1932

Abstract

The corona of the Sun is a unique environment in which magnetohydrodynamic (MHD) waves, one of the fundamental processes of plasma astrophysics, are open to a direct study. There is striking progress in both observational and theoretical research of MHD wave processes in the corona, with the main recent achievements summarized as follows:

  • ▪   Both periods and wavelengths of the principal MHD modes of coronal plasma structures, such as kink, slow and sausage modes, are confidently resolved.
  • ▪   Scalings of various parameters of detected waves and waveguiding plasma structures allow for the validation of theoretical models. In particular, kink oscillation period scales linearly with the length of the oscillating coronal loop, clearly indicating that they are eigenmodes of the loop. Damping of decaying kink and standing slow oscillations depends on the oscillation amplitudes, demonstrating the importance of nonlinear damping.
  • ▪   The dominant excitation mechanism for decaying kink oscillations is associated with magnetized plasma eruptions. Propagating slow waves are caused by the leakage of chromospheric oscillations. Fast wave trains could be formed by waveguide dispersion.
  • ▪   The knowledge gained in the study of coronal MHD waves provides ground for seismological probing of coronal plasma parameters, such as the Alfvén speed, the magnetic field and its topology, stratification, temperature, fine structuring, polytropic index, and transport coefficients.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-032320-042940
2020-08-18
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/astro/58/1/annurev-astro-032320-042940.html?itemId=/content/journals/10.1146/annurev-astro-032320-042940&mimeType=html&fmt=ahah

Literature Cited

  1. Afanasyev AN, Nakariakov VM 2015. Astron. Astrophys. 573:A32
    [Google Scholar]
  2. Allian F, Jain R, Hindman BW 2019. Ap. J. 880:3
    [Google Scholar]
  3. Andries J, van Doorsselaere T, Roberts B et al 2009. Space Sci. Rev. 149:3–29
    [Google Scholar]
  4. Anfinogentov SA, Nakariakov VM 2019. Ap. J. Lett.884:L40
    [Google Scholar]
  5. Anfinogentov SA, Nakariakov VM, Nisticò G 2015. Astron. Astrophys.583:A136
    [Google Scholar]
  6. Antolin P, De Moortel I, Van Doorsselaere T, Yokoyama T 2016. Ap. J. Lett. 830:L22
    [Google Scholar]
  7. Antolin P, De Moortel I, Van Doorsselaere T, Yokoyama T 2017. Ap. J. 836:219
    [Google Scholar]
  8. Antolin P, Pagano P, De Moortel I, Nakariakov VM 2018. Ap. J. Lett.861:L15
    [Google Scholar]
  9. Antolin P, Van Doorsselaere T 2013. Astron. Astrophys.555:A74
    [Google Scholar]
  10. Arregui I 2015. Philos. Trans. R. Soc. Lond. Ser. A 373:20140261
    [Google Scholar]
  11. Arregui I 2018. Adv. Space Res. 61:655–72
    [Google Scholar]
  12. Arregui I, Oliver R, Ballester JL 2012. Living Rev. Solar Phys. 9:2
    [Google Scholar]
