1932

Abstract

H+-ATPases, including the phosphorylated intermediate–type (P-type) and vacuolar-type (V-type) H+-ATPases, are important ATP-driven proton pumps that generate membrane potential and provide proton motive force for secondary active transport. P- and V-type H+-ATPases have distinct structures and subcellular localizations and play various roles in growth and stress responses. A P-type H+-ATPase is mainly regulated at the posttranslational level by phosphorylation and dephosphorylation of residues in its autoinhibitory C terminus. The expression and activity of both P- and V-type H+-ATPases are highly regulated by hormones and environmental cues. In this review, we summarize the recent advances in understanding of the evolution, regulation, and physiological roles of P- and V-type H+-ATPases, which coordinate and are involved in plant growth and stress adaptation. Understanding the different roles and the regulatory mechanisms of P- and V-type H+-ATPases provides a new perspective for improving plant growth and stress tolerance by modulating the activity of H+-ATPases, which will mitigate the increasing environmental stress conditions associated with ongoing global climate change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102820-114551
2022-05-20
2024-11-08
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-102820-114551.html?itemId=/content/journals/10.1146/annurev-arplant-102820-114551&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adem GD, Roy SJ, Huang Y, Chen Z-H, Wang F et al. 2017. Expressing Arabidopsis thaliana V-ATPase subunit C in barley (Hordeum vulgare) improves plant performance under saline condition by enabling better osmotic adjustment. Funct. Plant Biol. 44:1147–59
    [Google Scholar]
  2. 2.
    Ando E, Kinoshita T 2018. Red light-induced phosphorylation of plasma membrane H+-ATPase in stomatal guard cells. Plant Physiol 178:838–49
    [Google Scholar]
  3. 3.
    Appelhagen I, Nordholt N, Seidel T, Spelt K, Koes R et al. 2015. TRANSPARENT TESTA 13 is a tonoplast P3A-ATPase required for vacuolar deposition of proanthocyanidins in Arabidopsis thaliana seeds. Plant J 82:840–49
    [Google Scholar]
  4. 4.
    Axelsen BK, Palmgren GM. 1998. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46:84–101
    [Google Scholar]
  5. 5.
    Baisakh N, RamanaRao MV, Rajasekaran K, Subudhi P, Janda J et al. 2012. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel. Plant Biotechnol. J. 10:453–64
    [Google Scholar]
  6. 6.
    Bak G, Lee E-J, Lee Y, Kato M, Segami S et al. 2013. Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate. Plant Cell 25:2202–16
    [Google Scholar]
  7. 7.
    Basirat M, Mousavi SM, Abbaszadeh S, Ebrahimi M, Zarebanadkouki M 2019. The rhizosheath: a potential root trait helping plants to tolerate drought stress. Plant Soil 445:565–75
    [Google Scholar]
  8. 8.
    Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H et al. 2007. SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol. Cell. Biol. 27:7781–90
    [Google Scholar]
  9. 9.
    Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG et al. 2003. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–28
    [Google Scholar]
  10. 10.
    Beyenbach KW, Wieczorek H. 2006. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J. Exp. Biol. 209:577–89
    [Google Scholar]
  11. 11.
    Bjørk PK, Rasmussen SA, Gjetting SK, Havshøi NW, Petersen TI et al. 2020. Tenuazonic acid from Stemphylium loti inhibits the plant plasma membrane H+-ATPase by a mechanism involving the C-terminal regulatory domain. New Phytol 226:770–84
    [Google Scholar]
  12. 12.
    Brüx A, Liu T-Y, Krebs M, Stierhof Y-D, Lohmann JU et al. 2008. Reduced V-ATPase activity in the trans-Golgi network causes oxylipin-dependent hypocotyl growth inhibition in Arabidopsis. Plant Cell 20:1088–100
    [Google Scholar]
  13. 13.
    Cao Y, Zhang M, Liang X, Li F, Shi Y et al. 2020. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nat. Commun. 11:186
    [Google Scholar]
  14. 14.
    Carpaneto A, Boccaccio A, Lagostena L, Di Zanni E, Scholz-Starke J. 2017. The signaling lipid phosphatidylinositol-3,5-bisphosphate targets plant CLC-a anion/H+ exchange activity. EMBO Rep 18:1100–7
    [Google Scholar]
  15. 15.
    Certal AC, Almeida RB, Carvalho LM, Wong E, Moreno N et al. 2008. Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. Plant Cell 20:614–34
    [Google Scholar]
  16. 16.
