1932

Abstract

Photometric redshifts are essential in studies of both galaxy evolution and cosmology, as they enable analyses of objects too numerous or faint for spectroscopy. The Rubin Observatory, , and will soon provide a new generation of imaging surveys with unprecedented area coverage, wavelength range, and depth. To take full advantage of these data sets, further progress in photometric redshift methods is needed. In this review, we focus on the greatest common challenges and prospects for improvement in applications of photometric redshifts to the next generation of surveys:

  • ▪  Gains in performance (i.e., the precision of redshift estimates for individual galaxies) could greatly enhance studies of galaxy evolution and some probes of cosmology.
  • ▪  Improvements in characterization (i.e., the accurate recovery of redshift distributions of galaxies in the presence of uncertainty on individual redshifts) are urgently needed for cosmological measurements with next-generation surveys.

To achieve both of these goals, improvements in the scope and treatment of the samples of spectroscopic redshifts that make high-fidelity photometric redshifts possible will also be needed. For the full potential of the next generation of surveys to be reached, the characterization of redshift distributions must improve by roughly an order of magnitude compared with the current state of the art, requiring progress on a wide variety of fronts. We conclude by presenting a speculative evaluation of how photometric redshift methods and the collection of the necessary spectroscopic samples may improve by the time near-future surveys are completed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-032122-014611
2022-08-18
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/astro/60/1/annurev-astro-032122-014611.html?itemId=/content/journals/10.1146/annurev-astro-032122-014611&mimeType=html&fmt=ahah

Literature Cited

  1. Abul Hayat M, Harrington P, Stein G, Lukić Z, Mustafa M. 2021. arXiv:2101.04293 [astro-ph]
  2. Abul Hayat M, Stein G, Harrington P, Lukić Z, Mustafa M 2020. arXiv:2012.13083 [astro-ph]
  3. Acquaviva V, Gawiser E, Guaita L. 2011. Astrophys. J. 737:247
    [Google Scholar]
  4. Aihara H, AlSayyad Y, Ando M et al. 2021. arXiv:2108.13045 [astro-ph]
  5. Aihara H, Arimoto N, Armstrong R et al. 2018. Publ. Astron. Soc. Jpn. 70:S4
    [Google Scholar]
  6. Alarcon A, Gaztanaga E, Eriksen M et al. 2021. MNRAS 501:46103–22
    [Google Scholar]
  7. Alarcon A, Sánchez C, Bernstein GM, Gaztañaga E. 2020. MNRAS 498:22614–31
    [Google Scholar]
  8. Albrecht A, Bernstein G, Cahn R et al. 2006. arXiv:astro-ph/0609591
  9. Allen SW, Evrard AE, Mantz AB. 2011. Annu. Rev. Astron. Astrophys. 49:409–70
    [Google Scholar]
  10. Almosallam IA, Jarvis MJ, Roberts SJ. 2016. MNRAS 462:1726–39
    [Google Scholar]
  11. Arnouts S, Cristiani S, Moscardini L et al. 1999. MNRAS 310:2540–56
    [Google Scholar]
  12. Baldauf T, Smith RE, Seljak U, Mandelbaum R. 2010. Phys. Rev. D 81:063531
    [Google Scholar]
  13. Baum WA 1962. Problems of Extra-Galactic Research GC McVittie 390–400 New York: Macmillan
    [Google Scholar]