  13. Aschwanden MJ 2006. Philos. Trans. R. Soc. Lond. Ser. A 364:417–32
    [Google Scholar]
  14. Ballai I 2007. Solar Phys. 246:177–85
    [Google Scholar]
  15. Banerjee D, Gupta GR, Teriaca L 2011. Space Sci. Rev. 158:267–88
    [Google Scholar]
  16. Banerjee D, Krishna Prasad S 2016. AGU Geophys. Monogr. Ser. 216:419–30
    [Google Scholar]
  17. Botha GJJ, Arber TD, Nakariakov VM, Zhugzhda YD 2011. Ap. J. 728:84
    [Google Scholar]
  18. Bradshaw SJ, Emslie AG, Bian NH, Kontar EP 2019. Ap. J. 880:80
    [Google Scholar]
  19. Carley EP, Hayes LA, Murray SA et al 2019. Nat. Commun. 10:2276
    [Google Scholar]
  20. Chen PF 2011. Living Rev. Solar Phys. 8:1
    [Google Scholar]
  21. Chen SX, Li B, Xia LD, Yu H 2015a. Solar Phys. 290:2231–43
    [Google Scholar]
  22. Chen SX, Li B, Xiong M, Yu H, Guo MZ 2015b. Ap. J. 812:22
    [Google Scholar]
  23. Chen SX, Li B, Xiong M, Yu H, Guo MZ 2016. Ap. J. 833:114
    [Google Scholar]
  24. Chi PJ, Russell CT, Ohtani S 2009. Geophys. Res. Lett.36:L08107
    [Google Scholar]
  25. Cho IH, Cho KS, Nakariakov VM, Kim S, Kumar P 2016. Ap. J. 830:110
    [Google Scholar]
  26. Claes N, Keppens R 2019. Astron. Astrophys.624:A96
    [Google Scholar]
  27. Cranmer SR, Winebarger AR 2019. Annu. Rev. Astron. Astrophys. 57:157–87
    [Google Scholar]
  28. De Moortel I 2009. Space Sci. Rev. 149:65–81
    [Google Scholar]
  29. De Moortel I, Browning P 2015. Philos. Trans. R. Soc. Lond. Ser. A 373:20140269
    [Google Scholar]
  30. De Moortel I, Hood AW 2003. Astron. Astrophys. 408:755–65
    [Google Scholar]
  31. De Moortel I, Hood AW 2004. Astron. Astrophys. 415:705–15
    [Google Scholar]
  32. De Moortel I, Hood AW, Gerrard CL, Brooks SJ 2004. Astron. Astrophys. 425:741–52
    [Google Scholar]
  33. De Moortel I, Nakariakov VM 2012. Philos. Trans. R. Soc. Lond. Ser. A 370:3193–216
    [Google Scholar]
  34. De Moortel I, Pascoe DJ 2012. Ap. J. 746:31
    [Google Scholar]
  35. Deres AS, Anfinogentov SA 2015. Astron. Rep. 59:959–67
    [Google Scholar]
  36. Doyle JG, Shetye J, Antonova AE et al 2018. MNRAS 475:2842–51
    [Google Scholar]
  37. Duckenfield T, Anfinogentov SA, Pascoe DJ, Nakariakov VM 2018. Ap. J. Lett.854:L5
    [Google Scholar]
  38. Dulk GA 1985. Annu. Rev. Astron. Astrophys. 23:169–224
    [Google Scholar]
  39. Dymova MV, Ruderman MS 2005. Solar Phys. 229:79–94
    [Google Scholar]
  40. Edwin PM, Roberts B 1983. Solar Phys. 88:179–91
    [Google Scholar]
  41. Fang X, Yuan D, Van Doorsselaere T, Keppens R, Xia C 2015. Ap. J. 813:33
    [Google Scholar]
  42. Fasoli A, Testa D, Sharapov S et al 2002. Plasma Phys. Control. Fus. 44:B159–72
    [Google Scholar]
  43. Giagkiozis I, Goossens M, Verth G, Fedun V, Van Doorsselaere T 2016. Ap. J. 823:71
    [Google Scholar]
  44. Goddard CR, Antolin P, Pascoe DJ 2018. Ap. J. 863:167
    [Google Scholar]