    Chang C, Hu Y, Sun S, Zhu Y, Ma G, Xu G 2009. Proton pump OsA8 is linked to phosphorus uptake and translocation in rice. J. Exp. Bot. 60:557–65
    [Google Scholar]
  17. 17.
    Chang J, Li X, Fu W, Wang J, Yong Y et al. 2019. Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Res 29:984–93
    [Google Scholar]
  18. 18.
    Chen Q, Kan Q, Wang P, Yu W, Yu Y et al. 2015. Phosphorylation and interaction with the 14-3-3 protein of the plasma membrane H+-ATPase are involved in the regulation of magnesium-mediated increases in aluminum-induced citrate exudation in broad bean (Vicia faba. L). Plant Cell Physiol 56:1144–53
    [Google Scholar]
  19. 19.
    Cheng N-H, Pittman JK, Shigaki T, Lachmansingh J, LeClere S et al. 2005. Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiol 138:2048–60
    [Google Scholar]
  20. 20.
    Cho Y-H, Yoo S-D, Sheen J. 2006. Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–89
    [Google Scholar]
  21. 21.
    Clague MJ, Urbé S, Aniento F, Gruenberg J 1994. Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J. Biol. Chem. 269:21–24
    [Google Scholar]
  22. 22.
    De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S et al. 2006. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–42
    [Google Scholar]
  23. 23.
    de Vlaming P, Schram AW, Wiering H. 1983. Genes affecting flower colour and pH of flower limb homogenates in Petunia hybrida. Theor. Appl. Genet. 66:271–78
    [Google Scholar]
  24. 24.
    Dettmer J, Hong-Hermesdorf A, Stierhof Y-D, Schumacher K. 2006. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–30
    [Google Scholar]
  25. 25.
    Dettmer J, Liu T-Y, Schumacher K. 2010. Functional analysis of Arabidopsis V-ATPase subunit VHA-E isoforms. Eur. J. Cell Biol. 89:152–56
    [Google Scholar]
  26. 26.
    Dettmer J, Schubert D, Calvo-Weimar O, Stierhof Y-D, Schmidt R, Schumacher K. 2005. Essential role of the V-ATPase in male gametophyte development. Plant J 41:117–24
    [Google Scholar]
  27. 27.
    DeWitt ND, Sussman MR. 1995. Immunocytological localization of an epitope-tagged plasma membrane proton pump (H+-ATPase) in phloem companion cells. Plant Cell 7:2053–67
    [Google Scholar]
  28. 28.
    Falhof J, Pedersen JT, Fuglsang AT, Palmgren M. 2016. Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol. Plant 9:323–37
    [Google Scholar]
  29. 29.
    Faraco M, Li Y, Li S, Spelt C, Di Sansebastiano GP et al. 2017. A tonoplast P3B-ATPase mediates fusion of two types of vacuoles in petal cells. Cell Rep 19:2413–22
    [Google Scholar]
  30. 30.
    Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A et al. 2014. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Rep 6:32–43
    [Google Scholar]
  31. 31.
    Fendrych M, Leung J, Friml J. 2016. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 5:e19048
    [Google Scholar]
  32. 32.
    Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C et al. 2007. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19:1617–34
    [Google Scholar]
  33. 33.
    Fuglsang AT, Kristensen A, Cuin TA, Schulze WX, Persson J et al. 2014. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane. Plant J 80:951–64
    [Google Scholar]
  34. 34.
    Fuglsang AT, Visconti S, Drumm K, Jahn T, Stensballe A et al. 1999. Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr946-Thr-Val and requires phosphorylation of Thr947. J. Biol. Chem. 274:36774–80
    [Google Scholar]
  35. 35.
    Gaxiola RA, Palmgren MG, Schumacher K. 2007. Plant proton pumps. FEBS Lett 581:2204–14
    [Google Scholar]
  36. 36.
    Gévaudant F, Duby G, von Stedingk E, Zhao R, Morsomme P, Boutry M 2007. Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiol 144:1763–76
    [Google Scholar]
  37. 37.
    Gjetting SK, Mahmood K, Shabala L, Kristensen A, Shabala S et al. 2020. Evidence for multiple receptors mediating RALF-triggered Ca2+ signaling and proton pump inhibition. Plant J. 104:433–46
    [Google Scholar]
  38. 38.
    Golldack D, Dietz K-J. 2001. Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol 125:1643–54
    [Google Scholar]
  39. 39.
    Grunwald Y, Wigoda N, Sade N, Yaaran A, Torne T et al. 2021. Arabidopsis leaf hydraulic conductance is regulated by xylem sap pH, controlled, in turn, by a P-type H+-ATPase of vascular bundle sheath cells. Plant J 106:301–13
    [Google Scholar]
  40. 40.
