1932

Abstract

Temperature is a key environmental cue that influences the distribution and behavior of plants globally. Understanding how plants sense temperature and integrate this information into their development is important to determine how plants adapt to climate change and to apply this knowledge to the breeding of climate-resilient crops. The mechanisms of temperature perception in eukaryotes are only just beginning to be understood, with multiple molecular phenomena with inherent temperature dependencies, such as RNA melting, phytochrome dark reversion, and protein phase change, being exploited by nature to create thermosensory signaling networks. Here, we review recent progress in understanding how temperature sensing in four major pathways in occurs: vernalization, cold stress, thermomorphogenesis, and heat stress. We discuss outstanding questions in the field and the importance of these mechanisms in the context of breeding climate-resilient crops.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102820-102235
2023-05-22
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-102820-102235.html?itemId=/content/journals/10.1146/annurev-arplant-102820-102235&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ai H, Bellstaedt J, Bartusch KS, Eschen-Lippold L, Babben S et al. 2022. Auxin-dependent acceleration of cell division rates regulates root growth at elevated temperature. bioRxiv 2022.06.22.497127. https://doi.org/10.1101/2022.06.22.497127
  2. 2.
    Åkerfelt M, Morimoto RI, Sistonen L. 2010. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11:8545–55
    [Google Scholar]
  3. 3.
    Alexandre CM, Hennig L. 2008. FLC or not FLC: the other side of vernalization. J. Exp. Bot. 59:61127–35
    [Google Scholar]
  4. 4.
    Altaf M, Auger A, Monnet-Saksouk J, Brodeur J, Piquet S et al. 2010. NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly stimulates incorporation of H2A.Z by the SWR1 complex. J. Biol. Chem. 285:2115966–77
    [Google Scholar]
  5. 5.
    Ang L-H, Chattopadhyay S, Wei N, Oyama T, Okada K et al. 1998. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell. 1:2213–22
    [Google Scholar]
  6. 6.
    Argyris J, Truco MJ, Ochoa O, Knapp SJ, Still DW et al. 2005. Quantitative trait loci associated with seed and seedling traits in Lactuca. Theor. Appl. Genet. 111:71365–76
    [Google Scholar]
  7. 7.
    Balazadeh S. 2022. A ‘hot’ cocktail: the multiple layers of thermomemory in plants. Curr. Opin. Plant Biol. 65:102147
    [Google Scholar]
  8. 8.
    Balogh G, Péter M, Glatz A, Gombos I, Török Z et al. 2013. Key role of lipids in heat stress management. FEBS Lett. 587:131970–80
    [Google Scholar]
  9. 9.
    Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C. 2004. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:6970164–67
    [Google Scholar]
  10. 10.
    Bauer D, Vicziaén A, Kircher S, Nobis T, Nitschke R et al. 2004. Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 16:61433–45
    [Google Scholar]
  11. 11.
    Becher I, Andrés-Pons A, Romanov N, Stein F, Schramm M et al. 2018. Pervasive protein thermal stability variation during the cell cycle. Cell 173:61495–507.e18
    [Google Scholar]
  12. 12.
    Bellstaedt J, Trenner J, Lippmann R, Poeschl Y, Zhang X et al. 2019. A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol. 180:2757–66
    [Google Scholar]
  13. 13.
    Berry JA, Raison JK 1981. Responses of macrophytes to temperature. Physiological Plant Ecology I: Responses to the Physical Environment OL Lange, PS Nobel, CB Osmond, H Zeigler 277–338. Berlin: Springer-Verlag
    [Google Scholar]
  14. 14.
    Bischof JC, He X. 2006. Thermal stability of proteins. Ann. N. Y. Acad. Sci. 1066:112–33
    [Google Scholar]
  15. 15.
    Bond DM, Dennis ES, Finnegan EJ. 2009. Hypoxia: a novel function for VIN3. Plant Signal. Behav. 4:8773–76
    [Google Scholar]
  16. 16.
