1932

Abstract

The past two decades have seen a major expansion in the availability, size, and precision of time-domain data sets in astronomy. Owing to their unique combination of flexibility, mathematical simplicity, and comparative robustness, Gaussian processes (GPs) have emerged recently as the solution of choice to model stochastic signals in such data sets. In this review, we provide a brief introduction to the emergence of GPs in astronomy, present the underlying mathematical theory, and give practical advice considering the key modeling choices involved in GP regression. We then review applications of GPs to time-domain data sets in the astrophysical literature so far, from exoplanets to active galactic nuclei, showcasing the power and flexibility of the method. We provide worked examples using simulated data, with links to the source code; discuss the problem of computational cost and scalability; and give a snapshot of the current ecosystem of open-source GP software packages. In summary:

  • ▪  GP regression is a conceptually simple but statistically principled and powerful tool for the analysis of astronomical time series.
  • ▪  It is already widely used in some subfields, such as exoplanets, and gaining traction in many others, such as optical transients.
  • ▪  Driven by further algorithmic and conceptual advances, we expect that GPs will continue to be an important tool for robust and interpretable time-domain astronomy for many years to come.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-052920-103508
2023-08-18
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/astro/61/1/annurev-astro-052920-103508.html?itemId=/content/journals/10.1146/annurev-astro-052920-103508&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott BP, Abbott R, Abbott TD et al. 2020. Class. Quantum Gravity 37:5055002
  2. Agol E, Luger R, Foreman-Mackey D. 2020. Astron. J. 159:3123
  3. Aigrain S, Hodgkin ST, Irwin MJ, Lewis JR, Roberts SJ. 2015. MNRAS 447:32880–93
  4. Aigrain S, Parviainen H, Pope BJS. 2016. MNRAS 459:32408–19
  5. Aigrain S, Pont F, Zucker S. 2012. MNRAS 419:43147–58
  6. Albert JG. 2020. arXiv:2012.15286
  7. Almosallam IA, Jarvis MJ, Roberts SJ. 2016. MNRAS 462:726–39
  8. Ambikasaran S. 2015. Numer. Linear Algebra Appl. 22:61102–14
  9. Ambikasaran S, Foreman-Mackey D, Greengard L, Hogg DW, O'Neil M. 2015. IEEE Trans. Pattern Anal. Mach. Intell. 38:252
  10. Angus R, Morton T, Aigrain S, Foreman-Mackey D, Rajpaul V. 2018. MNRAS 474:22094–108
  11. Antoniadis J, Arzoumanian Z, Babak S et al. 2022. MNRAS 510:44873–87
  12. Baglin A, Auvergne M, Barge P et al. 2006. Proceedings of The CoRoT Mission Pre-Launch Status—Stellar Seismology and Planet Finding (ESA SP-1306) M Fridlund, A Baglin, J Lochard, L Conroy 33–38 Paris: Eur. Space Agency
  13. Bailer-Jones CAL. 2012. Astron. Astrophys. 546:A89
  14. Barclay T, Endl M, Huber D et al. 2015. Ap. J. 800:46
  15. Barnes JA, Sargent HH III, Tryon PV 1980. Proceedings of the Conference on the Ancient Sun: Fossil Record in the Earth, Moon and Meteorites RO Pepin, JA Eddy, RB Merrill 159–63. New York/Oxford: Pergamon