    Hager A. 2003. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J. Plant Res. 116:483–505
    [Google Scholar]
  41. 41.
    Hager A, Debus G, Edel HG, Stransky H, Serrano R. 1991. Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane H+-ATPase. Planta 185:527–37
    [Google Scholar]
  42. 42.
    Han X, Yang Y, Wu Y, Liu X, Lei X, Guo Y 2017. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-ATPase activity in Arabidopsis. J. Exp. Bot. 68:2951–62
    [Google Scholar]
  43. 43.
    Haruta M, Gray WM, Sussman MR. 2015. Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation. Curr. Opin. Plant Biol. 28:68–75
    [Google Scholar]
  44. 44.
    Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR. 2014. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–11
    [Google Scholar]
  45. 45.
    Hashimoto-Sugimoto M, Higaki T, Yaeno T, Nagami A, Irie M et al. 2013. A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses. Nat. Commun. 4:2215
    [Google Scholar]
  46. 46.
    Hayashi M, Inoue S, Takahashi K, Kinoshita T. 2011. Immunohistochemical detection of blue light-induced phosphorylation of the plasma membrane H+-ATPase in stomatal guard cells. Plant Cell Physiol 52:1238–48
    [Google Scholar]
  47. 47.
    Hayashi Y, Takahashi K, Inoue S, Kinoshita T. 2014. Abscisic acid suppresses hypocotyl elongation by dephosphorylating plasma membrane H+-ATPase in Arabidopsis thaliana. Plant Cell Physiol 55:845–53
    [Google Scholar]
  48. 48.
    Hoffmann RD, Olsen LI, Ezike CV, Pedersen JT, Manstretta R et al. 2019. Roles of plasma membrane proton ATPases AHA2 and AHA7 in normal growth of roots and root hairs in Arabidopsis thaliana. Physiol. Plant. 166:848–61
    [Google Scholar]
  49. 49.
    Hoffmann RD, Portes MT, Olsen LI, Damineli DSC, Hayashi M et al. 2020. Plasma membrane H+-ATPases sustain pollen tube growth and fertilization. Nat. Commun. 11:2395Identifies three AHAs that regulate pollen tube growth and fertilization by spatiotemporally maintaining cytosolic pH and plasma membrane hyperpolarization.
    [Google Scholar]
  50. 50.
    Holzheu P, Krebs M, Larasati C, Schumacher K, Kummer U. 2021. An integrative view on vacuolar pH homeostasis in Arabidopsis thaliana: combining mathematical modeling and experimentation. Plant J. 106:1541–56
    [Google Scholar]
  51. 51.
    Hong-Hermesdorf A, Brüx A, Grüber A, Grüber G, Schumacher K. 2006. A WNK kinase binds and phosphorylates V-ATPase subunit C. FEBS Lett 580:932–39
    [Google Scholar]
  52. 52.
    Hosotani S, Yamauchi S, Kobayashi H, Fuji S, Koya S et al. 2021. A BLUS1 kinase signal and a decrease in intercellular CO2 concentration are necessary for stomatal opening in response to blue light. Plant Cell 33:1813–27
    [Google Scholar]
  53. 53.
    Inoue S-I, Kinoshita T. 2017. Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. Plant Physiol 174:531–38
    [Google Scholar]
  54. 54.
    Inoue S-I, Kinoshita T, Matsumoto M, Nakayama KI, Doi M, Shimazaki K-I. 2008. Blue light-induced autophosphorylation of phototropin is a primary step for signaling. PNAS 105:5626–31
    [Google Scholar]
  55. 55.
    Jahn T, Fuglsang AT, Olsson A, Brüntrup IM, Collinge DB et al. 1997. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H+-ATPase. Plant Cell 9:1805–14
    [Google Scholar]
  56. 56.
    Kabała K, Janicka-Russak M, Kłobus G. 2010. Different responses of tonoplast proton pumps in cucumber roots to cadmium and copper. J. Plant Physiol. 167:1328–35
    [Google Scholar]
  57. 57.
    Kabała K, Zboińska M, Głowiak D, Reda M, Jakubowska D, Janicka M 2019. Interaction between the signaling molecules hydrogen sulfide and hydrogen peroxide and their role in vacuolar H+-ATPase regulation in cadmium-stressed cucumber roots. Physiol. Plant. 166:688–704
    [Google Scholar]
  58. 58.