  45. Goddard CR, Nisticò G, Nakariakov VM, Zimovets IV, White SM 2016. Astron. Astrophys.594:A96
    [Google Scholar]
  46. Goossens M, Andries J, Soler R et al 2012. Ap. J. 753:111
    [Google Scholar]
  47. Goossens M, Erdélyi R, Ruderman MS 2011. Space Sci. Rev. 158:289–338
    [Google Scholar]
  48. Gosain S 2012. Ap. J. 749:85
    [Google Scholar]
  49. Gruszecki M, Nakariakov VM, Van Doorsselaere T 2012. Astron. Astrophys. 543:A12
    [Google Scholar]
  50. Guo M, Van Doorsselaere T, Karampelas K et al 2019. Ap. J. 870:55
    [Google Scholar]
  51. Guo MZ, Chen SX, Li B, Xia LD, Yu H 2016. Solar Phys. 291:877–96
    [Google Scholar]
  52. Gupta GR 2014. Astron. Astrophys.568:A96
    [Google Scholar]
  53. Gupta GR, Banerjee D, Teriaca L, Imada S, Solanki S 2010. Ap. J. 718:11–22
    [Google Scholar]
  54. Hindman BW, Jain R 2008. Ap. J. 677:769–80
    [Google Scholar]
  55. Hindman BW, Jain R 2014. Ap. J. 784:103
    [Google Scholar]
  56. Hood AW, Ruderman M, Pascoe DJ et al 2013. Astron. Astrophys.551:A39
    [Google Scholar]
  57. Howson TA, De Moortel I, Antolin P 2017. Astron. Astrophys.602:A74
    [Google Scholar]
  58. Huang Z, Mou C, Fu H et al 2018. Ap. J. Lett.853:L26
    [Google Scholar]
  59. Ibanez S, Miguel H, Escalona T, Orlando B 1993. Ap. J. 415:335–41
    [Google Scholar]
  60. Inglis AR, van Doorsselaere T, Brady CS, Nakariakov VM 2009. Astron. Astrophys. 503:569–75
    [Google Scholar]
  61. Jackman JAG, Wheatley PJ, Pugh CE et al 2019. MNRAS 482:5553–66
    [Google Scholar]
  62. Jess DB, Morton RJ, Verth G et al 2015. Space Sci. Rev. 190:103–61
    [Google Scholar]
  63. Jess DB, Reznikova VE, Ryans RSI et al 2016. Nat. Phys. 12:179–85
    [Google Scholar]
  64. Kaneda K, Misawa H, Iwai K et al 2018. Ap. J. Lett.855:L29
    [Google Scholar]
  65. Karampelas K, Van Doorsselaere T 2018. Astron. Astrophys.610:L9
    [Google Scholar]
  66. Karlický M, Mészárosová H, Jelínek P 2013. Astron. Astrophys. 550:A1
    [Google Scholar]
  67. Kiddie G, De Moortel I, Del Zanna G, McIntosh SW, Whittaker I 2012. Solar Phys. 279:427–52
    [Google Scholar]
  68. Kim S, Nakariakov VM, Shibasaki K 2012. Ap. J. Lett.756:L36
    [Google Scholar]
  69. Klimchuk JA 2015. Philos. Trans. R. Soc. Lond. Ser. A 373:20140256
    [Google Scholar]
  70. Kohutova P, Verwichte E 2018. Astron. Astrophys.613:L3
    [Google Scholar]
  71. Kolotkov DY, Nakariakov VM, Kontar EP 2018a. Ap. J. 861:33
    [Google Scholar]
  72. Kolotkov DY, Nakariakov VM, Zavershinskii DI 2019. Astron. Astrophys.628:A133
    [Google Scholar]
  73. Kolotkov DY, Pugh CE, Broomhall AM, Nakariakov VM 2018b. Ap. J. Lett.858:L3
    [Google Scholar]
  74. Konkol P, Murawski K, Lee D, Weide K 2010. Astron. Astrophys.521:A34
    [Google Scholar]
  75. Kopylova YG, Melnikov AV, Stepanov AV, Tsap YT, Goldvarg TB 2007. Astron. Lett. 33:706–13
    [Google Scholar]
  76. Krishna Prasad S, Banerjee D, Singh J 2012a. Solar Phys. 281:67–85