  16. Barragán O, Aigrain S, Kubyshkina D et al. 2019. MNRAS 490:698–708
  17. Barragán O, Aigrain S, Rajpaul VM, Zicher N. 2022. MNRAS 509:866–83
  18. Barros SCC, Demangeon O, Díaz RF et al. 2020. Astron. Astrophys. 634:A75
  19. Benz W, Broeg C, Fortier A et al. 2021. Exp. Astron. 51:109–51
  20. Blandford RD, Narayan R. 1992. Annu. Rev. Astron. Astrophys. 30:311–58
  21. Boone K. 2019. Astron. J. 158:6257
  22. Borucki WJ, Koch D, Basri G et al. 2010. Science 327:5968977–80
  23. Brook PR, Karastergiou A, Johnston S et al. 2016. MNRAS 456:21374–93
  24. Brook PR, Karastergiou A, Johnston S. 2019. MNRAS 488:45702–12
  25. Camacho JD, Faria JP, Viana PTP. 2022. MNRAS 519:45439–53
  26. Carter JA, Winn JN. 2009. Ap. J. 704:51–67
  27. Champion D, Cognard I, Cruces M et al. 2020. MNRAS 498:46044–56
  28. Charbonneau D, Brown TM, Latham DW, Mayor M. 2000. Ap. J. Lett. 529:L45–48
  29. Claeskens G, Hjort NL. 2008. Model Selection and Model Averaging Cambridge Ser. Statistical Probabilistic Math Cambridge, UK: Cambridge Univ. Press
  30. Conroy KE, Kochoska A, Hey D, Pablo H, Hambleton KM et al. 2020. Ap. J. Suppl. 250:234
  31. Constable CG, Parker RL. 1988. J. Geophys. Res. 93:B1011569–81
  32. Crossfield IJM, Ciardi DR, Petigura EA et al. 2016. Ap. J. Suppl. 226:7
  33. Cunningham JP, Shenoy KV, Sahani M. 2008. Proc. 25th Intl. Conf. Mach. Learn., Helsinki, Finland A McCallum, S Roweis 192–99. https://icml.cc/Conferences/2008/papers/icml2008proceedings.pdf
  34. Czekala I, Andrews SM, Mandel KS, Hogg DW, Green GM. 2015. Ap. J. 812:2128
  35. David TJ, Petigura EA, Luger R et al. 2019. Ap. J. Lett. 885:L12
  36. Delisle JB, Hara N, Ségransan D. 2020. Astron. Astrophys. 638:A95
  37. Delisle JB, Unger N, Hara NC, Ségransan D. 2022. Astron. Astrophys. 659:A182
  38. Deming D, Knutson H, Kammer J et al. 2015. Ap. J. 805:2132
  39. Dharmawardena TE, Bailer-Jones CAL, Fouesneau M, Foreman-Mackey D. 2022. Astron. Astrophys. 658:A166
  40. Dumusque X, Pepe F, Lovis C et al. 2012. Nature 491:7423207–11
  41. Dvorak R, Edelman C 1976. Mitt. Astron. Ges. Hambg. 38:192
  42. Evans TM, Aigrain S, Gibson N et al. 2015. MNRAS 451:680–94
  43. Evans TM, Pont F, Sing DK et al. 2013. Ap. J. Lett. 772:2L16
  44. Evans TM, Sing DK, Goyal JM et al. 2018. Astron. J. 156:6283
  45. Evans TM, Sing DK, Kataria T et al. 2017. Nature 548:766558–61
  46. Farr WM, Pope BJS, Davies GR et al. 2018. Ap. J. Lett. 865:2L20
  47. Foreman-Mackey D, Agol E, Ambikasaran S, Angus R. 2017. Astron. J. 154:6220
  48. Foreman-Mackey D, Montet BT, Hogg DW et al. 2015. Ap. J. 806:2215
  49. Gabry J, Simpson D, Vehtari A, Betancourt M, Gelman A. 2019. J. R. Stat. Soc.: Ser. A 182:2389–402
  50. Gardner JP, Mather JC, Clampin M et al. 2006. Space Sci. Rev. 123:4485–606
  51. Gardner JR, Pleiss G, Bindel D, Weinberger KQ, Wilson AG. 2018. Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018 S Bengio 7587–97. Red Hook, NY: Curran Assoc.