    Kaundal A, Ramu VS, Oh S, Lee S, Pant B et al. 2017. GENERAL CONTROL NONREPRESSIBLE4 degrades 14-3-3 and the RIN4 complex to regulate stomatal aperture with implications on nonhost disease resistance and drought tolerance. Plant Cell 29:2233–48
    [Google Scholar]
  59. 59.
    Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K. 2001. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–60
    [Google Scholar]
  60. 60.
    Kinoshita T, Shimazaki K. 1999. Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J 18:5548–58
    [Google Scholar]
  61. 61.
    Klychnikov OI, Li KW, Lill H, de Boer AH. 2007. The V-ATPase from etiolated barley (Hordeum vulgare L.) shoots is activated by blue light and interacts with 14-3-3 proteins. J. Exp. Bot. 58:1013–23
    [Google Scholar]
  62. 62.
    Krajinski F, Courty PE, Sieh D, Franken P, Zhang H et al. 2014. The H+-ATPase HA1 of Medicago truncatula is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis. Plant Cell 26:1808–17
    [Google Scholar]
  63. 63.
    Krebs M, Beyhl D, Görlich E, Al-Rasheid KA, Marten I et al. 2010. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. PNAS 107:3251–56
    [Google Scholar]
  64. 64.
    Kriegel A, Andrés Z, Medzihradszky A, Krüger F, Scholl S et al. 2015. Job sharing in the endomembrane system: Vacuolar acidification requires the combined activity of V-ATPase and V-PPase. Plant Cell 27:3383–96
    [Google Scholar]
  65. 65.
    Kumari A, Chetelat A, Nguyen CT, Farmer EE. 2019. Arabidopsis H+-ATPase AHA1 controls slow wave potential duration and wound-response jasmonate pathway activation. PNAS 116:20226–31
    [Google Scholar]
  66. 66.
    Lee D, Bourdais G, Yu G, Robatzek S, Coaker G 2015. Phosphorylation of the plant immune regulator RPM1-INTERACTING PROTEIN4 enhances plant plasma membrane H+-ATPase activity and inhibits flagellin-triggered immune responses in Arabidopsis. Plant Cell 27:2042–56
    [Google Scholar]
  67. 67.
    Li L, Verstraeten I, Roosjen M, Takahashi K, Rodriguez L et al. 2021. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature 599:273–77
    [Google Scholar]
  68. 68.
    Lin W, Zhou X, Tang W, Takahashi K, Pan X et al. 2021. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature 599:278–82
    [Google Scholar]
  69. 69.
    Liu J, Chen J, Xie K, Tian Y, Yan A et al. 2020. A mycorrhiza-specific H+-ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. Plant Cell Environ 43:1069–83
    [Google Scholar]
  70. 70.
    Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G. 2009. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLOS Biol 7:e1000139
    [Google Scholar]
  71. 71.
    Loss Sperandio MV, Santos LA, Huertas Tavares OC, Fernandes MS, de Freitas Lima M, de Souza SR 2020. Silencing the Oryza sativa plasma membrane H+-ATPase isoform OsA2 affects grain yield and shoot growth and decreases nitrogen concentration. J. Plant Physiol. 251:153220
    [Google Scholar]
  72. 72.
    Luo Y, Scholl S, Doering A, Zhang Y, Irani NG et al. 2015. V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. Nat. Plants 1:15094Demonstrates that VHA-C-mediated acidification of the TGN/EE, but not of the vacuole, is essential for protein secretion and recycling.
    [Google Scholar]
  73. 73.
    Lupanga U, Rohrich R, Askani J, Hilmer S, Kiefer C et al. 2020. The Arabidopsis V-ATPase is localized to the TGN/EE via a seed plant-specific motif. eLife 9:e60568Identifies VHA-a1-targeting domain functioning as an endoplasmic reticulum exit and a TGN/EE-retention motif that is conserved in seed plants.
    [Google Scholar]
  74. 74.
    Ma B, Liao L, Fang T, Peng Q, Ogutu C et al. 2019. A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple. Plant Biotechnol. J. 17:674–86
    [Google Scholar]
  75. 75.
    Ma B, Qian D, Nan Q, Tan C, An L, Xiang Y 2012. Arabidopsis vacuolar H+-ATPase (V-ATPase) B subunits are involved in actin cytoskeleton remodeling via binding to, bundling, and stabilizing F-actin. J. Biol. Chem. 287:19008–17
    [Google Scholar]
  76. 76.
    Marasco R, Mosqueira MJ, Fusi M, Ramond J-B, Merlino G et al. 2018. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome 6:215
    [Google Scholar]
  77. 77.
