1932

Abstract

Small GTP-binding proteins represent a highly conserved signaling module in eukaryotes that regulates diverse cellular processes such as signal transduction, cytoskeletal organization and cell polarity, cell proliferation and differentiation, intracellular membrane trafficking and transport vesicle formation, and nucleocytoplasmic transport. These proteins function as molecular switches that cycle between active and inactive states, and this cycle is linked to GTP binding and hydrolysis. In this review, the roles of the plant complement of small GTP-binding proteins in these cellular processes are described, as well as accessory proteins that control their activity, and current understanding of the functions of individual members of these families in plants—with a focus on the model organism —is presented. Some potential novel roles of these GTPases in plants, relative to their established roles in yeast and/or animal systems, are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-112619-025827
2020-04-29
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/arplant/71/1/annurev-arplant-112619-025827.html?itemId=/content/journals/10.1146/annurev-arplant-112619-025827&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ach RA, Gruissem W. 1994. A small nuclear GTP-binding protein from tomato suppresses a Schizosaccharomyces pombe cell-cycle mutant. PNAS 91:5863–67
    [Google Scholar]
  2. 2. 
    Ahn CS, Han JA, Pai HS 2013. Characterization of in vivo functions of Nicotiana benthamiana RabE1. Planta 237:161–72
    [Google Scholar]
  3. 3. 
    Avis JM, Clarke PR. 1996. Ran, a GTPase involved in nuclear processes: its regulators and effectors. J. Cell Sci. 109:2423–27
    [Google Scholar]
  4. 4. 
    Bashline L, Li S, Anderson CT, Lei L, Gu Y 2013. The endocytosis of cellulose synthase in Arabidopsis is dependent on μ2, a clathrin-mediated endocytosis adaptin. Plant Physiol 163:150–60
    [Google Scholar]
  5. 5. 
    Basu D, Le J, Zakharova T, Mallery EL, Szymanski DB 2008. A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. PNAS 105:4044–49
    [Google Scholar]
  6. 6. 
    Batoko H, Zheng HQ, Hawes C, Moore I 2000. A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–18
    [Google Scholar]
  7. 7. 
    Benli M, Doring F, Robinson DG, Yang X, Gallwitz D 1996. Two GTPase isoforms, Ypt31p and Ypt32p, are essential for Golgi function in yeast. EMBO J 15:6460–75
    [Google Scholar]
  8. 8. 
    Berchtold H, Reshetnikova L, Reiser CO, Schirmer NK, Sprinzl M, Hilgenfeld R 1993. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365:126–32
    [Google Scholar]
  9. 9. 
    Berken A, Thomas C, Wittinghofer A 2005. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature 436:1176–80
    [Google Scholar]
  10. 10. 
    Bhattacharjee S, Lee L-Y, Oltmanns H, Cao H, Veena, et al. IMPa-4, an Arabidopsis importin α isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant Cell 20:2661–80
    [Google Scholar]
  11. 11. 
    Blanvillain R, Boavida LC, McCormick S, Ow DW 2008. EXPORTIN1 genes are essential for development and function of the gametophytes in Arabidopsis thaliana. Genetics 180:1493–500
    [Google Scholar]
  12. 12. 
    Bogdanove AJ, Martin GB. 2000. AvrPto-dependent Pto-interacting proteins and AvrPto-interacting proteins in tomato. PNAS 97:8836–40
    [Google Scholar]
  13. 13. 
    Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS 2003. HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–504
    [Google Scholar]
  14. 14. 
    Borg S, Brandstrup B, Jensen TJ, Poulsen C 1997. Identification of new protein species among 33 different small GTP-binding proteins encoded by cDNAs from Lotus japonicus, and expression of corresponding mRNAs in developing root nodules. Plant J 11:237–50
    [Google Scholar]
  15. 15. 
    Boruc J, Griffis AH, Rodrigo-Peiris T, Zhou X, Tilford B et al. 2015. GAP activity, but not subcellular targeting, is required for Arabidopsis RanGAP cellular and developmental functions. Plant Cell 27:1985–98
    [Google Scholar]
  16. 16. 
    Bottanelli F, Gershlick DC, Denecke J 2012. Evidence for sequential action of Rab5 and Rab7 GTPases in prevacuolar organelle partitioning. Traffic 13:338–54
    [Google Scholar]
  17. 17. 
    Camacho L, Smertenko AP, Perez-Gomez J, Hussey PJ, Moore I 2009. Arabidopsis Rab-E GTPases exhibit a novel interaction with a plasma-membrane phosphatidylinositol-4-phosphate 5-kinase. J. Cell Sci. 122:4383–92
    [Google Scholar]
  18. 18. 
    Chen J, Stefano G, Brandizzi F, Zheng H 2011. Arabidopsis RHD3 mediates the generation of the tubular ER network and is required for Golgi distribution and motility in plant cells. J. Cell Sci. 124:2241–52
    [Google Scholar]
  19. 19. 