  14. Beck R, Dobos L, Budavári T, Szalay AS, Csabai I. 2016. MNRAS 460:21371–81
    [Google Scholar]
  15. Benítez N. 2000. Astrophys. J. 536:2571–83
    [Google Scholar]
  16. Bernstein G, Huterer D. 2010. MNRAS 401:21399–408
    [Google Scholar]
  17. Bonnett C, Troxel MA, Hartley W et al. 2016. Phys. Rev. D 94:042005
    [Google Scholar]
  18. Bordoloi R, Lilly SJ, Amara A. 2010. MNRAS 406:2881–95
    [Google Scholar]
  19. Brammer GB, van Dokkum PG, Coppi P. 2008. Astrophys. J. 686:21503–13
    [Google Scholar]
  20. Brescia M, Cavuoti S, Razim O et al. 2021. Front. Astron. Space Sci. 8:70
    [Google Scholar]
  21. Brinchmann J, Inami H, Bacon R et al. 2017. Astron. Astrophys. 608:A3
    [Google Scholar]
  22. Bruzual G, Charlot S 1993. Astrophys. J. 405:538–53
    [Google Scholar]
  23. Bruzual G, Charlot S 2003. MNRAS 344:41000–28
    [Google Scholar]
  24. Buchs R, Davis C, Gruen D et al. 2019. MNRAS 489:1820–41
    [Google Scholar]
  25. Budavári T. 2009. Astrophys. J. 695:1747–54
    [Google Scholar]
  26. Bundy K, Leauthaud A, Saito S et al. 2017. Astrophys. J. 851:134
    [Google Scholar]
  27. Carnall AC, McLure RJ, Dunlop JS, Davé R. 2018. MNRAS 480:44379–401
    [Google Scholar]
  28. Carnero A, Sánchez E, Crocce M, Cabré A, Gaztañaga E. 2012. MNRAS 419:21689–94
    [Google Scholar]
  29. Carrasco Kind M, Brunner RJ. 2013. MNRAS 432:21483–501
    [Google Scholar]
  30. Carrasco Kind M, Brunner RJ. 2014. MNRAS 441:43550–61
    [Google Scholar]
  31. Cawthon R, Elvin-Poole J, Porredon A et al. 2020. arXiv:2012.12826 [astro-ph]
  32. Chang YY, van der Wel A, Rix HW et al. 2013. Astrophys. J. 773:2149
    [Google Scholar]
  33. Chevallard J, Charlot S 2016. MNRAS 462:21415–43
    [Google Scholar]
  34. Chevance M, Weijmans AM, Damjanov I et al. 2012. Astrophys. J. Lett. 754:2L24
    [Google Scholar]
  35. Coelho PRT, Bruzual G, Charlot S 2019. MNRAS 491:22025–42
    [Google Scholar]
  36. Coil AL, Blanton MR, Burles SM et al. 2011. Astrophys. J. 741:18
    [Google Scholar]
  37. Coleman GD, Wu CC, Weedman DW. 1980. Astrophys. J. Suppl. 43:393–416
    [Google Scholar]
  38. Collister AA, Lahav O. 2004. Publ. Astron. Soc. Pac. 116:818345–51
    [Google Scholar]
  39. Connolly AJ, Szalay AS, Bershady MA, Kinney AL, Calzetti D. 1995. Astron. J. 110:1071–82
    [Google Scholar]
  40. Conroy C. 2013. Annu. Rev. Astron. Astrophys. 51:393–455
    [Google Scholar]
  41. Conroy C, Gunn JE. 2010. Astrophys. J. 712:833–57
    [Google Scholar]
  42. Cooper MC, Newman JA, Croton DJ et al. 2006. MNRAS 370:1198–212
    [Google Scholar]
  43. Cooper MC, Newman JA, Madgwick DS et al. 2005. Astrophys. J. 634:2833–48
    [Google Scholar]
  44. Cordero JP, Harrison I, Rollins RP et al. 2021. arXiv:2109.09636 [astro-ph]
  45. Courteau S, Cappellari M, de Jong RS et al. 2014. Rev. Mod. Phys. 86:147–119
    [Google Scholar]
  46. Crenshaw JF, Connolly AJ. 2020. Astron. J. 160:4191
    [Google Scholar]
  47. Cunha CE, Huterer D, Busha MT, Wechsler RH. 2012. MNRAS 423:1909–24
    [Google Scholar]
  48. Dahlen T, Mobasher B, Faber SM et al. 2013. Astrophys. J. 775:293
    [Google Scholar]
  49. Dalmasso N, Pospisil T, Lee AB et al. 2020. Astron. Comput. 30:100362