    Marre E. 1979. Fusicoccin: a tool in plant physiology. Annu. Rev. Plant Physiol. 30:273–88
    [Google Scholar]
  78. 78.
    McCubbin AG, Ritchie SM, Swanson SJ, Gilroy S. 2004. The calcium-dependent protein kinase HvCDPK1 mediates the gibberellic acid response of the barley aleurone through regulation of vacuolar function. Plant J. 39:206–18
    [Google Scholar]
  79. 79.
    Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M et al. 2007. Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26:3216–26
    [Google Scholar]
  80. 80.
    Miao R, Wang M, Yuan W, Ren Y, Li Y et al. 2018. Comparative analysis of Arabidopsis ecotypes reveals a role for brassinosteroids in root hydrotropism. Plant Physiol. 176:2720–36Reveals that low ABA concentration promotes root apoplastic H+-efflux and growth by inhibiting ABI1, which dephosphorylates the penultimate Thr947 of AHA2.
    [Google Scholar]
  81. 81.
    Miao R, Yuan W, Wang Y, Garcia-Maquilon I, Dang X et al. 2021. Low ABA concentration promotes root growth and hydrotropism through relief of ABA INSENSITIVE 1-mediated inhibition of plasma membrane H+-ATPase 2. Sci. Adv. 7:eabd4113
    [Google Scholar]
  82. 82.
    Minami A, Takahashi K, Inoue S-I, Tada Y, Kinoshita T 2019. Brassinosteroid induces phosphorylation of the plasma membrane H+-ATPase during hypocotyl elongation in Arabidopsis thaliana. Plant Cell Physiol 60:935–44
    [Google Scholar]
  83. 83.
    Okumura M, Inoue S-I, Takahashi K, Ishizaki K, Kohchi T, Kinoshita T 2012. Characterization of the plasma membrane H+-ATPase in the liverwort Marchantia polymorpha. Plant Physiol 159:826–34
    [Google Scholar]
  84. 84.
    Padmanaban S, Lin X, Perera I, Kawamura Y, Sze H. 2004. Differential expression of vacuolar H+-ATPase subunit c genes in tissues active in membrane trafficking and their roles in plant growth as revealed by RNAi. Plant Physiol 134:1514–26
    [Google Scholar]
  85. 85.
    Palmgren MG. 2001. PLANT PLASMA MEMBRANE H+-ATPases: powerhouses for nutrient uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:817–45
    [Google Scholar]
  86. 86.
    Pearce G, Moura DS, Stratmann J, Ryan CA Jr. 2001. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. PNAS 98:12843–47
    [Google Scholar]
  87. 87.
    Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P. 2007. Crystal structure of the plasma membrane proton pump. Nature 450:1111–14
    [Google Scholar]
  88. 88.
    Planes MD, Niñoles R, Rubio L, Bissoli G, Bueso E et al. 2015. A mechanism of growth inhibition by abscisic acid in germinating seeds of Arabidopsis thaliana based on inhibition of plasma membrane H+-ATPase and decreased cytosolic pH, K+, and anions. J. Exp. Bot. 66:813–25
    [Google Scholar]
  89. 89.
    Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R 2006. PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18:1274–91
    [Google Scholar]
  90. 90.
    Rayle DL, Cleland R. 1970. Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46:250–53
    [Google Scholar]
  91. 91.
    Ren H, Park MY, Spartz AK, Wong JH, Gray WM. 2018. A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis. PLOS Genet 14:e1007455
    [Google Scholar]
  92. 92.
    Robertson WR, Clark K, Young JC, Sussman MR 2004. An Arabidopsis thaliana plasma membrane proton pump is essential for pollen development. Genetics 168:1677–87
    [Google Scholar]
  93. 93.
    Rudashevskaya EL, Ye J, Jensen ON, Fuglsang AT, Palmgren MG. 2012. Phosphosite mapping of P-type plasma membrane H+-ATPase in homologous and heterologous environments. J. Biol. Chem. 287:4904–13
    [Google Scholar]
  94. 94.
    Santi S, Schmidt W. 2009. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183:1072–84
    [Google Scholar]
  95. 95.
    Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O 2012. Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. Plant J. 69:529–41
    [Google Scholar]
  96. 96.
    Schumacher K, Krebs M. 2010. The V-ATPase: small cargo, large effects. Curr. Opin. Plant Biol. 13:724–30
    [Google Scholar]
  97. 97.
    Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J. 1999. The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev 13:3259–70
    [Google Scholar]
  98. 98.
    Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ et al. 2005. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol 138:287–96
    [Google Scholar]
  99. 99.
