1932

Abstract

Asteroseismology has grown from its beginnings three decades ago to a mature field teeming with discoveries and applications. This phenomenal growth has been enabled by space photometry with precision 10–100 times better than ground-based observations, with nearly continuous light curves for durations of weeks to years, and by large-scale ground-based surveys spanning years designed to detect all time-variable phenomena. The new high-precision data are full of surprises, deepening our understanding of the physics of stars.

  • ▪  This review explores asteroseismic developments from the past decade primarily as a result of light curves from the and space missions for massive upper main sequence OBAF stars, pre-main-sequence stars, peculiar stars, classical pulsators, white dwarfs and subdwarfs, and tidally interacting close binaries.
  • ▪  The space missions have increased the numbers of pulsators in many classes by an order of magnitude.
  • ▪  Asteroseismology measures fundamental stellar parameters and stellar interior physics—mass, radius, age, metallicity, luminosity, distance, magnetic fields, interior rotation, angular momentum transfer, convective overshoot, core-burning stage—supporting disparate fields such as galactic archeology, exoplanet host stars, supernovae progenitors, gamma-ray and gravitational wave precursors, close binary star origins and evolution, and standard candles.
  • ▪  Stars are the luminous tracers of the Universe. Asteroseismology significantly improves models of stellar structure and evolution on which all inference from stars depends.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-052920-094232
2022-08-18
2025-02-14
Loading full text...

Full text loading...

/deliver/fulltext/astro/60/1/annurev-astro-052920-094232.html?itemId=/content/journals/10.1146/annurev-astro-052920-094232&mimeType=html&fmt=ahah

Literature Cited

  1. Aerts C 2013. Setting a New Standard in the Analysis of Binary Stars, Vol. 64 EAS Publications Series K Pavlovski, A Tkachenko, G Torres 323–30 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  2. Aerts C. 2021. Rev. Mod. Phys. 93:015001
    [Google Scholar]
  3. Aerts C, Christensen-Dalsgaard J, Kurtz DW. 2010. Asteroseismology. Astronomy and Astrophysics Library Berlin/Heidelberg: Springer
    [Google Scholar]
  4. Aerts C, Mathis S, Rogers TM. 2019. Annu. Rev. Astron. Astrophys. 57:35–78
    [Google Scholar]
  5. Aerts C, Van Reeth T, Tkachenko A. 2017. Ap. J. Lett. 847:L7
    [Google Scholar]
  6. Antoci V, Cunha M, Houdek G et al. 2014. Ap. J. 796:2118
    [Google Scholar]
  7. Antoci V, Cunha MS, Bowman DM et al. 2019. MNRAS 490:34040–59
    [Google Scholar]
  8. Antoci V, Handler G, Campante TL et al. 2011. Nature 477:7366570–73
    [Google Scholar]
  9. Baldry IK, Kurtz DW, Bedding TR. 1998. MNRAS 300:4L39–42
    [Google Scholar]
  10. Basu S, Hekker S. 2020. Front. Astron. Space Sci. 7:44
    [Google Scholar]
  11. Beck PG, Hambleton K, Vos J et al. 2014. Astron. Astrophys. 564:A36
    [Google Scholar]
  12. Bedding TR, Butler RP, Kjeldsen H et al. 2001. Ap. J. Lett. 549:L105–8
    [Google Scholar]