    Box MS, Huang BE, Domijan M, Jaeger KE, Khattak AK et al. 2015. ELF3 controls thermoresponsive growth in Arabidopsis. Curr. Biol. 25:2194–99
    [Google Scholar]
  17. 17.
    Brininger C, Spradlin S, Cobani L, Evilia C. 2018. The more adaptive to change, the more likely you are to survive: protein adaptation in extremophiles. Semin. Cell Dev. Biol. 84:158–69
    [Google Scholar]
  18. 18.
    Burgie ES, Vierstra RD. 2014. Phytochromes: an atomic perspective on photoactivation and signaling. Plant Cell 26:124568–83
    [Google Scholar]
  19. 19.
    Cáceres JF, Kornblihtt AR. 2002. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18:4186–93
    [Google Scholar]
  20. 20.
    Capovilla G, Delhomme N, Collani S, Shutava I, Bezrukov I et al. 2018. PORCUPINE regulates development in response to temperature through alternative splicing. Nat. Plants. 4:8534–39
    [Google Scholar]
  21. 21.
    Capovilla G, Symeonidi E, Wu R, Schmid M. 2017. Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana. J. Exp. Bot. 68:185117–27
    [Google Scholar]
  22. 22.
    Casal JJ. 2013. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 64:403–27
    [Google Scholar]
  23. 23.
    Casal JJ, Balasubramanian S. 2019. Thermomorphogenesis. Annu. Rev. Plant Biol. 70:321–46
    [Google Scholar]
  24. 24.
    Catalá R, Medina J, Salinas J. 2011. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. PNAS 108:3916475–80
    [Google Scholar]
  25. 25.
    Chen D, Lyu M, Kou X, Li J, Yang Z et al. 2022. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. Mol. Cell 82:3015–29.e6
    [Google Scholar]
  26. 26.
    Chen H, Deng J, Cui Q, Chanda B, Henzler-Wildman K. 2021. Mapping temperature-dependent conformational change in the voltage-sensing domain of an engineered heat-activated K+ channel. PNAS 118:14e2017280118
    [Google Scholar]
  27. 27.
    Chen X, Lu L, Mayer KS, Scalf M, Qian S et al. 2016. POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis. eLife 5:e17214
    [Google Scholar]
  28. 28.
    Choi K, Kim J, Hwang H-J, Kim S, Park C et al. 2011. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell 23:1289–303
    [Google Scholar]
  29. 29.
    Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F et al. 2020. An RNA thermoswitch regulates daytime growth in Arabidopsis. Nat. Plants 6:5522–32Shows that temperature-dependent translational enhancement of PIF7 mRNA is mediated by an RNA hairpin.
    [Google Scholar]
  30. 30.
    Coleman-Derr D, Zilberman D 2012. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLOS Genet. 8:10e1002988
    [Google Scholar]
  31. 31.
    Cortijo S, Charoensawan V, Brestovitsky A, Buning R, Ravarani C et al. 2017. Transcriptional regulation of the ambient temperature response by H2A.Z nucleosomes and HSF1 transcription factors in Arabidopsis. Mol. Plant 10:101258–73
    [Google Scholar]
  32. 32.
    Crawford AJ, McLachlan DH, Hetherington AM, Franklin KA. 2012. High temperature exposure increases plant cooling capacity. Curr. Biol. 22:10R396–97
    [Google Scholar]
  33. 33.
    Cui Y, Lu S, Li Z, Cheng J, Hu P et al. 2020. CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 promote tolerance to heat and chilling in rice. Plant Physiol. 183:41794–808
    [Google Scholar]
  34. 34.
    Delker C, Sonntag L, James GV, Janitza P, Ibañez C et al. 2014. The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. Cell Rep. 9:61983–89
    [Google Scholar]
  35. 35.
    Delker C, van Zanten M, Quint M 2017. Thermosensing enlightened. Trends Plant Sci. 22:3185–87
    [Google Scholar]
  36. 36.