  52. Gelfand AE, Dey DK, Chang H. 1992. Model determination using predictive distributions with implementation via sampling-based methods. Tech. Rep Stanford Univ CA Dept of Statistics
    [Google Scholar]
  53. Gelman A, Carlin JB, Stern HS, Rubin DB. 1995. Bayesian Data Analysis Boca Raton, FL: Chapman and Hall/CRC
  54. Gelman A, Meng XL, Stern H. 1996. Stat. Sinica 6:733–60
  55. Gibson NP. 2014. MNRAS 445:43401–14
  56. Gibson NP, Aigrain S, Roberts S et al. 2012. MNRAS 419:32683–94
  57. Gibson NP, Pont F, Aigrain S. 2011. MNRAS 411:42199–213
  58. Gillen E, Briegal JT, Hodgkin ST et al. 2020. MNRAS 492:1008–24
  59. Gillon M, Pont F, Demory BO et al. 2007. Astron. Astrophys. 472:2L13–16
  60. Gordon TA, Agol E, Foreman-Mackey D. 2020. Astron. J. 160:5240
  61. Gordon TA, Davenport JRA, Angus R et al. 2021. Ap. J. 913:70
  62. Grunblatt SK, Huber D, Gaidos E et al. 2017. Astron. J. 154:6254
  63. Haywood RD, Collier Cameron A, Queloz D et al. 2014. MNRAS 443:32517–31
  64. Henry GW, Marcy GW, Butler RP, Vogt SS. 2000. Ap. J. Lett. 529:L41–44
  65. Hippke M, David TJ, Mulders GD, Heller R. 2019. Astron. J. 158:4143
  66. Hoffman MD, Gelman A. 2014. J. Mach. Learn. Res. 15:471593–623
  67. Hogg DW, Bovy J, Lang D. 2010. arXiv:1008.4686
  68. Hogg DW, Foreman-Mackey D. 2018. Ap. J. Suppl. 236:11
  69. Hogg DW, Villar S. 2021. Publ. Astron. Soc. Pac. 133:1027093001
  70. Holman MJ, Murray NW. 2005. Science 307:57131288–91
  71. Horne K 2003. Scientific Frontiers in Research on Extrasolar Planets, Vol. 294 Astron. Soc. Pac. Conf. Ser. D Deming, S Seager 361–70. San Francisco: ASP
  72. Howell SB, Sobeck C, Haas M et al. 2014. Publ. Astron. Soc. Pac. 126:938398–408
  73. Hu Z, Tak H. 2020. Astron. J. 160:6265
  74. Hübner M, Huppenkothen D, Lasky PD et al. 2022. Ap. J. 936:17
  75. Ingram A, Motta S. 2019. New Astron. Rev. 85:101524
  76. Isi M, Farr WM. 2021. arXiv:2107.05609
  77. Jekeli C. 1991. Manuscr. Geod. 16:5313–25
  78. Jordán A, Eyheramendy S, Buchner J. 2021. Res. Notes Am. Astron. Soc. 5:5107
  79. Kasliwal VP, Vogeley MS, Richards GT. 2017. MNRAS 470:33027–48
  80. Keeling CD, Whorf TP 2004. Atmospheric CO2Records from Sites in the SIO Air Sampling Network. In Trends: A Compendium of Data on Global Change Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy Oak Ridge: https://data.ess-dive.lbl.gov/datasets/doi:10.3334/CDIAC/ATG.012
  81. Kelly BC, Bechtold J, Siemiginowska A. 2009. Ap. J. 698:895–910
  82. Kelly BC, Becker AC, Sobolewska M, Siemiginowska A, Uttley P. 2014. Ap. J. 788:33
  83. Kostov VB, Schlieder JE, Barclay T et al. 2019. Astron. J. 158:32
  84. Kozłowski S, Kochanek CS, Udalski A et al. 2010. Ap. J. 708:2927–45
  85. Kreidberg L 2018. Handbook of Exoplanets HJ Deeg, JA Belmonte 2083–105. Cham, Switz: Springer
  86. Krige DG. 1951. A statistical approach to some mine valuations and allied problems at the Witwatersrand. Master's Thesis Univ. Witwatersrand Johannesburg:
    [Google Scholar]
  87. Kundić T, Colley WN, Gott J., Richard I et al. 1995. Ap. J. Lett. 455:L5–8
  88. Kundić T, Turner EL, Colley WN et al. 1997. Ap. J. 482:75–82
  89. Li T, Davies GR, Lyttle AJ et al. 2022. MNRAS 511:45597–610
  90. Lochner M, McEwen JD, Peiris HV, Lahav O, Winter MK. 2016. Ap. J. Suppl. 225:231
  91. Loper J, Blei D, Cunningham JP, Paninski L. 2021. J. Mach. Learn. Res. 22:2341–36
  92. Luger R, Agol E, Kruse E et al. 2016. Astron. J. 152:4100
  93. Luger R, Foreman-Mackey D, Hedges C 2021a. Astron. J. 162:3124
  94. Luger R, Foreman-Mackey D, Hedges C, Hogg DW. 2021b. Astron. J. 162:3123
  95. Luger R, Kruse E, Foreman-Mackey D, Agol E, Saunders N. 2018. Astron. J. 156:399
  96. MacLeod CL, Ivezić Ž, Kochanek CS et al. 2010. Ap. J. 721:21014–33
  97. MacLeod CL, Ivezić Ž, Sesar B et al. 2012. Ap. J. 753:2106
  98. Mandel K, Agol E. 2002. Ap. J. Lett. 580:2L171–75
  99. Margossian CC. 2019. Wiley Interdiscip. Rev.: Data Min. Knowledge Discov. 9:4e1305
  100. Matthews AGdG, van der Wilk M, Nickson T et al. 2017. J. Mach. Learn. Res. 18:401–6
  101. Meunier N, Desort M, Lagrange AM. 2010. Astron. Astrophys. 512:A39
  102. Meyer AD, van Dyk DA, Tak H, Siemiginowska A. 2022. arXiv:2207.09327
  103. Miller AC, Anderson L, Leistedt B et al. 2022. arXiv:2202.06797
  104. Moore CJ, Berry CPL, Chua AJK, Gair JR. 2016. Phys. Rev. D 93:6064001
  105. Moreno J, Vogeley MS, Richards GT, Yu W. 2019. Publ. Astron. Soc. Pac. 131:1000063001
  106. Newton ER, Rampalli R, Kraus AL et al. 2022. Astron. J. 164:3115
  107. Nicholson BA, Aigrain S. 2022. MNRAS 515:5251–66
  108. Nocedal J, Wright SJ. 1999. Numerical Optimization New York: Springer
  109. Parthasarathy A, Shannon RM, Johnston S et al. 2019. MNRAS 489:33810–26
  110. Peebles PJE. 1997. Ap. J. Lett. 483:L1–4
  111. Phan D, Pradhan N, Jankowiak M. 2019. arXiv:1912.11554
  112. Pont F, Zucker S, Queloz D. 2006. MNRAS 373:231–42
  113. Posselt B, Karastergiou A, Johnston S et al. 2021. MNRAS 508:34249–68
  114. Press WH. 1997. Understanding data better with Bayesian and global statistical methods Paper presented at Unsolved Problems in Astrophysics Conference Princeton: April 1995. astro-ph/9604126
  115. Press WH, Rybicki GB, Hewitt JN. 1992a. Ap. J. 385:404–15
  116. Press WH, Rybicki GB, Hewitt JN. 1992b. Ap. J. 385:416–20
  117. Pruzhinskaya MV, Malanchev KL, Kornilov MV et al. 2019. MNRAS 489:33591–608
  118. Quinonero-Candela J, Rasmussen CE. 2005. J. Mach. Learn. Res. 6:1939–59
  119. Rajpaul V, Aigrain S, Osborne MA, Reece S, Roberts S. 2015. MNRAS 452:32269–91
  120. Rajpaul V, Aigrain S, Roberts S. 2016. MNRAS 456:L6–10
  121. Rasmussen CE, Williams CKI. 2006. Gaussian Processes for Machine Learning Cambridge, MA: MIT Press
  122. Rauer H, Catala C, Aerts C et al. 2014. Exp. Astron. 38:1–2249–330
  123. Ricker GR, Winn JN, Vanderspek R et al. 2015. J. Astron. Telesc. Instrum. Syst. 1:014003