  13. Bedding TR, Murphy SJ, Hey DR et al. 2020. Nature 581:7807147–51
    [Google Scholar]
  14. Bigot L, Dziembowski WA. 2002. Astron. Astrophys. 391:235–45
    [Google Scholar]
  15. Bigot L, Kurtz DW. 2011. Astron. Astrophys. 536:A73
    [Google Scholar]
  16. Blažko S. 1907. Astron. Nachr. 175:325
    [Google Scholar]
  17. Bloemen S, Marsh TR, Østensen RH et al. 2011. MNRAS 410:31787–96
    [Google Scholar]
  18. Bouabid MP, Dupret MA, Salmon S et al. 2013. MNRAS 429:32500–14
    [Google Scholar]
  19. Bouchy F, Carrier F. 2001. Astron. Astrophys. 374:L5–8
    [Google Scholar]
  20. Bowman DM. 2020a. Front. Astron. Space Sci. 7:70
    [Google Scholar]
  21. Bowman DM 2020b. Proceedings of the Conference Stars and Their Variability Observed from Space, Vienna, Austria, Aug. 19–23, 2019 C Neiner, WW Weiss, D Baade, RE Griffin, CC Lovekin, AFJ Moffat 53–59 Vienna: Univ. Vienna
    [Google Scholar]
  22. Bowman DM, Burssens S, Pedersen MG et al. 2019a. Nat. Astron. 3:760–65
    [Google Scholar]
  23. Bowman DM, Burssens S, Simón-Daz S et al. 2020. Astron. Astrophys. 640:A36
    [Google Scholar]
  24. Bowman DM, Hermans J, Daszyńska-Daszkiewicz J et al. 2021. MNRAS 504:34039–53
    [Google Scholar]
  25. Bowman DM, Johnston C, Tkachenko A et al. 2019b. Ap. J. Lett. 883:L26
    [Google Scholar]
  26. Bowman DM, Kurtz DW, Breger M, Murphy SJ, Holdsworth DL. 2016. MNRAS 460:21970–89
    [Google Scholar]
  27. Breger M, Montgomery MH, Lenz P, Pamyatnykh AA. 2017. Astron. Astrophys. 599:A116
    [Google Scholar]
  28. Brickhill AJ. 1992. MNRAS 259:519–28
    [Google Scholar]
  29. Burkart J, Quataert E, Arras P, Weinberg NN. 2013. MNRAS 433:332–52
    [Google Scholar]
  30. Burssens S, Bowman DM, Aerts C et al. 2019. MNRAS 489:1304–20
    [Google Scholar]
  31. Chaplin WJ, Miglio A. 2013. Annu. Rev. Astron. Astrophys. 51:353–92
    [Google Scholar]
  32. Cheng SJ, Fuller J, Guo Z, Lehman H, Hambleton K. 2020. Ap. J. 903:2122
    [Google Scholar]
  33. Chote P, Gänsicke BT, McCormac J et al. 2021. MNRAS 502:581–88
    [Google Scholar]
  34. Christensen-Dalsgaard J. 1998. Ap. Space Sci. 261:1–12
    [Google Scholar]
  35. Christensen-Dalsgaard J. 2021. Liv. Rev. Solar Phys. 18:2
    [Google Scholar]
  36. Christophe S, Ballot J, Ouazzani RM, Antoci V, Salmon SJAJ. 2018. Astron. Astrophys. 618:A47
    [Google Scholar]
  37. Córsico AH. 2020. Front. Astron. Space Sci. 7:47
    [Google Scholar]
  38. Córsico AH, Althaus LG, Miller Bertolami MM, Kepler SO 2019a. Astron. Astrophys. Rev. 27:7
    [Google Scholar]
  39. Córsico AH, De Gerónimo FC, Camisassa ME, Althaus LG. 2019b. Astron. Astrophys. 632:A119
    [Google Scholar]
  40. Cunha MS, Avelino PP, Chaplin WJ. 2020. MNRAS 499:44687–97
    [Google Scholar]
  41. De Gerónimo FC, Córsico AH, Althaus LG, Wachlin FC, Camisassa ME. 2019. Astron. Astrophys. 621:A100
    [Google Scholar]
  42. Degroote P. 2010. Asteroseismology of OB stars with the Corot space mission PhD thesis, Institute of Astronomy, Katholieke Univ. Leuven Leuven, Belgium:
    [Google Scholar]
  43. Deubner FL. 1975. Astron. Astrophys. 44:2371–75
    [Google Scholar]