    Ding Y, Shi Y, Yang S 2020. Molecular regulation of plant responses to environmental temperatures. Mol. Plant 13:4544–64
    [Google Scholar]
  37. 37.
    Dufour YS, Sneddon MW, Emonet T. 2011. Thermal robustness: lessons from bacterial chemotaxis. Curr. Biol. 21:12R465–68
    [Google Scholar]
  38. 38.
    Emenecker RJ, Holehouse AS, Strader LC. 2021. Biological phase separation and biomolecular condensates in plants. Annu. Rev. Plant Biol. 72:17–46Comprehensively reviews biomolecular condensates in plants.
    [Google Scholar]
  39. 39.
    Ezer D, Jung J-H, Lan H, Biswas S, Gregoire L et al. 2017. The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat. Plants 3:717087
    [Google Scholar]
  40. 40.
    Fankhauser C, Chen M. 2008. Transposing phytochrome into the nucleus. Trends Plant Sci. 13:11596–601
    [Google Scholar]
  41. 41.
    Farewell A, Neidhardt FC. 1998. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J. Bacteriol. 180:4704–10
    [Google Scholar]
  42. 42.
    Finka A, Cuendet AFH, Maathuis FJM, Saidi Y, Goloubinoff P. 2012. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell 24:83333–48
    [Google Scholar]
  43. 43.
    Fiorucci A-S, Galvão VC, Ince , Boccaccini A, Goyal A et al. 2020. PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings. New Phytol. 226:150–58
    [Google Scholar]
  44. 44.
    Franklin KA. 2009. Light and temperature signal crosstalk in plant development. Curr. Opin. Plant Biol. 12:163–68
    [Google Scholar]
  45. 45.
    Franklin KA, Whitelam GC. 2007. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat. Genet. 39:111410–13
    [Google Scholar]
  46. 46.
    Gangappa SN, Kumar SV. 2017. DET1 and HY5 control PIF4-mediated thermosensory elongation growth through distinct mechanisms. Cell Rep. 18:2344–51
    [Google Scholar]
  47. 47.
    Gao F, Han X, Wu J, Zheng S, Shang Z et al. 2012. A heat-activated calcium-permeable channel—Arabidopsis cyclic nucleotide-gated ion channel 6—is involved in heat shock responses. Plant J. 70:61056–69
    [Google Scholar]
  48. 48.
    Gendall AR, Levy YY, Wilson A, Dean C 2001. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:4525–35
    [Google Scholar]
  49. 49.
    Golovkin M, Reddy ASN. 1999. An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1-70K protein. J. Biol. Chem. 274:5136428–38
    [Google Scholar]
  50. 50.
    Greb T, Mylne JS, Crevillen P, Geraldo N, An H et al. 2007. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Curr. Biol. 17:173–78
    [Google Scholar]
  51. 51.
    Gu D, Chen C-Y, Zhao M, Zhao L, Duan X et al. 2017. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark. Nucleic Acids Res. 45:127137–50
    [Google Scholar]
  52. 52.
    Guillaume-Schöpfer D, Jaeger KE, Geng F, Doccula FG, Costa A et al. 2020. Ribosomes act as cryosensors in plants. bioRxiv 2020.12.07.414789. https://doi.org/10.1101/2020.12.07.414789
  53. 53.
    Gursoy-Yuzugullu O, Ayrapetov MK, Price BD. 2015. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair. PNAS 112:247507–12
    [Google Scholar]
  54. 54.
    Hahm J, Kim K, Qiu Y, Chen M. 2020. Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat. Commun. 11:11660
    [Google Scholar]
  55. 55.
    Haider S, Iqbal J, Naseer S, Yaseen T, Shaukat M et al. 2021. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. Plant Cell Rep. 40:122247–71
    [Google Scholar]
  56. 56.
    Haltenhof T, Kotte A, De Bortoli F, Schiefer S, Meinke S et al. 2020. A conserved kinase-based body-temperature sensor globally controls alternative splicing and gene expression. Mol. Cell 78:157–69.e4
    [Google Scholar]
  57. 57.