    [Google Scholar]
  77. Krishna Prasad S, Banerjee D, Van Doorsselaere T 2014. Ap. J. 789:118
    [Google Scholar]
  78. Krishna Prasad S, Banerjee D, Van Doorsselaere T, Singh J 2012b.. Astron. Astrophys. 546:A50
  79. Krishna Prasad S, Jess DB, Van Doorsselaere T 2019. Front. Astron. Space Sci. 6:57
    [Google Scholar]
  80. Krishna Prasad S, Raes JO, Van Doorsselaere T, Magyar N, Jess DB 2018. Ap. J. 868:149
    [Google Scholar]
  81. Kumar P, Innes DE, Inhester B 2013. Ap. J. Lett.779:L7
    [Google Scholar]
  82. Kumar P, Nakariakov VM, Cho KS 2015. Ap. J. 804:4
    [Google Scholar]
  83. Kumar P, Nakariakov VM, Cho KS 2017. Ap. J. 844:149
    [Google Scholar]
  84. Kupriyanova EG, Kashapova LK, Van Doorsselaere T et al 2019. MNRAS 483:5499–507
    [Google Scholar]
  85. Kupriyanova EG, Melnikov VF, Puzynya VM, Shibasaki K, Ji HS 2014. Astron. Rep. 58:573–77
    [Google Scholar]
  86. Kupriyanova EG, Ratcliffe H 2016. Adv. Space Res. 57:1456–67
    [Google Scholar]
  87. Kuznetsov AA, Van Doorsselaere T, Reznikova VE 2015. Solar Phys. 290:1173–94
    [Google Scholar]
  88. Li D, Ning ZJ, Huang Y et al 2017. Ap. J. 849:113
    [Google Scholar]
  89. Liu W, Ofman L 2014. Solar Phys. 289:3233–77
    [Google Scholar]
  90. Liu W, Title AM, Zhao J et al 2011. Ap. J. Lett.736:L13
    [Google Scholar]
  91. Long DM, Bloomfield DS, Chen PF et al 2017. Solar Phys. 292:7
    [Google Scholar]
  92. Lopin I, Nagorny I 2015. Ap. J. 810:87
    [Google Scholar]
  93. Lopin I, Nagorny I 2019. MNRAS 488:660–75
    [Google Scholar]
  94. Luna M, Terradas J, Oliver R, Ballester JL 2010. Ap. J. 716:1371–80
    [Google Scholar]
  95. Magyar N, Van Doorsselaere T 2016. Astron. Astrophys. 595:A81
    [Google Scholar]
  96. Mandal S, Magyar N, Yuan D, Van Doorsselaere T, Banerjee D 2016a. Ap. J. 820:13
    [Google Scholar]
  97. Mandal S, Yuan D, Fang X 2016b. Ap. J. 828:72
    [Google Scholar]
  98. Mariska JT 2006. Ap. J. 639:484–94
    [Google Scholar]
  99. Mariska JT, Muglach K 2010. Ap. J. 713:573–83
    [Google Scholar]
  100. Marsh MS, De Moortel I, Walsh RW 2011. Ap. J. 734:81
    [Google Scholar]
  101. Marsh MS, Walsh RW 2009. Ap. J. Lett. 706:L76–79
    [Google Scholar]
  102. Marsh MS, Walsh RW, Plunkett S 2009. Ap. J. 697:1674–80
    [Google Scholar]
  103. Melnikov VF, Reznikova VE, Shibasaki K, Nakariakov VM 2005. Astron. Astrophys. 439:727–36
    [Google Scholar]
  104. Mészárosová H, Karlický M, Rybák J, Jiřička K 2009. Ap. J. Lett. 697:L108–10
    [Google Scholar]
  105. Mészárosová H, Rybák J, Kashapova L et al 2016. Astron. Astrophys.593:A80
    [Google Scholar]
  106. Moon YJ, Choe GS, Park YD et al 2002. Ap. J. 574:434–39
    [Google Scholar]
  107. Morton RJ, Tomczyk S, Pinto RF 2016. Ap. J. 828:89
    [Google Scholar]
  108. Nakariakov VM, Afanasyev AN, Kumar S, Moon YJ 2017. Ap. J. 849:62
    [Google Scholar]