    Chen SH, Chen S, Tokarev AA, Liu F, Jedd G, Segev N 2005. Ypt31/32 GTPases and their novel F-box effector protein Rcy1 regulate protein recycling. Mol. Biol. Cell 16:178–92
    [Google Scholar]
  20. 20. 
    Cheung AY, Chen CY, Glaven RH, de Graaf BH, Vidali L et al. 2002. Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. Plant Cell 14:945–62
    [Google Scholar]
  21. 21. 
    Choi SW, Tamaki T, Ebine K, Uemura T, Ueda T, Nakano A 2013. RABA members act in distinct steps of subcellular trafficking of the FLAGELLIN SENSING2 receptor. Plant Cell 25:1174–87
    [Google Scholar]
  22. 22. 
    Chow CM, Neto H, Foucart C, Moore I 2008. Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101–23
    [Google Scholar]
  23. 23. 
    Ciciarello M, Mangiacasale R, Lavia P 2007. Spatial control of mitosis by the GTPase Ran. Cell Mol. Life Sci. 64:1891–914
    [Google Scholar]
  24. 24. 
    Clarke PR, Zhang C. 2008. Spatial and temporal coordination of mitosis by Ran GTPase. Nat. Rev. Mol. Cell Biol. 9:464–77
    [Google Scholar]
  25. 25. 
    Cook A, Bono F, Jinek M, Conti E 2007. Structural biology of nucleocytoplasmic transport. Annu. Rev. Biochem. 76:647–71
    [Google Scholar]
  26. 26. 
    Cui S, Fukao Y, Mano S, Yamada K, Hayashi M, Nishimura M 2013. Proteomic analysis reveals that the Rab GTPase RabE1c is involved in the degradation of the peroxisomal protein receptor PEX7 (peroxin 7). J. Biol. Chem. 288:6014–23
    [Google Scholar]
  27. 27. 
    Cui Y, Fang X, Qi Y 2016. TRANSPORTIN1 promotes the association of MicroRNA with ARGONAUTE1 in Arabidopsis. Plant Cell 28:2576–85
    [Google Scholar]
  28. 28. 
    Cui Y, Zhao Q, Gao C, Ding Y, Zeng Y et al. 2014. Activation of the Rab7 GTPase by the MON1-CCZ1 complex is essential for PVC-to-vacuole trafficking and plant growth in Arabidopsis. Plant Cell 26:2080–97
    [Google Scholar]
  29. 29. 
    Davis DJ, McDowell SC, Park E, Hicks G, Wilkop TE, Drakakaki G 2015. The RAB GTPase RABA1e localizes to the cell plate and shows distinct subcellular behavior from RABA2a under Endosidin 7 treatment. Plant Signal. Behav. 10:e984520
    [Google Scholar]
  30. 30. 
    Day KJ, Casler JC, Glick BS 2018. Budding yeast has a minimal endomembrane system. Dev. Cell 44:56–72.e4
    [Google Scholar]
  31. 31. 
    Di Rubbo S, Irani NG, Kim SY, Xu ZY, Gadeyne A et al. 2013. The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid insensitive1 in Arabidopsis. Plant Cell 25:2986–97
    [Google Scholar]
  32. 32. 
    Doolittle RF, Feng DF, Tsang S, Cho G, Little E 1996. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271:470–77
    [Google Scholar]
  33. 33. 
    Duan Q, Kita D, Li C, Cheung AY, Wu HM 2010. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. PNAS 107:17821–26
    [Google Scholar]
  34. 34. 
    Dummer M, Michalski C, Essen LO, Rath M, Galland P, Forreiter C 2016. EHB1 and AGD12, two calcium-dependent proteins affect gravitropism antagonistically in Arabidopsis thaliana. J. Plant Physiol 206:114–24
    [Google Scholar]
  35. 35. 
    Ebine K, Fujimoto M, Okatani Y, Nishiyama T, Goh T et al. 2011. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat. Cell Biol. 13:853–59
    [Google Scholar]
  36. 36. 
    Ebine K, Inoue T, Ito J, Ito E, Uemura T et al. 2014. Plant vacuolar trafficking occurs through distinctly regulated pathways. Curr. Biol. 24:1375–82
    [Google Scholar]
  37. 37. 
    Ebine K, Uemura T, Nakano A, Ueda T 2012. Flowering time modulation by a vacuolar SNARE via FLOWERING LOCUS C in Arabidopsis thaliana. PLOS ONE 7:e42239
    [Google Scholar]
  38. 38. 
    Ekanayake G, LaMontagne ED, Heese A 2019. Never walk alone: clathrin-coated vesicle (CCV) components in plant immunity. Annu. Rev. Phytopathol. 57:387–409
    [Google Scholar]
  39. 39. 
    Epp N, Rethmeier R, Kramer L, Ungermann C 2011. Membrane dynamics and fusion at late endosomes and vacuoles—Rab regulation, multisubunit tethering complexes and SNAREs. Eur. J. Cell Biol. 90:779–85
    [Google Scholar]
  40. 40. 
    Feiguelman G, Fu Y, Yalovsky S 2018. ROP GTPases structure-function and signaling pathways. Plant Physiol 176:57–79
    [Google Scholar]
  41. 41. 