  44. Dupret MA, Grigahcène A, Garrido R, Gabriel M, Scuflaire R. 2005. Astron. Astrophys. 435:3927–39
    [Google Scholar]
  45. Eddington AS. 1920. Observatory 43:341–58
    [Google Scholar]
  46. Eddington AS. 1926. The Internal Constitution of the Stars Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  47. Fontaine G, Brassard P. 2008. Publ. Astron. Soc. Pac. 120:8721043
    [Google Scholar]
  48. Fuller J. 2017. MNRAS 472:21538–64
    [Google Scholar]
  49. Fuller J, Hambleton K, Shporer A, Isaacson H, Thompson S. 2017. MNRAS 472:L25–29
    [Google Scholar]
  50. Fuller J, Kurtz DW, Handler G, Rappaport S. 2020. MNRAS 498:45730–44
    [Google Scholar]
  51. Fuller J, Ma L. 2019. Ap. J. Lett. 881:L1
    [Google Scholar]
  52. Fuller J, Piro AL, Jermyn AS. 2019. MNRAS 485:33661–80
    [Google Scholar]
  53. García RA, Ballot J. 2019. Liv. Rev. Solar Phys. 16:4
    [Google Scholar]
  54. Gaulme P, Guzik JA. 2019. Astron. Astrophys. 630:A106
    [Google Scholar]
  55. Georgy C, Saio H, Meynet G. 2021. Astron. Astrophys. 650:A128
    [Google Scholar]
  56. Gizon L, Sekii T, Takata M et al. 2016. Sci. Adv. 2:11e1601777
    [Google Scholar]
  57. Glatzel W, Kiriakidis M, Chernigovskij S, Fricke KJ. 1999. MNRAS 303:116–24
    [Google Scholar]
  58. Gough D. 2001. Science 291:2325–27
    [Google Scholar]
  59. Guo Z. 2021. Front. Astron. Space Sci. 8:67
    [Google Scholar]
  60. Guo Z, Fuller J, Shporer A et al. 2019. Ap. J. 885:46
    [Google Scholar]
  61. Guzik JA. 2021. Front. Astron. Space Sci. 8:653558
    [Google Scholar]
  62. Guzik JA, Kaye AB, Bradley PA, Cox AN, Neuforge C. 2000. Ap. J. Lett. 542:L57–60
    [Google Scholar]
  63. Hambleton K, Fuller J, Thompson S et al. 2018. MNRAS 473:45165–76
    [Google Scholar]
  64. Hambleton KM, Kurtz DW, Prša A et al. 2013. MNRAS 434:2925–40
    [Google Scholar]
  65. Handler G, Balona LA, Shobbrook RR et al. 2002. MNRAS 333:2262–79
    [Google Scholar]
  66. Handler G, Kurtz DW, Rappaport SA et al. 2020. Nat. Astron. 4:684–89
    [Google Scholar]
  67. Hatta Y, Sekii T, Takata M, Kurtz DW. 2019. Ap. J. 871:2135
    [Google Scholar]
  68. Heber U. 2016. Publ. Astron. Soc. Pac. 128:966082001
    [Google Scholar]
  69. Hekker S, Christensen-Dalsgaard J. 2017. Astron. Astrophys. Rev. 25:1
    [Google Scholar]
  70. Herbig GH. 1960. Ap. J. Suppl. 4:337–68
    [Google Scholar]
  71. Higl J, Müller E, Weiss A. 2021. Astron. Astrophys. 646:A133
    [Google Scholar]
  72. Holdsworth DL. 2021. Front. Astron. Space Sci. 8:31
    [Google Scholar]
  73. Holdsworth DL, Cunha MS, Kurtz DW et al. 2021. MNRAS 506:1073–110
    [Google Scholar]
  74. Holdsworth DL, Saio H, Bowman DM et al. 2018. MNRAS 476:601–16
    [Google Scholar]
  75. Hon M, Huber D, Kuszlewicz JS et al. 2021. Ap. J. 919:131
    [Google Scholar]
  76. IJspeert LW, Tkachenko A, Johnston C et al. 2021. Astron. Astrophys. 652:A120
    [Google Scholar]
  77. Jackiewicz J. 2021. Front. Astron. Space Sci. 7:102
    [Google Scholar]
  78. Jeffery CS. 2008. Inform. Bull. Var. Stars 5817:1
    [Google Scholar]
  79. Jeffery CS, Barentsen G, Handler G. 2020. MNRAS 495:L135–38
    [Google Scholar]