    Han S-H, Park Y-J, Park C-M. 2020. HOS1 activates DNA repair systems to enhance plant thermotolerance. Nat. Plants 6:121439–46
    [Google Scholar]
  58. 58.
    Han X, Yu H, Yuan R, Yang Y, An F, Qin G. 2019. Arabidopsis transcription factor TCP5 controls plant thermomorphogenesis by positively regulating PIF4 activity. iScience 15:611–22
    [Google Scholar]
  59. 59.
    Hayes S, Schachtschabel J, Mishkind M, Munnik T, Arisz SA. 2021. Hot topic: thermosensing in plants. Plant Cell Environ. 44:2018–33
    [Google Scholar]
  60. 60.
    Hemantaranjan A, Patel PK, Singh R, Srivastava AK. 2012. Heat stress responses of wheat and other plants. Advances in Plant Physiology A Hemantaranjan 279–313. Jodhpur, India: Sci. Publ.
    [Google Scholar]
  61. 61.
    Hornitschek P, Lorrain S, Zoete V, Michielin O, Fankhauser C. 2009. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J. 28:243893–902
    [Google Scholar]
  62. 62.
    James AB, Calixto CPG, Tzioutziou NA, Guo W, Zhang R et al. 2018. How does temperature affect splicing events? Isoform switching of splicing factors regulates splicing of LATE ELONGATED HYPOCOTYL (LHY). Plant Cell Environ. 41:71539–50
    [Google Scholar]
  63. 63.
    Jeon J, Kim NY, Kim S, Kang NY, Novák O et al. 2010. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J. Biol. Chem. 285:3023371–86
    [Google Scholar]
  64. 64.
    Jiang B, Shi Y, Peng Y, Jia Y, Yan Y et al. 2020. Cold-induced CBF–PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Mol. Plant 13:6894–906
    [Google Scholar]
  65. 65.
    Jin H, Lin J, Zhu Z. 2020. PIF4 and HOOKLESS1 impinge on common transcriptome and isoform regulation in thermomorphogenesis. Plant Comm. 1:2100034
    [Google Scholar]
  66. 66.
    John S, Olas JJ, Mueller-Roeber B. 2021. Regulation of alternative splicing in response to temperature variation in plants. J. Exp. Bot. 72:186150–63
    [Google Scholar]
  67. 67.
    Jung J-H, Barbosa AD, Hutin S, Kumita JR, Gao M et al. 2020. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585:256–60Shows that a prion-like domain–containing protein forms condensates in response to temperature fluctuations.
    [Google Scholar]
  68. 68.
    Jung J-H, Domijan M, Klose C, Biswas S, Ezer D et al. 2016. Phytochromes function as thermosensors in Arabidopsis. Science 354:6314886–89Demonstrates that the rate of phytochrome B inactivation is proportional to temperature in the dark.
    [Google Scholar]
  69. 69.
    Karayekov E, Sellaro R, Legris M, Yanovsky MJ, Casal JJ. 2013. Heat shock–induced fluctuations in clock and light signaling enhance phytochrome B–mediated Arabidopsis deetiolation. Plant Cell 25:82892–906
    [Google Scholar]
  70. 70.
    Kashio M, Tominaga M. 2022. TRP channels in thermosensation. Curr. Opin. Neurobiol. 75:102591
    [Google Scholar]
  71. 71.
    Kerbler SM, Taylor NL, Millar AH. 2019. Cold sensitivity of mitochondrial ATP synthase restricts oxidative phosphorylation in Arabidopsis thaliana. New Phytol. 221:41776–88
    [Google Scholar]
  72. 72.
    Khan Z, Shahwar D 2020. Role of heat shock proteins (HSPs) and heat stress tolerance in crop plants. Sustainable Agriculture in the Era of Climate Change R Roychowdhury, S Choudhury, M Hasanuzzaman, S Srivastava 211–34. Cham: Springer Int. Publ. , 1st ed..