    Feng QN, Song SJ, Yu SX, Wang JG, Li S, Zhang Y 2017. Adaptor protein-3-dependent vacuolar trafficking involves a subpopulation of COPII and HOPS tethering proteins. Plant Physiol 174:1609–20
    [Google Scholar]
  42. 42. 
    Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ 2007. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr. Biol. 17:1151–56
    [Google Scholar]
  43. 43. 
    Fuji K, Shirakawa M, Shimono Y, Kunieda T, Fukao Y et al. 2016. The adaptor complex AP-4 regulates vacuolar protein sorting at the trans-Golgi network by interacting with VACUOLAR SORTING RECEPTOR1. Plant Physiol 170:211–19
    [Google Scholar]
  44. 44. 
    Gadeyne A, Sanchez-Rodriguez C, Vanneste S, Di Rubbo S, Zauber H et al. 2014. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell 156:691–704
    [Google Scholar]
  45. 45. 
    Gao Q, Goodman JM. 2015. The lipid droplet—a well-connected organelle. Front. Cell Dev. Biol. 3:49
    [Google Scholar]
  46. 46. 
    Geldner N, Anders N, Wolters H, Keicher J, Kornberger W et al. 2003. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–30
    [Google Scholar]
  47. 47. 
    Goh T, Uchida W, Arakawa S, Ito E, Dainobu T et al. 2007. VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana. Plant Cell 19:3504–15
    [Google Scholar]
  48. 48. 
    Goud B, Salminen A, Walworth NC, Novick PJ 1988. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53:753–68
    [Google Scholar]
  49. 49. 
    Gruss OJ, Vernos I. 2004. The mechanism of spindle assembly: functions of Ran and its target TPX2. J. Cell Biol. 166:949–55
    [Google Scholar]
  50. 50. 
    Haberland J, Gerke V. 1999. Conserved charged residues in the leucine-rich repeat domain of the Ran GTPase activating protein are required for Ran binding and GTPase activation. Biochem. J. 343:653–62
    [Google Scholar]
  51. 51. 
    Haizel T, Merkle T, Pay A, Fejes E, Nagy F 1997. Characterization of proteins that interact with the GTP-bound form of the regulatory GTPase Ran in Arabidopsis. Plant J 11:93–103
    [Google Scholar]
  52. 52. 
    Hall A. 1990. The cellular functions of small GTP-binding proteins. Science 249:635–40
    [Google Scholar]
  53. 53. 
    Hall A, Zerial M. 1995. Overview of the Ras superfamily of small GTPases. Guidebook to the Small GTPases M Zerial, LA Haber 3–11 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  54. 54. 
    Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR 2014. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–11
    [Google Scholar]
  55. 55. 
    Hashimoto K, Igarashi H, Mano S, Takenaka C, Shiina T et al. 2008. An isoform of Arabidopsis myosin XI interacts with small GTPases in its C-terminal tail region. J. Exp. Bot. 59:3523–31
    [Google Scholar]
  56. 56. 
    He M, Lan M, Zhang B, Zhou Y, Wang Y et al. 2018. Rab-H1b is essential for trafficking of cellulose synthase and for hypocotyl growth in Arabidopsis thaliana. J. Integr. Plant Biol 60:1051–69
    [Google Scholar]
  57. 57. 
    Hodge RG, Ridley AJ. 2016. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 17:496–510
    [Google Scholar]
  58. 58. 
    Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N et al. 2009. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 138:549–61
    [Google Scholar]
  59. 59. 
    Huber LA, Pimplikar S, Parton RG, Virta H, Zerial M, Simons K 1993. Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J. Cell Biol. 123:35–45
    [Google Scholar]
  60. 60. 
    Hübner S, Smith HMS, Hu W, Chan CK, Rihs H-P et al. 1999. Plant importin α binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin β. J. Biol. Chem. 274:22610–17
    [Google Scholar]
  61. 61. 
    Hughes M, Zhang C, Avis JM, Hutchison CJ, Clarke PR 1998. The role of the ran GTPase in nuclear assembly and DNA replication: characterisation of the effects of Ran mutants. J. Cell Sci. 111:3017–26
    [Google Scholar]
  62. 62. 
    Hunter CA, Aukerman MJ, Sun H, Fokina M, Poethig RS 2003. PAUSED encodes the Arabidopsis exportin-t ortholog. Plant Physiol 132:2135–43
    [Google Scholar]
  63. 63. 
    Inaba T, Nagano Y, Nagasaki T, Sasaki Y 2002. Distinct localization of two closely related Ypt3/Rab11 proteins on the trafficking pathway in higher plants. J. Biol. Chem. 277:9183–88
    [Google Scholar]
  64. 64. 
    Inoue T, Kondo Y, Naramoto S, Nakano A, Ueda T 2013. RAB5 activation is required for multiple steps in Arabidopsis thaliana root development. Plant Cell Physiol 54:1648–59
    [Google Scholar]
  65. 65. 
    Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Gorlich D 1997. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16:6535–47
    [Google Scholar]
  66. 66. 