  109. Nakariakov VM, Anfinogentov SA, Nisticò G, Lee DH 2016a. Astron. Astrophys. 591:L5
    [Google Scholar]
  110. Nakariakov VM, Erdélyi R 2009. Space Sci. Rev. 149:1–2
    [Google Scholar]
  111. Nakariakov VM, Foullon C, Verwichte E, Young NP 2006. Astron. Astrophys. 452:343–46
    [Google Scholar]
  112. Nakariakov VM, Hornsey C, Melnikov VF 2012. Ap. J. 761:134
    [Google Scholar]
  113. Nakariakov VM, Kolotkov DY, Kupriyanova EG 2019a. Plasma Phys. Control. Fusion 61:014024
    [Google Scholar]
  114. Nakariakov VM, Kosak MK, Kolotkov DY 2019b. Ap. J. Lett.874:L1
    [Google Scholar]
  115. Nakariakov VM, Ofman L 2001. Astron. Astrophys. 372:L53–56
    [Google Scholar]
  116. Nakariakov VM, Pilipenko V, Heilig B 2016b. Space Sci. Rev. 200:75–203
    [Google Scholar]
  117. Nakariakov VM, Verwichte E 2005. Living Rev. Solar Phys. 2:3
    [Google Scholar]
  118. Nakariakov VM, Zimovets IV 2011. Ap. J. Lett.730:L27
    [Google Scholar]
  119. Nechaeva A, Zimovets IV, Nakariakov VM, Goddard CR 2019. Ap. J. Suppl. Ser. 241:31
    [Google Scholar]
  120. Nisticò G, Nakariakov VM, Verwichte E 2013. Astron. Astrophys.552:A57
    [Google Scholar]
  121. Nisticò G, Pascoe DJ, Nakariakov VM 2014. Astron. Astrophys. 569:A12
    [Google Scholar]
  122. Ofman L 2007. Ap. J. 655:1134–41
    [Google Scholar]
  123. Ofman L 2016. AGU Geophys. Monogr. Ser. 216:241–52
    [Google Scholar]
  124. Ofman L, Aschwanden MJ 2002. Ap. J. Lett. 576:L153–56
    [Google Scholar]
  125. Ofman L, Liu W 2018. Ap. J. 860:54
    [Google Scholar]
  126. Ofman L, Liu W, Title A, Aschwanden M 2011. Ap. J. Lett.740:L33
    [Google Scholar]
  127. Ofman L, Wang T 2002. Ap. J. Lett. 580:L85–88
    [Google Scholar]
  128. Ofman L, Wang TJ, Davila JM 2012. Ap. J. 754:111
    [Google Scholar]
  129. Ogrodowczyk R, Murawski K, Solanki SK 2009. Astron. Astrophys. 495:313–18
    [Google Scholar]
  130. Oliver R, Ruderman MS, Terradas J 2015. Ap. J. 806:56
    [Google Scholar]
  131. Owen NR, De Moortel I, Hood AW 2009. Astron. Astrophys. 494:339–53
    [Google Scholar]
  132. Pant V, Tiwari A, Yuan D, Banerjee D 2017. Ap. J.847:L5
    [Google Scholar]
  133. Pascoe DJ, Anfinogentov SA, Goddard CR, Nakariakov VM 2018. Ap. J. 860:31
    [Google Scholar]
  134. Pascoe DJ, Goddard CR, Nakariakov VM 2017. Ap. J. Lett.847:L21
    [Google Scholar]
  135. Pascoe DJ, Goddard CR, Nisticò G, Anfinogentov S, Nakariakov VM 2016a. Astron. Astrophys. 589:A136
    [Google Scholar]
  136. Pascoe DJ, Goddard CR, Nisticò G, Anfinogentov S, Nakariakov VM 2016b. Astron. Astrophys. 585:L6
    [Google Scholar]
  137. Pascoe DJ, Hood AW, De Moortel I, Wright AN 2013a. Astron. Astrophys. 551:A40
    [Google Scholar]
  138. Pascoe DJ, Hood AW, Van Doorsselaere T 2019. Front. Astron. Space Sci. 6:22
    [Google Scholar]
  139. Pascoe DJ, Nakariakov VM 2016. Astron. Astrophys. 593:A52
    [Google Scholar]
