. 161.
    Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA et al. 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3:3292–97
    [Google Scholar]
  162. 162.
    Williams AP, Cook ER, Smerdon JE, Cook BI, Abatzoglou JT et al. 2020. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368:6488314–18
    [Google Scholar]
  163. 163.
    Wright SJ, Carrasco C, Calderón O, Paton S 1999. The El Niño Southern Oscillation, variable fruit production, and famine in a tropical forest. Ecology 80:51632–47
    [Google Scholar]
  164. 164.
    Xu C, McDowell NG, Fisher RA, Wei L, Sevanto S et al. 2019. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9:12948–53
    [Google Scholar]
  165. 165.
    Zarco-Tejada PJ, Hornero A, Hernández-Clemente R, Beck PSA 2018. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery. ISPRS J. Photogramm. Remote Sens. 137:134–48
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-102820-012804
Loading
/content/journals/10.1146/annurev-arplant-102820-012804
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error