    Jaber E, Thiele K, Kindzierski V, Loderer C, Rybak K et al. 2010. A putative TRAPPII tethering factor is required for cell plate assembly during cytokinesis in Arabidopsis. New Phytol 187:751–63
    [Google Scholar]
  67. 67. 
    Jaillais Y, Fobis-Loisy I, Miege C, Gaude T 2008. Evidence for a sorting endosome in Arabidopsis root cells. Plant J 53:237–47
    [Google Scholar]
  68. 68. 
    Jedd G, Mulholland J, Segev N 1997. Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. J. Cell Biol. 137:563–80
    [Google Scholar]
  69. 69. 
    Jeong SY, Rose A, Joseph J, Dasso M, Meier I 2005. Plant-specific mitotic targeting of RanGAP requires a functional WPP domain. Plant J 42:270–82
    [Google Scholar]
  70. 70. 
    Jia PF, Xue Y, Li HJ, Yang WC 2018. Golgi-localized LOT regulates trans-Golgi network biogenesis and pollen tube growth. PNAS 115:12307–12
    [Google Scholar]
  71. 71. 
    Johansen JN, Chow CM, Moore I, Hawes C 2009. AtRAB-H1b and AtRAB-H1c GTPases, homologues of the yeast Ypt6, target reporter proteins to the Golgi when expressed in Nicotiana tabacum and Arabidopsis thaliana. J. Exp. Bot 60:3179–93
    [Google Scholar]
  72. 72. 
    Johns HL, Gonzalez-Lopez C, Sayers CL, Hollinshead M, Elliott G 2014. Rab6 dependent post-Golgi trafficking of HSV1 envelope proteins to sites of virus envelopment. Traffic 15:157–78
    [Google Scholar]
  73. 73. 
    Joseph J, Liu ST, Jablonski SA, Yen TJ, Dasso M 2004. The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. Curr. Biol. 14:611–17
    [Google Scholar]
  74. 74. 
    Joseph J, Tan SH, Karpova TS, McNally JG, Dasso M 2002. SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J. Cell Biol. 156:595–602
    [Google Scholar]
  75. 75. 
    Jurgens G, Geldner N. 2007. The high road and the low road: trafficking choices in plants. Cell 130:977–79
    [Google Scholar]
  76. 76. 
    Kalde M, Elliott L, Ravikumar R, Rybak K, Altmann M et al. 2019. Interactions between Transport Protein Particle (TRAPP) complexes and Rab GTPases in Arabidopsis. Plant J 100:279–97
    [Google Scholar]
  77. 77. 
    Kanazawa T, Ueda T. 2017. Exocytic trafficking pathways in plants: why and how they are redirected. New Phytol 215:952–57
    [Google Scholar]
  78. 78. 
    Kang BH, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA 2011. Electron tomography of RabA4b- and PI-4Kβ1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12:313–29
    [Google Scholar]
  79. 79. 
    Kaothien P, Ok SH, Shuai B, Wengier D, Cotter R et al. 2005. Kinase partner protein interacts with the LePRK1 and LePRK2 receptor kinases and plays a role in polarized pollen tube growth. Plant J 42:492–503
    [Google Scholar]
  80. 80. 
    Kim SY, Xu ZY, Song K, Kim DH, Kang H et al. 2013. Adaptor protein complex 2–mediated endocytosis is crucial for male reproductive organ development in Arabidopsis. Plant Cell 25:2970–85
    [Google Scholar]
  81. 81. 
    Kirchhelle C, Chow CM, Foucart C, Neto H, Stierhof YD et al. 2016. The specification of geometric edges by a plant Rab GTPase is an essential cell-patterning principle during organogenesis in Arabidopsis. Dev. Cell 36:386–400
    [Google Scholar]
  82. 82. 
    Kotzer AM, Brandizzi F, Neumann U, Paris N, Moore I, Hawes C 2004. AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells. J. Cell Sci. 117:6377–89
    [Google Scholar]
  83. 83. 
    LaCour TFM, Nyborg J, Thirup S, Clark BFC 1985. Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography. EMBO J 4:2385–88
    [Google Scholar]
  84. 84. 
    Lamber EP, Siedenburg AC, Barr FA 2019. Rab regulation by GEFs and GAPs during membrane traffic. Curr. Opin. Cell Biol. 59:34–39
    [Google Scholar]
  85. 85. 
    Langemeyer L, Frohlich F, Ungermann C 2018. Rab GTPase function in endosome and lysosome biogenesis. Trends Cell Biol 28:957–70
    [Google Scholar]
  86. 86. 
    Lee YJ, Szumlanski A, Nielsen E, Yang Z 2008. Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J. Cell Biol. 181:1155–68
    [Google Scholar]
  87. 87. 
    Li J, Blanchoin L, Staiger CJ 2015. Signaling to actin stochastic dynamics. Annu. Rev. Plant Biol. 66:415–40
    [Google Scholar]
  88. 88. 
    Li J, Chen X. 2003. PAUSED, a putative exportin-t, acts pleiotropically in Arabidopsis development but is dispensable for viability. Plant Physiol 132:1913–24
    [Google Scholar]
  89. 89. 