  140. Pascoe DJ, Nakariakov VM, Arber TD, Murawski K 2009. Astron. Astrophys. 494:1119–25
    [Google Scholar]
  141. Pascoe DJ, Nakariakov VM, Kupriyanova EG 2013b. Astron. Astrophys. 560:A97
    [Google Scholar]
  142. Pascoe DJ, Wright AN, De Moortel I 2011. Ap. J. 731:73
    [Google Scholar]
  143. Peter H 2015. Philos. Trans. R. Soc. Lond. Ser. A 373:20150055
    [Google Scholar]
  144. Porter LJ, Klimchuk JA, Sturrock PA 1994. Ap. J. 435:482–501
    [Google Scholar]
  145. Provornikova E, Ofman L, Wang T 2018. Adv. Space Res. 61:645–54
    [Google Scholar]
  146. Pugh CE, Armstrong DJ, Nakariakov VM, Broomhall AM 2016. MNRAS 459:3659–76
    [Google Scholar]
  147. Reale F 2014. Living Rev. Solar Phys. 11:4
    [Google Scholar]
  148. Reale F 2016. Ap. J. Lett.826:L20
    [Google Scholar]
  149. Reale F, Lopez-Santiago J, Flaccomio E, Petralia A, Sciortino S 2018. Ap. J. 856:51
    [Google Scholar]
  150. Reznikova VE, Shibasaki K 2011. Astron. Astrophys. 525:A112
    [Google Scholar]
  151. Roberts B 2000. Solar Phys. 193:139–52
    [Google Scholar]
  152. Roberts B, Edwin PM, Benz AO 1984. Ap. J. 279:857–65
    [Google Scholar]
  153. Ruderman MS 2013. Astron. Astrophys.553:A23
    [Google Scholar]
  154. Ruderman MS, Petrukhin NS, Pelinovsky E 2016. Solar Phys. 291:1143–57
    [Google Scholar]
  155. Russell AJB, Simões PJA, Fletcher L 2015. Astron. Astrophys.581:A8
    [Google Scholar]
  156. Selwa M, Murawski K, Solanki SK 2005. Astron. Astrophys. 436:701–9
    [Google Scholar]
  157. Simões PJA, Fletcher L, Hudson HS, Russell AJB 2013. Ap. J. 777:152
    [Google Scholar]
  158. Soler R, Luna M 2015. Astron. Astrophys.582:A120
    [Google Scholar]
  159. Srivastava AK, Lalitha S, Pandey JC 2013. Ap. J. Lett.778:L28
    [Google Scholar]
  160. Su JT, Liu Y, Liu S et al 2013. Ap. J. 762:42
    [Google Scholar]
  161. Tan B, Yu Z, Huang J, Tan C, Zhang Y 2016. Ap. J. 833:206
    [Google Scholar]
  162. Taroyan Y, Erdélyi R, Doyle JG, Bradshaw SJ 2005. Astron. Astrophys. 438:713–20
    [Google Scholar]
  163. Terradas J 2009. Space Sci. Rev. 149:255–82
    [Google Scholar]
  164. Terradas J, Andries J, Goossens M 2008a. Ap. J. Lett. 687:L115–18
    [Google Scholar]
  165. Terradas J, Arregui I, Oliver R 2008b. Ap. J. 679:1611–20
    [Google Scholar]
  166. Tian H, McIntosh SW, Habbal SR, He J 2011. Ap. J. 736:130
    [Google Scholar]
  167. Tian H, McIntosh SW, Wang T et al 2012. Ap. J. 759:144
    [Google Scholar]
  168. Tian H, Young PR, Reeves KK et al 2016. Ap. J. Lett.823:L16
    [Google Scholar]
  169. Tomczyk S, McIntosh SW 2009. Ap. J. 697:1384–91
    [Google Scholar]
  170. Tsiklauri D, Nakariakov VM, Arber TD, Aschwanden MJ 2004. Astron. Astrophys. 422:351–55
    [Google Scholar]
  171. Uritsky VM, Davila JM, Viall NM, Ofman L 2013. Ap. J. 778:26
    [Google Scholar]
  172. Van Doorsselaere T, Antolin P, Yuan D, Reznikova V, Magyar N 2016. Front. Astron. Space Sci. 3:4