    [Google Scholar]
  73. 73.
    Kim H-J, Kim Y-K, Park J-Y, Kim J 2002. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J. 29:6693–704
    [Google Scholar]
  74. 74.
    Kim J-H, Lee H-J, Jung J-H, Lee S, Park C-M 2017. HOS1 facilitates the phytochrome B-mediated inhibition of PIF4 function during hypocotyl growth in Arabidopsis. Mol. Plant. 10:2274–84
    [Google Scholar]
  75. 75.
    Kim YJ, Wang R, Gao L, Li D, Xu C et al. 2016. POWERDRESS and HDA9 interact and promote histone H3 deacetylation at specific genomic sites in Arabidopsis. PNAS 113:5114858–63
    [Google Scholar]
  76. 76.
    Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K et al. 1999. Light quality–dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11:81445–56
    [Google Scholar]
  77. 77.
    Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP et al. 2009. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 19:5408–13
    [Google Scholar]
  78. 78.
    Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K-D. 2007. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10:3310–16
    [Google Scholar]
  79. 79.
    Kudla J, Becker D, Grill E, Hedrich R, Hippler M et al. 2018. Advances and current challenges in calcium signaling. New Phytol. 218:2414–31
    [Google Scholar]
  80. 80.
    Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E et al. 2012. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484:7393242–45
    [Google Scholar]
  81. 81.
    Lancaster LT, Humphreys AM. 2020. Global variation in the thermal tolerances of plants. PNAS 117:2413580–87
    [Google Scholar]
  82. 82.
    Lau OS, Deng XW. 2012. The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci. 17:10584–93
    [Google Scholar]
  83. 83.
    Lee JH, Ryu H-S, Chung KS, Posé D, Kim S et al. 2013. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 342:628–32
    [Google Scholar]
  84. 84.
    Lee S, Paik I, Huq E. 2020. SPAs promote thermomorphogenesis by regulating the phyB-PIF4 module in Arabidopsis. Development 147:19dev189233
    [Google Scholar]
  85. 85.
    Legris M, Klose C, Burgie ES, Rojas CCR, Neme M et al. 2016. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:6314897–900Shows that the thermal reversion rate of phytochrome B is accelerated at warm temperatures.
    [Google Scholar]
  86. 86.
    Leivar P, Monte E, Al-Sady B, Carle C, Storer A et al. 2008. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20:2337–52
    [Google Scholar]
  87. 87.
    Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C. 2002. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297:5579243–46
    [Google Scholar]
  88. 88.
    Lin J, Shi J, Zhang Z, Zhong B, Zhu Z. 2022. Plant AFC2 kinase desensitizes thermomorphogenesis through modulation of alternative splicing. iScience 25:4104051
    [Google Scholar]
  89. 89.
    Liu Q, Ding Y, Shi Y, Ma L, Wang Y et al. 2021. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. EMBO J. 40:2e104559
    [Google Scholar]
  90. 90.
    Liu X, Chen C-Y, Wang K-C, Luo M, Tai R et al. 2013. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell 25:41258–73
    [Google Scholar]
  91. 91.
    Liu Z, Jia Y, Ding Y, Shi Y, Li Z et al. 2017. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Mol. Cell 66:1117–28.e5
    [Google Scholar]
  92. 92.
    Ma Y, Dai X, Xu Y, Luo W, Zheng X et al. 2015. COLD1 confers chilling tolerance in rice. Cell 160:61209–21
    [Google Scholar]
  93. 93.
    Martinière A, Shvedunova M, Thomson AJW, Evans NH, Penfield S et al. 2011. Homeostasis of plasma membrane viscosity in fluctuating temperatures. New Phytol. 192:328–37
    [Google Scholar]
  94. 94.