    Siao W, Coskun D, Baluška F, Kronzucker HJ, Xu W. 2020. Root-apex proton fluxes at the centre of soil-stress acclimation. Trends Plant Sci 25:794–804
    [Google Scholar]
  100. 100.
    Son YS, Im CH, Kim DW, Bahk JD 2013. OsRab11 and OsGAP1 are essential for the vesicle trafficking of the vacuolar H+-ATPase OsVHA-a1 under high salinity conditions. Plant Sci. 198:58–71
    [Google Scholar]
  101. 101.
    Spartz AK, Lor VS, Ren H, Olszewski NE, Miller ND et al. 2017. Constitutive expression of Arabidopsis SMALL AUXIN UP RNA19 (SAUR19) in tomato confers auxin-independent hypocotyl elongation. Plant Physiol 173:1453–62
    [Google Scholar]
  102. 102.
    Spartz AK, Ren H, Park MY, Grandt KN, Lee SH et al. 2014. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26:2129–42Demonstrates that auxin-mediated plant cell expansion involves the regulation of P-type H+-ATPase activity by SAUR-PP2C-D regulatory modules.
    [Google Scholar]
  103. 103.
    Strazzer P, Spelt CE, Li S, Bliek M, Federici CT et al. 2019. Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nat. Commun. 10:744Identifies two tonoplast-localized P-type H+-ATPases that mediate hyperacidification of Citrus fruits and can be used for engineering/selecting fruit sour taste.
    [Google Scholar]
  104. 104.
    Stritzler M, Muñiz García MN, Schlesinger M, Cortelezzi JI, Capiati DA 2017. The plasma membrane H+-ATPase gene family in Solanum tuberosum L. Role of PHA1 in tuberization. J. Exp. Bot. 68:4821–37
    [Google Scholar]
  105. 105.
    Strompen G, Dettmer J, Stierhof Y-D, Schumacher K, Jürgens G, Mayer U 2005. Arabidopsis vacuolar H+-ATPase subunit E isoform 1 is required for Golgi organization and vacuole function in embryogenesis. Plant J 41:125–32
    [Google Scholar]
  106. 106.
    Sze H, Li X, Palmgren MG 1999. Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–89
    [Google Scholar]
  107. 107.
    Sze H, Schumacher K, Müller ML, Padmanaban S, Taiz L 2002. A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends Plant Sci 7:157–61
    [Google Scholar]
  108. 108.
    Takahashi K, Hayashi K-i, Kinoshita T. 2012. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol. 159:632–41Reveals that auxin induces P-type H+-ATPase activity by increasing penultimate Thr947 phosphorylation levels during hypocotyl elongation.
    [Google Scholar]
  109. 109.
    Takemiya A, Kinoshita T, Asanuma M, Shimazaki K-i. 2006. Protein phosphatase 1 positively regulates stomatal opening in response to blue light in Vicia faba. PNAS 103:13549–54
    [Google Scholar]
  110. 110.
    Takemiya A, Sugiyama N, Fujimoto H, Tsutsumi T, Yamauchi S et al. 2013. Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat. Commun. 4:2094
    [Google Scholar]
  111. 111.
    Takemiya A, Yamauchi S, Yano T, Ariyoshi C, Shimazaki K 2013. Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening. Plant Cell Physiol 54:24–35
    [Google Scholar]
  112. 112.
    Tang R-J, Liu H, Yang Y, Yang L, Gao X-S et al. 2012. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Res 22:1650–65
    [Google Scholar]
  113. 113.
    Tavakoli N, Kluge C, Golldack D, Mimura T, Dietz K-J. 2010. Reversible redox control of plant vacuolar H+–ATPase activity is related to disulfide bridge formation in subunit E as well as subunit A. Plant J 28:51–59
    [Google Scholar]
  114. 114.
    Toda Y, Wang Y, Takahashi A, Kawai Y, Tada Y et al. 2016. Oryza sativa H+-ATPase (OSA) is involved in the regulation of dumbbell-shaped guard cells of rice. Plant Cell Physiol 57:1220–30
    [Google Scholar]
  115. 115.
    Tupý J, Řhová L. 1984. Changes and growth effect of pH in pollen tube culture. J. Plant Physiol. 115:1–10
    [Google Scholar]
  116. 116.
    Tyagi W, Rajagopal D, Singla-Pareek SL, Reddy MK, Sopory SK 2005. Cloning and regulation of a stress-regulated Pennisetum glaucum vacuolar ATPase c gene and characterization of its promoter that is expressed in shoot hairs and floral organs. Plant Cell Physiol 46:1411–22
    [Google Scholar]
  117. 117.