    [Google Scholar]
  173. Van Doorsselaere T, De Groof A, Zender J, Berghmans D, Goossens M 2011a. Ap. J. 740:90
    [Google Scholar]
  174. Van Doorsselaere T, Kupriyanova EG, Yuan D 2016. Solar Phys. 291:3143–64
    [Google Scholar]
  175. Van Doorsselaere T, Verwichte E, Terradas J 2009. Space Sci. Rev. 149:299–324
    [Google Scholar]
  176. Van Doorsselaere T, Wardle N, Del Zanna G 2011b. Ap. J. 727:L32
    [Google Scholar]
  177. Vasheghani Farahani S, Hornsey C, Van Doorsselaere T, Goossens M 2014. Ap. J. 781:92
    [Google Scholar]
  178. Verth G, Erdélyi R 2008. Astron. Astrophys. 486:1015–22
    [Google Scholar]
  179. Verwichte E, Haynes M, Arber TD, Brady CS 2008. Ap. J. 685:1286–90
    [Google Scholar]
  180. Verwichte E, Marsh M, Foullon C et al 2010. Ap. J. Lett. 724:L194–98
    [Google Scholar]
  181. Verwichte E, Van Doorsselaere T, Foullon C, White RS 2013. Ap. J. 767:16
    [Google Scholar]
  182. Wang T 2011. Space Sci. Rev. 158:397–419
    [Google Scholar]
  183. Wang T, Innes DE, Qiu J 2007. Ap. J. 656:598–609
    [Google Scholar]
  184. Wang T, Ofman L, Davila JM 2013. Ap. J. Lett.775:L23
    [Google Scholar]
  185. Wang T, Ofman L, Davila JM, Su Y 2012. Ap. J. Lett.751:L27
    [Google Scholar]
  186. Wang T, Ofman L, Sun X, Provornikova E, Davila JM 2015. Ap. J. Lett.811:L13
    [Google Scholar]
  187. Wang T, Ofman L, Sun X, Solanki SK, Davila JM 2018. Ap. J. 860:107
    [Google Scholar]
  188. Wang TJ 2016. AGU Geophys. Monogr. Ser. 216:395–418
    [Google Scholar]
  189. Wang YM 2009. Space Sci. Rev. 144:383–99
    [Google Scholar]
  190. Yu S, Nakariakov VM, Selzer LA, Tan B, Yan Y 2013. Ap. J. 777:159
    [Google Scholar]
  191. Yuan D, Nakariakov VM 2012. Astron. Astrophys.543:A9
    [Google Scholar]
  192. Yuan D, Nakariakov VM, Chorley N, Foullon C 2011. Astron. Astrophys.533:A116
    [Google Scholar]
  193. Yuan D, Shen Y, Liu Y et al 2013. Astron. Astrophys.554:A144
    [Google Scholar]
  194. Yuan D, Van Doorsselaere T 2016. Ap. J. Suppl. Ser. 223:23
    [Google Scholar]
  195. Yuan D, Van Doorsselaere T, Banerjee D, Antolin P 2015. Ap. J. 807:98
    [Google Scholar]
  196. Zaitsev VV, Stepanov AV 1989. Sov. Astron. Lett. 15:66–68
    [Google Scholar]
  197. Zajtsev VV, Stepanov AV 1975. Issled. Geomagn. Aeron. Fiz. Solntsa 37:3–10
    [Google Scholar]
  198. Zavershinskii DI, Kolotkov DY, Nakariakov VM, Molevich NE, Ryashchikov DS 2019. Phys. Plasmas 26:082113
    [Google Scholar]
  199. Zhang Y, Zhang J, Wang J, Nakariakov VM 2015. Astron. Astrophys.581:A78
    [Google Scholar]
  200. Zhugzhda YD 1996. Phys. Plasmas 3:10–21
    [Google Scholar]
  201. Zimovets IV, Nakariakov VM 2015. Astron. Astrophys.577:A4
    [Google Scholar]
/content/journals/10.1146/annurev-astro-032320-042940
Loading
/content/journals/10.1146/annurev-astro-032320-042940
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error