    [Google Scholar]
  50. de Jong RS, Agertz O, Berbel AA et al. 2019. Messenger 175:3–11
    [Google Scholar]
  51. De Vicente J, Sánchez E, Sevilla-Noarbe I. 2016. MNRAS 459:33078–88
    [Google Scholar]
  52. DES Collab 2016. MNRAS 460:21270–99
    [Google Scholar]
  53. DES Collab 2021a. arXiv:2101.05765 [astro-ph]
  54. DES Collab 2021b. arXiv:2107.04646 [astro-ph]
  55. DESI Collab 2016a. arXiv:1611.00036 [astro-ph]
  56. DESI Collab 2016b. arXiv:1611.00037 [astro-ph]
  57. Dey B, Andrews BH, Newman JA et al. 2021a. arXiv:2112.03939 [astro-ph]
  58. Dey B, Newman JA, Andrews BH et al. 2021b. arXiv:2110.15209 [astro-ph]
  59. Doré O, Werner MW, Ashby MLN et al. 2018. arXiv:1805.05489 [astro-ph]
  60. Dunlop JS, Cirasuolo M, McLure RJ. 2007. MNRAS 376:31054–64
    [Google Scholar]
  61. Eddington AS. 1913. MNRAS 73:359–60
    [Google Scholar]
  62. Efstathiou G. 1992. MNRAS 256:2P43–47
    [Google Scholar]
  63. Ellis R, Dawson K. 2019. Bull. Am. Astron. Soc. 51:7 https://baas.aas.org/pub/2020n7i045
    [Google Scholar]
  64. Euclid Collab 2020. Astron. Astrophys. 644:A31
    [Google Scholar]
  65. Everett S, Yanny B, Kuropatkin N et al. 2020. arXiv:2012.12825 [astro-ph]
  66. Faber SM, Phillips AC, Kibrick RI et al. 2003. Proc. SPIE 4841. https://doi.org/10.1117/12.460346
    [Crossref]
  67. Fagioli M, Tortorelli L, Herbel J et al. 2020. J. Cosmol. Astropart. Phys. 06:050
    [Google Scholar]
  68. Feldmann R, Carollo CM, Porciani C et al. 2006. MNRAS 372:2565–77
    [Google Scholar]
  69. Feroz F, Hobson MP, Bridges M. 2009. MNRAS 398:41601–14
    [Google Scholar]
  70. Finkelstein SL, Ryan RE Jr., Papovich C et al. 2015. Astrophys. J. 810:171
    [Google Scholar]
  71. Gatti M, Giannini G, Bernstein GM et al. 2022. MNRAS 510122347
    [Google Scholar]
  72. Geha M, Wechsler RH, Mao YY et al. 2017. Astrophys. J. 847:14
    [Google Scholar]
  73. George D, Huerta EA. 2018. Phys. Lett. B 778:64–70
    [Google Scholar]
  74. Gorecki A, Abate A, Ansari R et al. 2014. Astron. Astrophys. 561:A128
    [Google Scholar]
  75. Graham ML, Connolly AJ, Ivezić Ž et al. 2018. Astron. J. 155:11
    [Google Scholar]
  76. Grogin NA, Kocevski DD, Faber SM et al. 2011. Astrophys. J. Suppl. 197:235
    [Google Scholar]
  77. Gruen D, Brimioulle F. 2017. MNRAS 468:1769–82
    [Google Scholar]
  78. Guzzo L, Scodeggio M, Garilli B et al. 2014. Astron. Astrophys. 566:A108
    [Google Scholar]
  79. Hartley WG, Chang C, Samani S et al. 2020. MNRAS 496:44769–86
    [Google Scholar]
  80. Hearin AP, Zentner AR, Ma Z, Huterer D. 2010. Astrophys. J. 720:21351–69
    [Google Scholar]
  81. Henghes B, Pettitt C, Thiyagalingam J, Hey T, Lahav O. 2021. arXiv:2109.02503 [astro-ph]
  82. Herbel J, Kacprzak T, Amara A et al. 2017. J. Cosmol. Astropart. Phys. 08:035
    [Google Scholar]
  83. Hezaveh YD, Perreault Levasseur L, Marshall PJ 2017. Nature 548:7669555–57
    [Google Scholar]
  84. Hikage C, Oguri M, Hamana T et al. 2019. Publ. Astron. Soc. Jpn. 71:243
    [Google Scholar]
  85. Hildebrandt H, Köhlinger F, van den Busch JL et al. 2020a. Astron. Astrophys. 633:A69
    [Google Scholar]