    Verweij W, Spelt CE, Bliek M, de Vries M, Wit N et al. 2016. Functionally similar WRKY proteins regulate vacuolar acidification in Petunia and hair development in Arabidopsis. Plant Cell 28:786–803
    [Google Scholar]
  118. 118.
    Verweij W, Spelt CE, Di Sansebastiano G-P, Vermeer J, Reale L et al. 2008. An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat. Cell Biol. 10:1456–62
    [Google Scholar]
  119. 119.
    Viotti C, Bubeck J, Stierhof Y-D, Krebs M, Langhans M et al. 2010. Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–57
    [Google Scholar]
  120. 120.
    Viotti C, Krüger F, Krebs M, Neubert C, Fink F et al. 2013. The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. Plant Cell 25:3434–49
    [Google Scholar]
  121. 121.
    Vitart V, Baxter I, Doerner P, Harper JF. 2001. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant J 27:191–201
    [Google Scholar]
  122. 122.
    Wang B, Lüttge U, Ratajczak R 2001. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J. Exp. Bot. 52:2355–65
    [Google Scholar]
  123. 123.
    Wang E, Yu N, Bano SA, Liu C, Miller AJ et al. 2014. A H+-ATPase that energizes nutrient uptake during mycorrhizal symbioses in rice and Medicago truncatula. Plant Cell 26:1818–30
    [Google Scholar]
  124. 124.
    Wang K, Xu F, Yuan W, Zhang D, Liu J et al. 2021. Rice G protein γ subunit qPE9-1 modulates root elongation for phosphorus uptake by involving 14-3-3 protein OsGF14b and plasma membrane H+-ATPase. Plant J 107:1603–15
    [Google Scholar]
  125. 125.
    Wang Y, Afeworki Y, Geng S, Kanchupati P, Gu M et al. 2020. Hydrotropism in the primary roots of maize. New Phytol 226:1796–808
    [Google Scholar]
  126. 126.
    Wang Y, Noguchi K, Ono N, Inoue S, Terashima I, Kinoshita T 2014. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth. PNAS 111:533–38
    [Google Scholar]
  127. 127.
    Welle M, Pedersen JT, Ravnsborg T, Hayashi M, Maaß S et al. 2021. A conserved, buried cysteine near the P-site is accessible to cysteine modifications and increases ROS stability in the P-type plasma membrane H+-ATPase. Biochem. J. 478:619–32
    [Google Scholar]
  128. 128.
    Xia L, Marquès-Bueno MM, Bruce CG, Karnik RA 2019. Unusual roles of secretory SNARE SYP132 in plasma membrane H+-ATPase traffic and vegetative plant growth. Plant Physiol 180:837–58
    [Google Scholar]
  129. 129.
    Xu W, Jia L, Shi W, Baluška F, Kronzucker HJ et al. 2013. The tomato 14-3-3 protein TFT4 modulates H+ efflux, basipetal auxin transport, and the PKS5-J3 pathway in the root growth response to alkaline stress. Plant Physiol 163:1817–28
    [Google Scholar]
  130. 130.
    Xu W, Jia L, Shi W, Liang J, Zhou F et al. 2013. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol. 197:139–50Reveals that ABA accumulation modulates auxin transport and activates P-type H+-ATPase activity to regulate root growth under water stress.
    [Google Scholar]
  131. 131.
    Xu W, Zhang Q, Yuan W, Xu F, Muhammad Aslam M et al. 2020. The genome evolution and low-phosphorus adaptation in white lupin. Nat. Commun. 11:1069
    [Google Scholar]
  132. 132.
    Xue Y, Yang Y, Yang Z, Wang X, Guo Y 2018. VAMP711 is required for abscisic acid-mediated inhibition of plasma membrane H+-ATPase activity. Plant Physiol 178:1332–43
    [Google Scholar]
  133. 133.
    Yamauchi S, Takemiya A, Sakamoto T, Kurata T, Tsutsumi T et al. 2016. The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light. Plant Physiol 171:2731–43
    [Google Scholar]
  134. 134.
    Yan F, Zhu Y, Müller C, Zörb C, Schubert S. 2002. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129:50–63
    [Google Scholar]
  135. 135.
    Yan S, McLamore ES, Dong S, Gao H, Taguchi M et al. 2015. The role of plasma membrane H+-ATPase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana. Plant J 83:638–49
    [Google Scholar]
  136. 136.