    Li S, Lei L, Yingling YG, Gu Y 2015. Microtubules and cellulose biosynthesis: the emergence of new players. Curr. Opin. Plant Biol. 28:76–82
    [Google Scholar]
  90. 90. 
    Liao H, Tang R, Zhang X, Luan S, Yu F 2017. FERONIA receptor kinase at the crossroads of hormone signaling and stress responses. Plant Cell Physiol 58:1143–50
    [Google Scholar]
  91. 91. 
    Liljegren SJ, Leslie ME, Darnielle L, Lewis MW, Taylor SM et al. 2009. Regulation of membrane trafficking and organ separation by the NEVERSHED ARF-GAP protein. Development 136:1909–18
    [Google Scholar]
  92. 92. 
    Lin D, Cao L, Zhou Z, Zhu L, Ehrhardt D et al. 2013. Rho GTPase signaling activates microtubule severing to promote microtubule ordering in Arabidopsis. Curr. Biol 23:290–97
    [Google Scholar]
  93. 93. 
    Liu H-H, Xiong F, Duan C-Y, Wu Y-N, Zhang Y, Li S 2019. Importin β4 mediates nuclear import of GRF-interacting factors to control ovule development in Arabidopsis. Plant Physiol 179:1080–92
    [Google Scholar]
  94. 94. 
    Liu P, Qi M, Wang Y, Chang M, Liu C et al. 2014. Arabidopsis RAN1 mediates seed development through its parental ratio by affecting the onset of endosperm cellularization. Mol. Plant 7:1316–28
    [Google Scholar]
  95. 95. 
    Luo Y, Wang Z, Ji H, Fang H, Wang S et al. 2013. An Arabidopsis homolog of importin β1 is required for ABA response and drought tolerance. Plant J 75:377–89
    [Google Scholar]
  96. 96. 
    Mahajan R, Delphin C, Guan T, Gerace L, Melchior F 1997. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107
    [Google Scholar]
  97. 97. 
    Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG 2005. Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J. Biol. Chem. 280:42325–35
    [Google Scholar]
  98. 98. 
    Matheson LA, Suri SS, Hanton SL, Chatre L, Brandizzi F 2008. Correct targeting of plant ARF GTPases relies on distinct protein domains. Traffic 9:103–20
    [Google Scholar]
  99. 99. 
    Matunis MJ, Coutavas E, Blobel G 1996. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135:1457–70
    [Google Scholar]
  100. 100. 
    Matunis MJ, Wu J, Blobel G 1998. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140:499–509
    [Google Scholar]
  101. 101. 
    Mayers JR, Hu T, Wang C, Cardenas JJ, Tan Y et al. 2017. SCD1 and SCD2 form a complex that functions with the exocyst and RabE1 in exocytosis and cytokinesis. Plant Cell 29:2610–25
    [Google Scholar]
  102. 102. 
    McCarty DR, Chory J. 2000. Conservation and innovation in plant signaling pathways. Cell 103:201–9
    [Google Scholar]
  103. 103. 
    Meier I, Brkljacic J. 2010. The Arabidopsis nuclear pore and nuclear envelope. Arabidopsis Book 8:e0139
    [Google Scholar]
  104. 104. 
    Meijer IM, van Leeuwen JE 2011. ERBB2 is a target for USP8-mediated deubiquitination. Cell Signal 23:458–67
    [Google Scholar]
  105. 105. 
    Merkle T, Haizel T, Matsumoto T, Harter K, Dallmann G, Nagy F 1994. Phenotype of the fission yeast cell cycle regulatory mutant pim1–46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. Plant J 6:555–65
    [Google Scholar]
  106. 106. 
    Miserey-Lenkei S, Chalancon G, Bardin S, Formstecher E, Goud B, Echard A 2010. Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat. Cell Biol. 12:645–54
    [Google Scholar]
  107. 107. 
    Moore I, Diefenthal T, Zarsky V, Schell J, Palme K 1997. A homolog of the mammalian GTPase Rab2 is present in Arabidopsis and is expressed predominantly in pollen grains and seedlings. PNAS 94:762–67
    [Google Scholar]
  108. 108. 
    Moore MS. 1998. Ran and nuclear transport. J. Biol. Chem. 273:22857–60
    [Google Scholar]
  109. 109. 
    Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J et al. 2007. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201–13
    [Google Scholar]
  110. 110. 
    Naramoto S, Sawa S, Koizumi K, Uemura T, Ueda T et al. 2009. Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. Development 136:1529–38
    [Google Scholar]
  111. 111. 
    Nielsen E. 2008. Plant cell wall biogenesis during tip growth in root hair cells. Plant Cell Monogr 12:85–102
    [Google Scholar]
  112. 112. 
    Nielsen E, Cheung AY, Ueda T 2008. The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol 147:1516–26
    [Google Scholar]
  113. 113. 