  86. Hildebrandt H, Köhlinger F, van den Busch JL et al. 2020b. Astron. Astrophys. 633:A69
    [Google Scholar]
  87. Hildebrandt H, van den Busch JL, Wright AH et al. 2021. Astron. Astrophys. 647:A124
    [Google Scholar]
  88. Hildebrandt H, Viola M, Heymans C et al. 2017. MNRAS 465:21454–98
    [Google Scholar]
  89. Hill A, Flagey N, McConnachie A et al. 2018. arXiv:1810.08695 [astro-ph]
  90. Hogg DW, Blanton MR, Eisenstein DJ et al. 2003. Astrophys. J. Lett. 585:1L5–9
    [Google Scholar]
  91. Hoyle B. 2016. Astron. Comput. 16:34–40
    [Google Scholar]
  92. Hoyle B, Gruen D, Bernstein GM et al. 2018. MNRAS 478:1592–610
    [Google Scholar]
  93. Hu W. 1999. Astrophys. J. Lett. 522:1L21–24
    [Google Scholar]
  94. Huang JS, Faber SM, Willmer CNA et al. 2013. Astrophys. J. 766:121
    [Google Scholar]
  95. Huang S, Leauthaud A, Murata R et al. 2018. Publ. Astron. Soc. Jpn. 70:S6
    [Google Scholar]
  96. Hubble E, Tolman RC. 1935. Astrophys. J. 82:302–37
    [Google Scholar]
  97. Ilbert O, Arnouts S, McCracken HJ et al. 2006. Astron. Astrophys. 457:3841–56
    [Google Scholar]
  98. Ivezić Ž, Kahn SM, Tyson JA et al. 2019. Astrophys. J. 873:2111
    [Google Scholar]
  99. Joudaki S, Hildebrandt H, Traykova D et al. 2020. Astron. Astrophys. 638:L1
    [Google Scholar]
  100. Kasim MF, Watson-Parris D, Deaconu L et al. 2020. arXiv:2001.08055 [stat]
  101. Kinney AL, Calzetti D, Bohlin RC et al. 1996. Astrophys. J. 467:38–60
    [Google Scholar]
  102. Kodra D. 2019. The galaxy morphology–density relation at high redshift with CANDELS PhD Thesis Univ. Pittsburgh Pittsburgh, PA:
    [Google Scholar]
  103. Koo DC. 1985. Astron. J. 90:418–40
    [Google Scholar]
  104. Laigle C, McCracken HJ, Ilbert O et al. 2016. Astrophys. J. Suppl. 224:224
    [Google Scholar]
  105. Lang D, Hogg DW. 2012. Astron. J. 144:246
    [Google Scholar]
  106. Laureijs R, Amiaux J, Arduini S et al. 2011. arXiv:1110.3193 [astro-ph]
  107. Lawrence J, Ben-Ami S, Braulio A et al. 2020. Proc. SPIE 11447. https://doi.org/10.1117/12.2563238
    [Crossref]
  108. Le Fèvre O, Cassata P, Cucciati O et al. 2013. Astron. Astrophys. 559:A14
    [Google Scholar]
  109. Leistedt B, Hogg DW, Wechsler RH, DeRose J. 2019. Astrophys. J. 881:180
    [Google Scholar]
  110. Leistedt B, Mortlock DJ, Peiris HV. 2016. MNRAS 460:44258–67
    [Google Scholar]
  111. Licquia TC, Newman JA. 2015. Astrophys. J. 806:196
    [Google Scholar]
  112. Lilly SJ, Le Fèvre O, Renzini A et al. 2007. Astrophys. J. Suppl. 172:170–85
    [Google Scholar]
  113. Linder EV, Mitra A 2019. Phys. Rev. D 100:043542
    [Google Scholar]
  114. Loh ED, Spillar EJ. 1986. Astrophys. J. 303:154–61
    [Google Scholar]
  115. LSST Dark Energy Sci. Collab 2018. arXiv:1809.01669 [astro-ph]
  116. LSST Sci. Collab 2009. arXiv:0912.0201 [astro-ph]
  117. Ma Z, Bernstein G. 2008. Astrophys. J. 682:139–48
    [Google Scholar]
  118. MacCrann N, Becker MR, McCullough J et al. 2020. arXiv:2012.08567 [astro-ph]
  119. Malz AI. 2020. Probabilistic analysis methods for cosmology using uncertainty-dominated photometric data. PhD Thesis NYU New York:
    [Google Scholar]
  120. Malz AI. 2021. Phys. Rev. D 103:083502