  124. Romano JD, Cornish NJ. 2017. Living Rev. Relativ. 20:2
  125. Rybicki GB, Press WH. 1995. Phys. Rev. Lett. 74:71060–63
  126. Särkkä S, García-Fernández ÁF. 2020. IEEE Trans. Autom. Control 66:299–306
  127. Särkkä S, Solin A. 2019. Applied Stochastic Differential Equations, Vol. 10: Cambridge, UK: Cambridge Univ. Press
  128. Seager S, Mallén-Ornelas G. 2003. Ap. J. 585:21038–55
  129. Seager S, Sasselov DD. 2000. Ap. J. 537:2916–21
  130. Shah A, Wilson A, Ghahramani Z 2014. Proceedings of the Seventeenth Conference on Artificial Intelligence and Statistics, Vol. 33: Proc. Mach. Learn. Res. S Kaski, J Corander 877–85. Reykjavik, Icel: PMLR
  131. Shaw B, Stappers BW, Weltevrede P et al. 2022. MNRAS 513:45861–80
  132. Skilling J. 2006. Bayesian Anal. 1:4833–59
  133. Sliski DH, Kipping DM. 2014. Ap. J. 788:2148
  134. Stone Z, Shen Y, Burke CJ et al. 2022. MNRAS 514:164–84
  135. Talbot C, Thrane E. 2020. Phys. Rev. Res. 2:4043298
  136. Tracey BD, Wolpert D. 2018. 2018 AIAA Non-Deterministic Approaches Conference, Kissimmee, FL, Jan. 8–12, AIAA 2018-1659
  137. Trotta R. 2008. Contemp. Phys. 49:271–104
  138. Udalski A, Paczynski B, Zebrun K et al. 2002. Acta Astron. 52:1–37
  139. Uhlenbeck GE, Ornstein LS. 1930. Phys. Rev. 36:5823–41
  140. Unser M. 1984. Signal Proc. 7:3231–49
  141. van der Wilk M, Dutordoir V, John S et al. 2020. arXiv:2003.01115
  142. van Haasteren R, Vallisneri M. 2014. Phys. Rev. D 90:10104012
  143. Vanderburg A, Johnson JA. 2014. Publ. Astron. Soc. Pac. 126:944948–58
  144. Vanderriest C, Schneider J, Herpe G et al. 1989. Astron. Astrophys. 215:1–13
  145. Vanhatalo J, Jylänki P, Vehtari A 2009. Gaussian process regression with Student-t likelihood. Advances in Neural Information Processing Systems, Vol. 22 Y Bengio, D Schuurmans, J Lafferty, C Williams, A Culotta 3227–57 Red Hook, NY: Curran Associates, Inc.
    [Google Scholar]
  146. Villar VA, Cranmer M, Berger E et al. 2021. Ap. J. Suppl. 255:224
  147. Villar VA, Hosseinzadeh G, Berger E et al. 2020. Ap. J. 905:294
  148. Virtanen P, Gommers R, Oliphant TE et al. 2020. Nat. Methods 17:261–72
  149. von der Heide K 1978. Astron. Astrophys. 70:6777–84
  150. Wakeford HR, Sing DK, Evans T, Deming D, Mandell A. 2016. Ap. J. 819:10
  151. Way MJ, Srivastava AN. 2006. Ap. J. 647:102–15
  152. Wilson A, Nickisch H. 2015. Proc. 32nd Int. Conf. Mach. Learn., pp. 1775–84 Lille, Fr.: PMLR
  153. Wilson AG, Dann C, Nickisch H. 2015. arXiv:1511.01870
  154. Yang S, Yan D, Zhang P, Dai B, Zhang L. 2021. Ap. J. 907:2105
  155. Yu W, Richards GT, Vogeley MS, Moreno J, Graham MJ. 2022. Ap. J. 936:2132
  156. Zhang H, Yan D, Zhang L. 2022. Ap. J. 930:2157
  157. Zicher N, Barragán O, Klein B et al. 2022. MNRAS 512:23060–78
  158. Zu Y, Kochanek CS, Peterson BM. 2011. Ap. J. 735:280
/content/journals/10.1146/annurev-astro-052920-103508
Loading
/content/journals/10.1146/annurev-astro-052920-103508
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error