    Nielsen ME, Jurgens G, Thordal-Christensen H 2017. VPS9a activates the Rab5 GTPase ARA7 to confer distinct pre- and postinvasive plant innate immunity. Plant Cell 29:1927–37
    [Google Scholar]
  114. 114. 
    Noel JP, Hamm HE, Sigler PB 1993. The 2.2 Å crystal structure of transducin-α complexed with GTPγS. Nature 366:654–63
    [Google Scholar]
  115. 115. 
    Nomura K, Debroy S, Lee YH, Pumplin N, Jones J, He SY 2006. A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220–23
    [Google Scholar]
  116. 116. 
    Numrich J, Ungermann C. 2014. Endocytic Rabs in membrane trafficking and signaling. Biol. Chem. 395:327–33
    [Google Scholar]
  117. 117. 
    Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T 2005. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum–derived membrane. J. Cell Sci. 118:2601–11
    [Google Scholar]
  118. 118. 
    Palma K, Zhang Y, Li X 2005. An importin α homolog, MOS6, plays an important role in plant innate immunity. Curr. Biol. 15:1129–35
    [Google Scholar]
  119. 119. 
    Parada LF, Tabin CJ, Shih C, Weinberg RA 1982. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297:474–78
    [Google Scholar]
  120. 120. 
    Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS 2005. Nuclear processing and export of microRNAs in Arabidopsis. PNAS 102:3691–96
    [Google Scholar]
  121. 121. 
    Pay A, Resch K, Frohnmeyer H, Fejes E, Nagy F, Nick P 2002. Plant RanGAPs are localized at the nuclear envelope in interphase and associated with microtubules in mitotic cells. Plant J 30:699–709
    [Google Scholar]
  122. 122. 
    Pereira-Leal JB, Seabra MC. 2001. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313:889–901
    [Google Scholar]
  123. 123. 
    Pimpl P, Movafeghi A, Coughlan S, Denecke J, Hillmer S, Robinson DG 2000. In situ localization and in vitro induction of plant COPI-coated vesicles. Plant Cell 12:2219–36
    [Google Scholar]
  124. 124. 
    Pinheiro H, Samalova M, Geldner N, Chory J, Martinez A, Moore I 2009. Genetic evidence that the higher plant Rab-D1 and Rab-D2 GTPases exhibit distinct but overlapping interactions in the early secretory pathway. J. Cell Sci. 122:3749–58
    [Google Scholar]
  125. 125. 
    Preuss ML, Santos-Serna J, Falbel TG, Bednarek SY, Nielsen E 2004. The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells. Plant Cell 16:1589–603
    [Google Scholar]
  126. 126. 
    Preuss ML, Schmitz AJ, Thole JM, Bonner HK, Otegui MS, Nielsen E 2006. A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana. J. Cell Biol 172:991–98
    [Google Scholar]
  127. 127. 
    Qi X, Zheng H. 2011. Arabidopsis TRAPPII is functionally linked to Rab-A, but not Rab-D in polar protein trafficking in trans-Golgi network. Plant Signal. Behav. 6:1679–83
    [Google Scholar]
  128. 128. 
    Ren M, Coutavas E, D'Eustachio P, Rush MG 1994. Effects of mutant Ran/TC4 proteins on cell cycle progression. Mol. Cell. Biol. 14:4216–24
    [Google Scholar]
  129. 129. 
    Richter S, Geldner N, Schrader J, Wolters H, Stierhof YD et al. 2007. Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature 448:488–92
    [Google Scholar]
  130. 130. 
    Richter S, Kientz M, Brumm S, Nielsen ME, Park M et al. 2014. Delivery of endocytosed proteins to the cell-division plane requires change of pathway from recycling to secretion. eLife 3:e02131
    [Google Scholar]
  131. 131. 
    Robinson DG, Pimpl P. 2014. Clathrin and post-Golgi trafficking: a very complicated issue. Trends Plant Sci 19:134–39
    [Google Scholar]
  132. 132. 
    Rodrigo-Peiris T, Xu XM, Zhao Q, Wang HJ, Meier I 2011. RanGAP is required for post-meiotic mitosis in female gametophyte development in Arabidopsis thaliana. J. Exp. Bot 62:2705–14
    [Google Scholar]
  133. 133. 
    Rojo E, Gillmor CS, Kovaleva V, Somerville CR, Raikhel NV 2001. VACUOLELESS1 is an essential gene required for vacuole formation and morphogenesis in Arabidopsis. Dev. Cell 1:303–10
    [Google Scholar]
  134. 134. 
    Rose A, Meier I. 2001. A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim. PNAS 98:15377–82
    [Google Scholar]
  135. 135. 
    Rush MG, Drivas G, D'Eustachio P 1996. The small nuclear GTPase Ran: How much does it run?. BioEssays 18:103–12
    [Google Scholar]
  136. 136. 
    Rutherford S, Moore I. 2002. The Arabidopsis Rab GTPase family: another enigma variation. Curr. Opin. Plant Biol. 5:518–28
    [Google Scholar]
  137. 137. 
    Saito C, Ueda T. 2009. Functions of RAB and SNARE proteins in plant life. Int. Rev. Cell Mol. Biol. 274:183–233
    [Google Scholar]
  138. 138. 