    [Google Scholar]
  121. Malz AI, Marshall PJ, DeRose J et al. 2018. Astron. J. 156:135
    [Google Scholar]
  122. Mandelbaum R. 2018. Annu. Rev. Astron. Astrophys. 56:393–433
    [Google Scholar]
  123. Mao YY, Geha M, Wechsler RH et al. 2021. Astrophys. J. 907:285
    [Google Scholar]
  124. Martí P, Miquel R, Castander FJ et al. 2014. MNRAS 442:192–109
    [Google Scholar]
  125. Masters DC, Capak P, Stern D et al. 2015. Astrophys. J. 813:153
    [Google Scholar]
  126. Masters DC, Stern DK, Cohen JG et al. 2019. Astrophys. J. 877:281
    [Google Scholar]
  127. Matthews DJ. 2014. Exploring the distant universe with cross-correlation statistics. PhD Thesis Univ. Pittsburgh Pittsburgh, PA:
    [Google Scholar]
  128. Matthews DJ, Newman JA. 2010. Astrophys. J. 721:1456–68
    [Google Scholar]
  129. McLure RJ, Pentericci L, Cimatti A et al. 2018. MNRAS 479:125–42
    [Google Scholar]
  130. McQuinn M, White M. 2013. MNRAS 433:42857–83
    [Google Scholar]
  131. Melchior P, Joseph R, Sanchez J, MacCrann N, Gruen D. 2021. Nat. Rev. Phys. 3:712–18
    [Google Scholar]
  132. Meshcheryakov AV, Glazkova VV, Gerasimov SV, Mashechkin IV. 2018. Astron. Lett. 44:12735–53
    [Google Scholar]
  133. Moessner R, Jain B. 1998. MNRAS 294:1L18–24
    [Google Scholar]
  134. Molino A, Benítez N, Moles M et al. 2014. MNRAS 441:42891–922
    [Google Scholar]
  135. Momcheva IG, Brammer GB, van Dokkum PG et al. 2016. Astrophys. J. Suppl. 225:227
    [Google Scholar]
  136. MSE Sci. Team 2019. arXiv:1904.04907 [astro-ph]
  137. Myles J, Alarcon A, Amon A et al. 2021. MNRAS 505:34249–77
    [Google Scholar]
  138. Newman JA. 2008. Astrophys. J. 684:188–101
    [Google Scholar]
  139. Newman JA, Abate A, Abdalla FB et al. 2015. Astropart. Phys. 63:81–100
    [Google Scholar]
  140. Newman JA, Blazek J, Chisari NE et al. 2019. Bull. Am. Astron. Assoc. 51:3358
    [Google Scholar]
  141. Newman JA, Cooper MC, Davis M et al. 2013. Astrophys. J. Suppl. 208:15
    [Google Scholar]
  142. Newman JA, Zepf SE, Davis M et al. 1999. Astrophys. J. 523:2506–20
    [Google Scholar]
  143. Padmanabhan N, Schlegel DJ, Seljak U et al. 2007. MNRAS 378:3852–72
    [Google Scholar]
  144. Pandey S, Krause E, DeRose J et al. 2021. arXiv:2105.13545 [astro-ph]
  145. Pasquet J, Bertin E, Treyer M, Arnouts S, Fouchez D. 2019. Astron. Astrophys. 621:A26
    [Google Scholar]
  146. Press WH. 1997. Unsolved Problems in Astrophysics JN Bahcall, JP Ostriker 49–60 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  147. Quadri RF, Williams RJ. 2010. Astrophys. J. 725:1794–802
    [Google Scholar]
  148. Rahman M, Ménard B, Scranton R, Schmidt SJ, Morrison CB. 2015. MNRAS 447:43500–11
    [Google Scholar]
  149. Ruiz-Macias O, Zarrouk P, Cole S et al. 2020. Res. Notes Am. Astron. Assoc. 4:10187
    [Google Scholar]
  150. Sadeh I, Abdalla FB, Lahav O. 2016. Publ. Astron. Soc. Pac. 128:968104502
    [Google Scholar]
  151. Salvato M, Ilbert O, Hoyle B. 2019. Nat. Astron. 3:212–22
    [Google Scholar]
  152. Sánchez C, Bernstein GM. 2019. MNRAS 483:22801–13
    [Google Scholar]
  153. Sánchez C, Carrasco Kind M, Lin H et al. 2014. MNRAS 445:21482–506