    Mateus A, Bobonis J, Kurzawa N, Stein F, Helm D et al. 2018. Thermal proteome profiling in bacteria: probing protein state in vivo. Mol. Syst. Biol. 14:7e8242
    [Google Scholar]
  95. 95.
    Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J. 1999. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol. 119:463–70
    [Google Scholar]
  96. 96.
    Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM. 2005. Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol. 137:1149–56
    [Google Scholar]
  97. 97.
    Murcia G, Enderle B, Hiltbrunner A, Casal JJ. 2021. Phytochrome B and PCH1 protein dynamics store night temperature information. Plant J. 105:122–33
    [Google Scholar]
  98. 98.
    Ni W, Xu S-L, Tepperman JM, Stanley DJ, Maltby DA et al. 2014. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344:61881160–64
    [Google Scholar]
  99. 99.
    Niu Y, Xiang Y. 2018. An overview of biomembrane functions in plant responses to high-temperature stress. Front. Plant Sci. 9:915
    [Google Scholar]
  100. 100.
    Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T et al. 2011. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:7356398–402
    [Google Scholar]
  101. 101.
    Olas JJ, Apelt F, Annunziata MG, John S, Richard SI et al. 2021. Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. Mol. Plant 14:91508–24
    [Google Scholar]
  102. 102.
    Osterlund MT, Hardtke CS, Wei N, Deng XW. 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:6785462–66
    [Google Scholar]
  103. 103.
    Pajoro A, Severing E, Angenent GC, Immink RGH. 2017. Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. Genome Biol. 18:1102
    [Google Scholar]
  104. 104.
    Park Y-J, Lee H-J, Gil K-E, Kim JY, Lee J-H et al. 2019. Developmental programming of thermonastic leaf movement. Plant Physiol. 180:21185–97
    [Google Scholar]
  105. 105.
    Park Y-J, Lee H-J, Ha J-H, Kim JY, Park C-M. 2017. COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytol. 215:1269–80
    [Google Scholar]
  106. 106.
    Penfield S. 2008. Temperature perception and signal transduction in plants. New Phytol. 179:3615–28
    [Google Scholar]
  107. 107.
    Posé D, Verhage L, Ott F, Yant L, Mathieu J et al. 2013. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503:7476414–17
    [Google Scholar]
  108. 108.
    Qiu Y, Li M, Kim RJ-A, Moore CM, Chen M. 2019. Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat. Commun. 10:1140Demonstrates that phytochrome B plays an equally critical role in temperature sensing during the day.
    [Google Scholar]
  109. 109.
    Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D. 1995. Phytochromes: photosensory perception and signal transduction. Science 268:5211675–80
    [Google Scholar]
  110. 110.
    Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, van Zanten M. 2016. Molecular and genetic control of plant thermomorphogenesis. Nat. Plants 2:115190
    [Google Scholar]
  111. 111.
    Ranjan A, Mizuguchi G, FitzGerald PC, Wei D, Wang F et al. 2013. Nucleosome-free region dominates histone acetylation in targeting SWR1 to promoters for H2A.Z replacement. Cell 154:61232–45
    [Google Scholar]
  112. 112.
    Rockwell NC, Su Y-S, Lagarias JC. 2006. Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57:837–58
    [Google Scholar]
  113. 113.
    Ruelland E, Vaultier M-N, Zachowski A, Hurry V. 2009. Cold signalling and cold acclimation in plants. Adv. Bot. Res. 49:35–150
    [Google Scholar]
  114. 114.
    Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG et al. 2009. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:92829–43
    [Google Scholar]
  115. 115.
    Searle I, He Y, Turck F, Vincent C, Fornara F et al. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20:7898–912
    [Google Scholar]
  116. 116.
    Seydel C, Kitashova A, Fürtauer L, Nägele T. 2022. Temperature-induced dynamics of plant carbohydrate metabolism. Physiol. Plant. 174:1e13602
    [Google Scholar]
  117. 117.
    Sharma N, Geuten K, Giri BS, Varma A. 2020. The molecular mechanism of vernalization in Arabidopsis and cereals: role of Flowering Locus C and its homologs. Physiol. Plant. 170:3373–83
    [Google Scholar]
  118. 118.