    Sakurai HT, Inoue T, Nakano A, Ueda T 2016. ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN, an interacting partner of RAB5 GTPases, regulates membrane trafficking to protein storage vacuoles in Arabidopsis. Plant Cell 28:1490–503
    [Google Scholar]
  139. 139. 
    Salminen A, Novick PJ. 1987. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49:527–38
    [Google Scholar]
  140. 140. 
    Sazer S, Dasso M. 2000. The ran decathlon: multiple roles of Ran. J. Cell Sci. 113:1111–18
    [Google Scholar]
  141. 141. 
    Scheuring D, Viotti C, Kruger F, Kunzl F, Sturm S et al. 2011. Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis. Plant Cell 23:3463–81
    [Google Scholar]
  142. 142. 
    Segev N, Mulholland J, Botstein D 1988. The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell 52:915–24
    [Google Scholar]
  143. 143. 
    Singh MK, Jurgens G. 2018. Specificity of plant membrane trafficking—ARFs, regulators and coat proteins. Semin. Cell Dev. Biol. 80:85–93
    [Google Scholar]
  144. 144. 
    Singh MK, Kruger F, Beckmann H, Brumm S, Vermeer JEM et al. 2014. Protein delivery to vacuole requires SAND protein-dependent Rab GTPase conversion for MVB-vacuole fusion. Curr. Biol. 24:1383–89
    [Google Scholar]
  145. 145. 
    Sohn EJ, Kim ES, Zhao M, Kim SJ, Kim H et al. 2003. Rha1, an Arabidopsis Rab5 homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins. Plant Cell 15:1057–70
    [Google Scholar]
  146. 146. 
    Speth EB, Imboden L, Hauck P, He SY 2009. Subcellular localization and functional analysis of the Arabidopsis GTPase RabE. Plant Physiol 149:1824–37
    [Google Scholar]
  147. 147. 
    Starr T, Sun Y, Wilkins N, Storrie B 2010. Rab33b and Rab6 are functionally overlapping regulators of Golgi homeostasis and trafficking. Traffic 11:626–36
    [Google Scholar]
  148. 148. 
    Stefano G, Renna L, Rossi M, Azzarello E, Pollastri S et al. 2010. AGD5 is a GTPase-activating protein at the trans-Golgi network. Plant J 64:790–99
    [Google Scholar]
  149. 149. 
    Stenmark H. 2009. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10:513–25
    [Google Scholar]
  150. 150. 
    Suda Y, Kurokawa K, Hirata R, Nakano A 2013. Rab GAP cascade regulates dynamics of Ypt6 in the Golgi traffic. PNAS 110:18976–81
    [Google Scholar]
  151. 151. 
    Sunada M, Goh T, Ueda T, Nakano A 2016. Functional analyses of the plant-specific C-terminal region of VPS9a: the activating factor for RAB5 in Arabidopsis thaliana. J. Plant Res 129:93–102
    [Google Scholar]
  152. 152. 
    Szumlanski AL, Nielsen E. 2009. The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–44
    [Google Scholar]
  153. 153. 
    Takai Y, Sasaki T, Matozaki T 2001. Small GTP-binding proteins. Physiol. Rev. 81:153–208
    [Google Scholar]
  154. 154. 
    Takano J, Miwa K, Yuan L, von Wiren N, Fujiwara T 2005. Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. PNAS 102:12276–81
    [Google Scholar]
  155. 155. 
    Takeuchi H, Higashiyama T. 2016. Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245–48
    [Google Scholar]
  156. 156. 
    Tameling WI, Baulcombe DC. 2007. Physical association of the NB-LRR resistance protein Rx with a Ran GTPase–activating protein is required for extreme resistance to Potato virus X. Plant Cell 19:1682–94
    [Google Scholar]
  157. 157. 
    Tisdale EJ, Bourne JR, Khosravi-Far R, Der CJ, Balch WE 1992. GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J. Cell Biol. 119:749–61
    [Google Scholar]
  158. 158. 
    Tomczynska I, Stumpe M, Mauch F 2018. A conserved RxLR effector interacts with host RABA-type GTPases to inhibit vesicle-mediated secretion of antimicrobial proteins. Plant J 95:187–203
    [Google Scholar]
  159. 159. 
    Toyooka K, Okamoto T, Minamikawa T 2000. Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum–derived vesicle is involved in protein mobilization in germinating seeds. J. Cell Biol. 148:453–64
    [Google Scholar]
  160. 160. 
    Ueda T, Uemura T, Sato MH, Nakano A 2004. Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–89
    [Google Scholar]
  161. 161. 
    Ueda T, Yamaguchi M, Uchimiya H, Nakano A 2001. Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–41
    [Google Scholar]
  162. 162. 
    Uhrig JF, Mutondo M, Zimmermann I, Deeks MJ, Machesky LM et al. 2007. The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development 134:967–77
    [Google Scholar]
  163. 163. 
    Ullrich O, Reinsch S, Urbe S, Zerial M, Parton RG 1996. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135:913–24
    [Google Scholar]
  164. 164. 