  80. Jeffery CS, Kurtz D, Shibahashi H et al. 2015. MNRAS 447:32836–51
    [Google Scholar]
  81. Jeffery CS, Saio H. 2016. MNRAS 458:21352–73
    [Google Scholar]
  82. Kama M, Folsom CP, Pinilla P. 2015. Astron. Astrophys. 582:L10
    [Google Scholar]
  83. Kirk B, Conroy K, Prša A et al. 2016. Astron. J. 151:368
    [Google Scholar]
  84. Kochukhov O. 2006. Astron. Astrophys. 446:31051–70
    [Google Scholar]
  85. Kochukhov O, Ryabchikova T. 2001. Astron. Astrophys. 374:615–28
    [Google Scholar]
  86. Kochukhov O, Shulyak D, Ryabchikova T. 2009. Astron. Astrophys. 499:3851–63
    [Google Scholar]
  87. Kołaczek-Szymański PA, Pigulski A, Michalska G et al. 2021. Astron. Astrophys. 647:A12
    [Google Scholar]
  88. Kolenberg K, Szabó R, Kurtz DW et al. 2010. Ap. J. Lett. 713:2L198–203
    [Google Scholar]
  89. Kumar P, Ao CO, Quataert EJ. 1995. Ap. J. 449:294–309
    [Google Scholar]
  90. Kunitomo M, Guillot T, Takeuchi T, Ida S. 2017. Astron. Astrophys. 599:A49
    [Google Scholar]
  91. Kurtz D, Jeffrey S, Aerts C 2016. Astron. Geophys. 57:44.37–4.42
    [Google Scholar]
  92. Kurtz DW. 1976. Ap. J. Suppl. 32:651–80
    [Google Scholar]
  93. Kurtz DW. 1982. MNRAS 200:807–59
    [Google Scholar]
  94. Kurtz DW. 1990. Annu. Rev. Astron. Astrophys. 28:607–55
    [Google Scholar]
  95. Kurtz DW, Cameron C, Cunha MS et al. 2005. MNRAS 358:2651–64
    [Google Scholar]
  96. Kurtz DW, Handler G, Rappaport SA et al. 2020. MNRAS 494:45118–33
    [Google Scholar]
  97. Kurtz DW, Holdsworth DL. 2020. Ap. Space Sci. Proc. 57:313–19
    [Google Scholar]
  98. Kurtz DW, Marang F. 1995. MNRAS 276:191–98
    [Google Scholar]
  99. Kurtz DW, Martinez P. 2000. Balt. Astron. 9:253–353
    [Google Scholar]
  100. Kurtz DW, Saio H, Takata M et al. 2014. MNRAS 444:102–16
    [Google Scholar]
  101. Kurtz DW, Shibahashi H, Murphy SJ, Bedding TR, Bowman DM. 2015. MNRAS 450:33015–29
    [Google Scholar]
  102. Labadie-Bartz J, Carciofi AC, de Amorim TH et al. 2020. arXiv:2010.13905
  103. Lampens P. 2021. Galaxies 9:228
    [Google Scholar]
  104. Lares-Martiz M, Garrido R, Pascual-Granado J. 2020. MNRAS 498:1194–204
    [Google Scholar]
  105. Leavitt HS, Pickering EC. 1912. Harvard Coll. Obs. Circ. 173:1–3
    [Google Scholar]
  106. Leibacher JW, Stein RF. 1971. Ap. Lett. 7:191–92
    [Google Scholar]
  107. Leighton RB, Noyes RW, Simon GW. 1962. Ap. J. 135:474–99
    [Google Scholar]
  108. Li G, Guo Z, Fuller J et al. 2020a. MNRAS 497:44363–75
    [Google Scholar]
  109. Li G, Van Reeth T, Bedding TR, Murphy SJ, Antoci V. 2019. MNRAS 487:782–800
    [Google Scholar]
  110. Li G, Van Reeth T, Bedding TR et al. 2020b. MNRAS 491:33586–605
    [Google Scholar]
  111. Lynas-Gray AE. 2021. Front. Astron. Space Sci. 8:19
    [Google Scholar]
  112. Michaud G, Alecian G, Richer J. 2015. Atomic Diffusion in Stars Cham, Switz: Springer
    [Google Scholar]
  113. Michaud G, Richer J 2020. Stellar Magnetism: A Workshop in Honour of the Career and Contributions of John D. Landstreet, London, Canada, July 8–11, 2019, Proceedings of the Polish Astronomical Society, Vol. 11 G Wade, E Alecian, D Bohlender, A Sigut 185–93 Warsaw, Pol: Pol. Astron. Soc.