    Sheldon CC, Finnegan EJ, Dennis ES, Peacock WJ. 2006. Quantitative effects of vernalization on FLC and SOC1 expression. Plant J. 45:6871–83
    [Google Scholar]
  119. 119.
    Shen Y, Lei T, Cui X, Liu X, Zhou S et al. 2019. Arabidopsis histone deacetylase HDA15 directly represses plant response to elevated ambient temperature. Plant J. 100:5991–1006
    [Google Scholar]
  120. 120.
    Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M et al. 1998. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys. Res. Commun. 250:161–70
    [Google Scholar]
  121. 121.
    Silva CS, Nayak A, Lai X, Hutin S, Hugouvieux V et al. 2020. Molecular mechanisms of Evening Complex activity in Arabidopsis. PNAS 117:126901–9Shows that the full EC acts as a direct thermosensor with stronger binding in the cold.
    [Google Scholar]
  122. 122.
    Soitamo AJ, Piippo M, Allahverdiyeva Y, Battchikova N, Aro E-M. 2008. Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol. 8:13
    [Google Scholar]
  123. 123.
    Sureshkumar S, Dent C, Seleznev A, Tasset C, Balasubramanian S. 2016. Nonsense-mediated mRNA decay modulates FLM-dependent thermosensory flowering response in Arabidopsis. Nat. Plants 2:516055
    [Google Scholar]
  124. 124.
    Susila H, Jurić S, Liu L, Gawarecka K, Chung KS et al. 2021. Florigen sequestration in cellular membranes modulates temperature-responsive flowering. Science 373:65591137–42Demonstrates that low temperatures facilitate FT sequestration in cellular membranes, thus reducing florigen availability and delaying flowering.
    [Google Scholar]
  125. 125.
    Tasset C, Yadav AS, Sureshkumar S, Singh R, van der Woude L et al. 2018. POWERDRESS-mediated histone deacetylation is essential for thermomorphogenesis in Arabidopsis thaliana. PLOS Genet. 14:3e1007280
    [Google Scholar]
  126. 126.
    Thiel G, Lesch A, Rubil S, Backes TM, Rössler OG. 2018. Regulation of gene transcription following stimulation of transient receptor potential (TRP) channels. Int. Rev. Cell Mol. Biol. 335:167–89
    [Google Scholar]
  127. 127.
    Thomas L, Marondedze C, Ederli L, Pasqualini S, Gehring C. 2013. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana. J. Proteom. 83:47–59
    [Google Scholar]
  128. 128.
    Van Buskirk EK, Reddy AK, Nagatani A, Chen M. 2014. Photobody localization of phytochrome B is tightly correlated with prolonged and light-dependent inhibition of hypocotyl elongation in the dark. Plant Physiol. 165:2595–607
    [Google Scholar]
  129. 129.
    van der Woude LC, Giorgio P, Snoek BL, van Hoogdalem M, Novák O et al. 2019. HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion. PNAS 116:5025343–54
    [Google Scholar]
  130. 130.
    Vasseur F, Pantin F, Vile D. 2011. Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. Plant. Cell Environ. 34:91563–76
    [Google Scholar]
  131. 131.
    Viatchenko-Karpinski V, Ling J, Gu JG 2018. Characterization of temperature-sensitive leak K+ currents and expression of TRAAK, TREK-1, and TREK2 channels in dorsal root ganglion neurons of rats. Mol. Brain 11:40
    [Google Scholar]
  132. 132.
    Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B. 2004. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:7001748–54
    [Google Scholar]
  133. 133.
    von Arnim AG, Deng X-W. 1994. Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79:61035–45
    [Google Scholar]
  134. 134.
    Vu LD, Gevaert K, De Smet I. 2019. Feeling the heat: searching for plant thermosensors. Trends Plant Sci. 24:3210–19Proposes a set of selection criteria for the identification of plant thermosensors.