    Utskarpen A, Slagsvold HH, Iversen TG, Walchli S, Sandvig K 2006. Transport of ricin from endosomes to the Golgi apparatus is regulated by Rab6A and Rab6A′. Traffic 7:663–72
    [Google Scholar]
  165. 165. 
    van der Bliek AM. 1999. Functional diversity in the dynamin family. Trends Cell Biol 9:96–102
    [Google Scholar]
  166. 166. 
    Vergnolle MAS, Taylor SS 2007. Cenp-F links kinetochores to Ndel1/Nde1/Lis1/Dynein microtubule motor complexes. Curr Biol 17:1173–79
    [Google Scholar]
  167. 167. 
    Vernoud V, Horton AC, Yang Z, Nielsen E 2003. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–208
    [Google Scholar]
  168. 168. 
    Wang W, Ye R, Xin Y, Fang X, Li C et al. 2011. An importin β protein negatively regulates MicroRNA activity in Arabidopsis. Plant Cell 23:3565–76
    [Google Scholar]
  169. 169. 
    Wang X, Xu Y, Han Y, Bao S, Du J et al. 2006. Overexpression of RAN1 in rice and Arabidopsis alters primordial meristem, mitotic progress, and sensitivity to auxin. Plant Physiol 140:91–101
    [Google Scholar]
  170. 170. 
    White J, Johannes L, Mallard F, Girod A, Grill S et al. 1999. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J. Cell Biol. 147:743–60
    [Google Scholar]
  171. 171. 
    Wolfenstetter S, Wirsching P, Dotzauer D, Schneider S, Sauer N 2012. Routes to the tonoplast: the sorting of tonoplast transporters in Arabidopsis mesophyll protoplasts. Plant Cell 24:215–32
    [Google Scholar]
  172. 172. 
    Wu S-J, Wang L-C, Yeh C-H, Lu C-A, Wu S-J 2010. Isolation and characterization of the Arabidopsis heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance. New Phytol 186:833–42
    [Google Scholar]
  173. 173. 
    Xu S, Zhang Z, Jing B, Gannon P, Ding J et al. 2011. Transportin-SR is required for proper splicing of Resistance genes and plant immunity. PLOS Gen 7:e1002159
    [Google Scholar]
  174. 174. 
    Xu XM, Meulia T, Meier I 2007. Anchorage of plant RanGAP to the nuclear envelope involves novel nuclear-pore-associated proteins. Curr. Biol. 17:1157–63
    [Google Scholar]
  175. 175. 
    Yabuuchi T, Nakai T, Sonobe S, Yamauchi D, Mineyuki Y 2015. Preprophase band formation and cortical division zone establishment: RanGAP behaves differently from microtubules during their band formation. Plant Signal. Behav. 10:e1060385
    [Google Scholar]
  176. 176. 
    Yamaoka S, Shimono Y, Shirakawa M, Fukao Y, Kawase T et al. 2013. Identification and dynamics of Arabidopsis adaptor protein 2 complex and its involvement in floral organ development. Plant Cell 25:2958–69
    [Google Scholar]
  177. 177. 
    Yanagisawa M, Alonso JM, Szymanski DB 2018. Microtubule-dependent confinement of a cell signaling and actin polymerization control module regulates polarized cell growth. Curr. Biol. 28:2459–66.e4
    [Google Scholar]
  178. 178. 
    Yoo CM, Naramoto S, Sparks JA, Khan BR, Nakashima J et al. 2018. Deletion analysis of AGD1 reveals domains crucial for plasma membrane recruitment and function in root hair polarity. J. Cell Sci. 131:jcs203828
    [Google Scholar]
  179. 179. 
    Zang A, Xu X, Neill S, Cai W 2010. Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress. J. Exp. Bot. 61:777–89
    [Google Scholar]
  180. 180. 
    Zhang Y, Persson S, Hirst J, Robinson MS, van Damme D, Sánchez-Rodriguez C 2015. Change your TPLATE, change your fate: plant CME and beyond. Trends Plant Sci 20:41–48
    [Google Scholar]
  181. 181. 
    Zhang Z, Guo X, Ge C, Ma Z, Jiang M et al. 2017. KETCH1 imports HYL1 to nucleus for miRNA biogenesis in Arabidopsis. PNAS 114:4011–16
    [Google Scholar]
  182. 182. 
    Zhao Q, Brkljacic J, Meier I 2008. Two distinct interacting classes of nuclear envelope–associated coiled-coil proteins are required for the tissue-specific nuclear envelope targeting of Arabidopsis RanGAP. Plant Cell 20:1639–51
    [Google Scholar]
  183. 183. 
    Zheng H, Camacho L, Wee E, Batoko H, Legen J et al. 2005. A Rab-E GTPase mutant acts downstream of the Rab-D subclass in biosynthetic membrane traffic to the plasma membrane in tobacco leaf epidermis. Plant Cell 17:2020–36
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-112619-025827
Loading
/content/journals/10.1146/annurev-arplant-112619-025827
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error