    [Google Scholar]
  114. Miglio A, Chiappini C, Mosser B et al. 2017. Astron. Nachr. 338:6644–61
    [Google Scholar]
  115. Miglio A, Montalbán J, Noels A, Eggenberger P. 2008. MNRAS 386:31487–502
    [Google Scholar]
  116. Mkrtichian DE, Hatzes AP, Kanaan A. 2003. MNRAS 345:3781–94
    [Google Scholar]
  117. Moe M, Di Stefano R. 2017. Ap. J. Suppl. 230:215
    [Google Scholar]
  118. Mombarg JSG, Van Reeth T, Pedersen MG et al. 2019. MNRAS 485:33248–63
    [Google Scholar]
  119. Montgomery MH. 2005. Ap. J. 633:21142–49
    [Google Scholar]
  120. Müllner M, Zwintz K, Corsaro E et al. 2021. Astron. Astrophys. 647:A168
    [Google Scholar]
  121. Murphy SJ, Bedding TR, Shibahashi H, Kurtz DW, Kjeldsen H. 2014. MNRAS 441:32515–27
    [Google Scholar]
  122. Murphy SJ, Corbally CJ, Gray RO et al. 2015. Publ. Astron. Soc. Aust. 32:e036
    [Google Scholar]
  123. Murphy SJ, Fossati L, Bedding TR et al. 2016a. MNRAS 459:21201–12
    [Google Scholar]
  124. Murphy SJ, Gray RO, Corbally CJ et al. 2020a. MNRAS 499:22701–13
    [Google Scholar]
  125. Murphy SJ, Joyce M, Bedding TR, White TR, Kama M. 2021. MNRAS 502:21633–46
    [Google Scholar]
  126. Murphy SJ, Saio H, Takada-Hidai M et al. 2020b. MNRAS 498:34272–86
    [Google Scholar]
  127. Murphy SJ, Shibahashi H, Bedding TR. 2016b. MNRAS 461:44215–26
    [Google Scholar]
  128. Murphy SJ, Shibahashi H, Kurtz DW. 2013. MNRAS 430:42986–98
    [Google Scholar]
  129. Ouazzani RM, Lignières F, Dupret MA et al. 2020. Astron. Astrophys. 640:A49
    [Google Scholar]
  130. Ouazzani RM, Marques JP, Goupil MJ et al. 2019. Astron. Astrophys. 626:A121
    [Google Scholar]
  131. Ouazzani RM, Salmon SJAJ, Antoci V et al. 2017. MNRAS 465:22294–309
    [Google Scholar]
  132. Palla F, Stahler SW. 1991. Ap. J. 375:288
    [Google Scholar]
  133. Pápics PI. 2013. Observational asteroseismology of B-type stars on the main sequence with the CoRoT and Kepler satellites PhD Thesis, Instituut voor Sterrenkunde, Katholieke Univ. Leuven Leuven, Belgium:
    [Google Scholar]
  134. Paxton B, Smolec R, Schwab J et al. 2019. Ap. J. Suppl. 243:10
    [Google Scholar]
  135. Payne CH. 1925. Stellar atmospheres; a contribution to the observational study of high temperature in the reversing layers of stars. PhD Thesis, Radcliffe College Cambridge, MA:
    [Google Scholar]
  136. Pedersen MG, Aerts C, Pápics PI et al. 2021. Nat. Astron. 5:715–22
    [Google Scholar]
  137. Petersen JO. 1973. Astron. Astrophys. 27:89–93
    [Google Scholar]
  138. Plachy E, Pál A, Bódi A et al. 2021. Ap. J. Suppl. 253:11
    [Google Scholar]
  139. Plachy E, Szabó R. 2021. Front. Astron. Space Sci. 7:81
    [Google Scholar]
  140. Prudil Z, Skarka M. 2017. MNRAS 466:32602–13
    [Google Scholar]
  141. Quitral-Manosalva P, Cunha MS, Kochukhov O. 2018. MNRAS 480:21676–88
    [Google Scholar]
  142. Rappaport SA, Kurtz DW, Handler G et al. 2021. MNRAS 503:254–69
    [Google Scholar]
  143. Reese DR, Mirouh GM, Espinosa Lara F, Rieutord M, Putigny B 2021. Astron. Astrophys. 645:A46
    [Google Scholar]
  144. Rogers TM, Lin DNC, McElwaine JN, Lau HHB. 2013. Ap. J. 772:21
    [Google Scholar]
  145. Saio H, Baker NH, Gautschy A. 1998. MNRAS 294:622–34
    [Google Scholar]
  146. Saio H, Jeffery CS. 2002. MNRAS 333:121–32
    [Google Scholar]
  147. Saio H, Kurtz DW, Murphy SJ, Antoci VL, Lee U. 2018. MNRAS 474:22774–86
    [Google Scholar]
  148. Saio H, Kurtz DW, Takata M et al. 2015. MNRAS 447:43264–77
    [Google Scholar]
  149. Saio H, Takata M, Lee U, Li G, Van Reeth T. 2021. MNRAS 502:45856–74
    [Google Scholar]