    [Google Scholar]
  135. 135.
    Vu LD, Xu X, Zhu T, Pan L, van Zanten M et al. 2021. The membrane-localized protein kinase MAP4K4/TOT3 regulates thermomorphogenesis. Nat. Commun. 12:12842
    [Google Scholar]
  136. 136.
    Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M 2016. HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat. Commun. 7:110269
    [Google Scholar]
  137. 137.
    Wang X, Ma X, Wang H, Li B, Clark G et al. 2015. Proteomic study of microsomal proteins reveals a key role for Arabidopsis annexin 1 in mediating heat stress-induced increase in intracellular calcium levels. Mol. Cell. Proteom. 14:3686–94
    [Google Scholar]
  138. 138.
    Watanabe S, Radman-Livaja M, Rando OJ, Peterson CL. 2013. A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 340:6129195–99
    [Google Scholar]
  139. 139.
    Willige BC, Zander M, Yoo CY, Phan A, Garza RM et al. 2021. PHYTOCHROME-INTERACTING FACTORs trigger environmentally responsive chromatin dynamics in plants. Nat. Genet. 53:7955–61
    [Google Scholar]
  140. 140.
    Wood CC, Robertson M, Tanner G, Peacock WJ, Dennis ES, Helliwell CA. 2006. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. PNAS 103:3914631–36
    [Google Scholar]
  141. 141.
    Xu S, Chong K. 2018. Remembering winter through vernalisation. Nat. Plants 4:12997–1009
    [Google Scholar]
  142. 142.
    Xue M, Zhang H, Zhao F, Zhao T, Li H, Jiang D. 2021. The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis. Mol. Plant 14:1799–813
    [Google Scholar]
  143. 143.
    Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani A. 1999. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J. Cell Biol. 145:3437–45
    [Google Scholar]
  144. 144.
    Yamaguchi-Shinozaki K, Shinozaki K 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–64
    [Google Scholar]
  145. 145.
    Yang H, Zhao Y, Chen N, Liu Y, Yang S et al. 2021. A new adenylyl cyclase, putative disease-resistance RPP13-like protein 3, participates in abscisic acid-mediated resistance to heat stress in maize. J. Exp. Bot. 72:2283–301
    [Google Scholar]
  146. 146.
    Yang T, Ali GS, Yang L, Du L, Reddy ASN, Poovaiah BW. 2010. Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants. Plant Signal. Behav. 5:8991–94
    [Google Scholar]
  147. 147.
    Yu Y, Deng Y, Reed SH, Millar CB, Waters R. 2013. Histone variant Htz1 promotes histone H3 acetylation to enhance nucleotide excision repair in Htz1 nucleosomes. Nucleic Acids Res. 41:199006–19
    [Google Scholar]
  148. 148.
    Zhang B, Holmlund M, Lorrain S, Norberg M, Bakó L et al. 2017. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. eLife 6:e26759
    [Google Scholar]
  149. 149.
    Zhao C, Liu B, Piao S, Wang X, Lobell DB et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. PNAS 114:359326–31
    [Google Scholar]
  150. 150.
    Zhao Y, Antoniou-Kourounioti RL, Calder G, Dean C, Howard M. 2020. Temperature-dependent growth contributes to long-term cold sensing. Nature 583:7818825–29
    [Google Scholar]
  151. 151.
    Zheng X, Krakowiak J, Patel N, Beyzavi A, Ezike J et al. 2016. Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. eLife 5:e18638
    [Google Scholar]
  152. 152.
    Zhu J-K. 2016. Abiotic stress signaling and responses in plants. Cell 167:2313–24
    [Google Scholar]
  153. 153.
    Zhu P, Lister C, Dean C. 2021. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature 599:7886657–61Shows that cold promotes the formation of FRI condensates that do not colocalize with an active FLC locus.
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-102820-102235
Loading
/content/journals/10.1146/annurev-arplant-102820-102235
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error