    [Google Scholar]
  154. Sánchez C, Mendoza I, Kirkby DP et al. 2021. J. Cosmol. Astropart. Phys. 07:043
    [Google Scholar]
  155. Sánchez E, Carnero A, García-Bellido J et al. 2011. MNRAS 411:1277–88
    [Google Scholar]
  156. Santini P, Ferguson HC, Fontana A et al. 2015. Astrophys. J. 801:297
    [Google Scholar]
  157. Schaan E, Ferraro S, Seljak U. 2020. J. Cosmol. Astropart. Phys. 12:001
    [Google Scholar]
  158. Schlegel D, Kollmeier JA, Ferraro S. 2019. Bull. Am. Astron. Soc. 51:7229
    [Google Scholar]
  159. Schmidt SJ, Malz AI, Soo JYH et al. 2020. MNRAS 499:21587–606
    [Google Scholar]
  160. Schmidt SJ, Ménard B, Scranton R, Morrison C, McBride CK. 2013. MNRAS 431:43307–18
    [Google Scholar]
  161. Seo HJ, Ho S, White M et al. 2012. Astrophys. J. 761:113
    [Google Scholar]
  162. Sheldon ES, Becker MR, MacCrann N, Jarvis M. 2020. Astrophys. J. 902:2138
    [Google Scholar]
  163. Sheth RK. 2007. MNRAS 378:2709–15
    [Google Scholar]
  164. Spergel D, Gehrels N, Baltay C et al. 2015. arXiv:1503.03757 [astro-ph]
  165. Stabenau HF, Connolly A, Jain B 2008. MNRAS 387:31215–26
    [Google Scholar]
  166. Stanford SA, Masters D, Darvish B et al. 2021. arXiv:2106.11367 [astro-ph]
  167. Stölzner B, Joachimi B, Korn A, Hildebrandt H, Wright AH. 2020. arXiv:2012.07707 [astro-ph]
  168. Takada M, Ellis RS, Chiba M et al. 2014. Publ. Astron. Soc. Jpn. 66:1R1
    [Google Scholar]
  169. Tamura N, Takato N, Shimono A et al. 2016. Proc. SPIE 9908:99088U
    [Google Scholar]
  170. Tanaka M, Coupon J, Hsieh BC et al. 2018. Publ. Astron. Soc. Jpn. 70:S9
    [Google Scholar]
  171. Tolman RC. 1930. PNAS 16:7511–20
    [Google Scholar]
  172. Tortorelli L, Siudek M, Moser B et al. 2021. arXiv:2106.02651 [astro-ph]
  173. Treu T. 2010. Annu. Rev. Astron. Astrophys. 48:87–125
    [Google Scholar]
  174. van den Busch JL, Hildebrandt H, Wright AH et al. 2020. Astron. Astrophys. 642:A200
    [Google Scholar]
  175. van den Busch JL, Wright AH, Hildebrandt H et al. 2022. Astron. Astrophys In pressarXiv:2204.02396 [astro-ph]
    [Google Scholar]
  176. Vilalta R, Ishida EEO, Beck R et al. 2017. 2017 IEEE Symposium Series on Computational Intelligence1–8 Piscataway, NJ: IEEE
    [Google Scholar]
  177. Wolf C, Meisenheimer K, Rix HW et al. 2003. Astron. Astrophys. 401:73–98
    [Google Scholar]
  178. Wright AH, Hildebrandt H, van den Busch JL et al. 2020. Astron. Astrophys. 640:L14
    [Google Scholar]
  179. zCOSMOS Collab 2016. ESO phase 3 data release description for zCOSMOS Data Release, ESO Garching, Ger: https://www.eso.org/sci/observing/phase3/data_releases/zcosmos_dr3_b2.pdf
    [Google Scholar]
  180. Zhang P, Pen UL, Bernstein G. 2010. MNRAS 405:1359–74
    [Google Scholar]
  181. Zhao D, Dalmasso N, Izbicki R, Lee AB. 2021. arXiv:2102.10473 [stat]
  182. Zhou R, Cooper MC, Newman JA et al. 2019. MNRAS 488:44565–84
    [Google Scholar]
  183. Zhou R, Newman JA, Mao YY et al. 2021. MNRAS 501:33309–31
    [Google Scholar]
/content/journals/10.1146/annurev-astro-032122-014611
Loading
/content/journals/10.1146/annurev-astro-032122-014611
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error