  150. Schwab J. 2019. Ap. J. 885:27
    [Google Scholar]
  151. Secchi A. 1866. Astron. Nachr. 68:63
    [Google Scholar]
  152. Shibahashi H. 1979. Publ. Astron. Soc. Jpn. 31:87–104
    [Google Scholar]
  153. Shibahashi H, Kurtz DW. 2012. MNRAS 422:738–52
    [Google Scholar]
  154. Shibahashi H, Kurtz DW, Murphy SJ. 2015. MNRAS 450:43999–4015
    [Google Scholar]
  155. Shibahashi H, Osaki Y. 1981. Publ. Astron. Soc. Jpn. 33:427–48
    [Google Scholar]
  156. Smalley B, Antoci V, Holdsworth DL et al. 2017. MNRAS 465:32662–70
    [Google Scholar]
  157. Smolec R. 2016. MNRAS 456:43475–93
    [Google Scholar]
  158. Smolec R, Dziembowski W, Moskalik P et al. 2017. Wide-Field Variability Surveys: A 21st Century Perspective, 22nd Los Alamos Stellar Pulsation Conference Series Meeting, Vol. 152 EPJ Web Conf. Art. 06003. https://doi.org/10.1051/epjconf/201715206003
    [Crossref] [Google Scholar]
  159. Stahler SW, Palla F. 2004. The Formation of Stars Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  160. Steindl T, Zwintz K, Barnes TG, Muellner M, Vorobyov EI. 2021. Astron. Astrophys. 654:A36
    [Google Scholar]
  161. Struve O, Zebergs V. 1962. Astronomy of the 20th Century New York: Macmillan
    [Google Scholar]
  162. Takahashi K, Langer N. 2021. Astron. Astrophys. 646:A19
    [Google Scholar]
  163. Takata M, Ouazzani RM, Saio H et al. 2020. Astron. Astrophys. 635:A106
    [Google Scholar]
  164. Tayar J, Beck PG, Pinsonneault MH, Garca RA, Mathur S. 2019. Ap. J. 887:2203
    [Google Scholar]
  165. Thompson SE, Everett M, Mullally F et al. 2012. Ap. J. 753:86
    [Google Scholar]
  166. Townsend RHD, Teitler SA. 2013. MNRAS 435:43406–18
    [Google Scholar]
  167. Triana SA, Moravveji E, Pápics PI et al. 2015. Ap. J. 810:16
    [Google Scholar]
  168. Turner DG, Savoy J, Derrah J, Abdel-Sabour Abdel-Latif M, Berdnikov LN 2005. Publ. Astron. Soc. Pac. 117:828207–20
    [Google Scholar]
  169. Udalski A, Szymański MK, Szymański G. 2015. Acta Astron. 65:1–38
    [Google Scholar]
  170. Ulrich RK. 1970. Ap. J. 162:993
    [Google Scholar]
  171. Van Beeck J, Bowman DM, Pedersen MG et al. 2021. Astron. Astrophys. 655:A59
    [Google Scholar]
  172. Van Reeth T, Tkachenko A, Aerts C. 2016. Astron. Astrophys. 593:A120
    [Google Scholar]
  173. van Zyl L, Warner B, O'Donoghue D et al. 2004. MNRAS 350:307–16
    [Google Scholar]
  174. Welsh WF, Orosz JA, Aerts C et al. 2011. Ap. J. Suppl. 197:4
    [Google Scholar]
  175. Winget DE, Kepler SO. 2008. Annu. Rev. Astron. Astrophys. 46:157–99
    [Google Scholar]
  176. Wu Y. 2001. MNRAS 323:248–56
    [Google Scholar]
  177. Wu Y, Chen X, Chen H, Li Z, Han Z 2020. Astron. Astrophys. 634:A126
    [Google Scholar]
  178. Xiong DR, Deng L, Zhang C, Wang K. 2016. MNRAS 457:33163–77
    [Google Scholar]
  179. Yadav AP, Kühnrich Biavatti SH, Glatzel W 2018. MNRAS 475:44881–90
    [Google Scholar]
  180. Yu H, Fuller J, Burdge KB. 2021. MNRAS 501:21836–51
    [Google Scholar]
  181. Zwintz K. 2008. Ap. J. 673:21088–92
    [Google Scholar]
  182. Zwintz K 2020. Proceedings of the Conference Stars and Their Variability Observed from Space, Vienna, Austria, Aug. 19–23, 2019 C Neiner, WW Weiss, D Baade, RE Griffin, CC Lovekin, AFJ Moffat 39–43 Vienna: Univ. Vienna
    [Google Scholar]
  183. Zwintz K, Kallinger T, Guenther DB et al. 2009. Astron. Astrophys. 494:31031–40
    [Google Scholar]
/content/journals/10.1146/annurev-astro-052920-094232
Loading
/content/journals/10.1146/annurev-astro-052920-094232
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error