    Yang X, Gong P, Li K, Huang F, Cheng F, Pan G. 2016. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice. J. Exp. Bot. 67:2761–76
    [Google Scholar]
  137. 137.
    Yang Y, Han X, Ma L, Wu Y, Liu X et al. 2021. Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H+-ATPase and Na+/H+ antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress. Mol. Plant 14:2000–14
    [Google Scholar]
  138. 138.
    Yang Y, Wu Y, Ma L, Yang Z, Dong Q et al. 2019. The Ca2+ sensor SCaBP3/CBL7 modulates plasma membrane H+-ATPase activity and promotes alkali tolerance in Arabidopsis. Plant Cell 31:1367–84Demonstrates that CBL7/SCaBP3 regulates alkaline stress tolerance by promoting the interaction between PKS5 and AHA2 and inhibiting AHA2 activity.
    [Google Scholar]
  139. 139.
    Yang Y, Qin Y, Xie C, Zhao F, Zhao J et al. 2010. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase. Plant Cell 22:1313–32
    [Google Scholar]
  140. 140.
    Yang Z, Wang C, Xue Y, Liu X, Chen S et al. 2019. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nat. Commun. 10:1199
    [Google Scholar]
  141. 141.
    Yao J, Shen Z, Zhang Y, Wu X, Wang J et al. 2020. Populus euphratica WRKY1 binds the promoter of H+-ATPase gene to enhance gene expression and salt tolerance. J. Exp. Bot. 71:1527–39
    [Google Scholar]
  142. 142.
    Yuan W, Zhang D, Song T, Xu F, Lin S et al. 2017. Arabidopsis plasma membrane H+-ATPase genes AHA2 and AHA7 have distinct and overlapping roles in the modulation of root tip H+ efflux in response to low-phosphorus stress. J. Exp. Bot. 68:1731–41
    [Google Scholar]
  143. 143.
    Yuan W, Zhang Q, Li Y, Wang Q, Xu F et al. 2020. Abscisic acid is required for root elongation associated with Ca2+ influx in response to water stress. Front. Plant Sci. 11:332
    [Google Scholar]
  144. 144.
    Zhang F, Yan X, Han X, Tang R, Chu M et al. 2019. A defective vacuolar proton pump enhances aluminum tolerance by reducing vacuole sequestration of organic acids. Plant Physiol 181:743–61
    [Google Scholar]
  145. 145.
    Zhang M, Wang Y, Chen X, Xu F, Ding M et al. 2021. Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis. Nat. Commun. 12:735Demonstrates that manipulating the expression of a P-type H+-ATPase gene, OSA1, significantly improves nutrient use efficiency, photosynthesis, and grain yield.
    [Google Scholar]
  146. 146.
    Zhang X, Wang H, Takemiya A, Song C-P, Kinoshita T, Shimazaki K-i. 2004. Inhibition of blue light-dependent H+ pumping by abscisic acid through hydrogen peroxide-induced dephosphorylation of the plasma membrane H+-ATPase in guard cell protoplasts. Plant Physiol 136:4150–58
    [Google Scholar]
  147. 147.
    Zhang Y, Du H, Xu F, Ding Y, Gui Y et al. 2020. Root-bacteria associations boost rhizosheath formation in moderately dry soil through ethylene responses. Plant Physiol 183:780–92
    [Google Scholar]
  148. 148.
    Zhao Q, Ren Y-R, Wang Q-J, Yao Y-X, You C-X, Hao Y-J. 2016. Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple. Plant Biotechnol. J. 14:1633–45
    [Google Scholar]
  149. 149.
    Zhao R, Dielen V, Kinet J-M, Boutry M. 2000. Cosuppression of a plasma membrane H+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. Plant Cell 12:535–46
    [Google Scholar]
  150. 150.
    Zhou A, Bu Y, Takano T, Zhang X, Liu S. 2016. Conserved V-ATPase c subunit plays a role in plant growth by influencing V-ATPase-dependent endosomal trafficking. Plant Biotechnol. J. 14:271–83
    [Google Scholar]
  151. 151.
    Zhou Z, Wu Y, Yang Y, Du M, Zhang X et al. 2015. An Arabidopsis plasma membrane proton ATPase modulates JA signaling and is exploited by the Pseudomonas syringae effector protein AvrB for stomatal invasion. Plant Cell 27:2032–41
    [Google Scholar]
  152. 152.
    Zhu YY, Di TJ, Xu GH, Chen X, Zeng HQ et al. 2009. Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell Environ 32:1428–40
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-102820-114551
Loading
/content/journals/10.1146/annurev-arplant-102820-114551
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error