1932

Abstract

The past two decades have seen a major expansion in the availability, size, and precision of time-domain data sets in astronomy. Owing to their unique combination of flexibility, mathematical simplicity, and comparative robustness, Gaussian processes (GPs) have emerged recently as the solution of choice to model stochastic signals in such data sets. In this review, we provide a brief introduction to the emergence of GPs in astronomy, present the underlying mathematical theory, and give practical advice considering the key modeling choices involved in GP regression. We then review applications of GPs to time-domain data sets in the astrophysical literature so far, from exoplanets to active galactic nuclei, showcasing the power and flexibility of the method. We provide worked examples using simulated data, with links to the source code; discuss the problem of computational cost and scalability; and give a snapshot of the current ecosystem of open-source GP software packages. In summary:

  • ▪  GP regression is a conceptually simple but statistically principled and powerful tool for the analysis of astronomical time series.
  • ▪  It is already widely used in some subfields, such as exoplanets, and gaining traction in many others, such as optical transients.
  • ▪  Driven by further algorithmic and conceptual advances, we expect that GPs will continue to be an important tool for robust and interpretable time-domain astronomy for many years to come.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Gaussian Process Regression for Astronomical Time Series
Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-052920-103508
2023-08-18
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/astro/61/1/annurev-astro-052920-103508.html?itemId=/content/journals/10.1146/annurev-astro-052920-103508&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott BP, Abbott R, Abbott TD et al. 2020. Class. Quantum Gravity 37:5055002
    [Crossref] [Google Scholar]
  2. Agol E, Luger R, Foreman-Mackey D. 2020. Astron. J. 159:3123
    [Crossref] [Google Scholar]
  3. Aigrain S, Hodgkin ST, Irwin MJ, Lewis JR, Roberts SJ. 2015. MNRAS 447:32880–93
    [Crossref] [Google Scholar]
  4. Aigrain S, Parviainen H, Pope BJS. 2016. MNRAS 459:32408–19
    [Google Scholar]
  5. Aigrain S, Pont F, Zucker S. 2012. MNRAS 419:43147–58
    [Crossref] [Google Scholar]
  6. Albert JG. 2020. arXiv:2012.15286
  7. Almosallam IA, Jarvis MJ, Roberts SJ. 2016. MNRAS 462:726–39
    [Crossref] [Google Scholar]
  8. Ambikasaran S. 2015. Numer. Linear Algebra Appl. 22:61102–14
    [Crossref] [Google Scholar]
  9. Ambikasaran S, Foreman-Mackey D, Greengard L, Hogg DW, O'Neil M. 2015. IEEE Trans. Pattern Anal. Mach. Intell. 38:252
    [Crossref] [Google Scholar]
  10. Angus R, Morton T, Aigrain S, Foreman-Mackey D, Rajpaul V. 2018. MNRAS 474:22094–108
    [Crossref] [Google Scholar]
  11. Antoniadis J, Arzoumanian Z, Babak S et al. 2022. MNRAS 510:44873–87
    [Crossref] [Google Scholar]
  12. Baglin A, Auvergne M, Barge P et al. 2006. Proceedings of The CoRoT Mission Pre-Launch Status—Stellar Seismology and Planet Finding (ESA SP-1306) M Fridlund, A Baglin, J Lochard, L Conroy 33–38 Paris: Eur. Space Agency
    [Google Scholar]
  13. Bailer-Jones CAL. 2012. Astron. Astrophys. 546:A89
    [Crossref] [Google Scholar]
  14. Barclay T, Endl M, Huber D et al. 2015. Ap. J. 800:46
    [Crossref] [Google Scholar]
  15. Barnes JA, Sargent HH III, Tryon PV 1980. Proceedings of the Conference on the Ancient Sun: Fossil Record in the Earth, Moon and Meteorites RO Pepin, JA Eddy, RB Merrill 159–63. New York/Oxford: Pergamon
    [Google Scholar]
  16. Barragán O, Aigrain S, Kubyshkina D et al. 2019. MNRAS 490:698–708
    [Crossref] [Google Scholar]
  17. Barragán O, Aigrain S, Rajpaul VM, Zicher N. 2022. MNRAS 509:866–83
    [Crossref] [Google Scholar]
  18. Barros SCC, Demangeon O, Díaz RF et al. 2020. Astron. Astrophys. 634:A75
    [Crossref] [Google Scholar]
  19. Benz W, Broeg C, Fortier A et al. 2021. Exp. Astron. 51:109–51
    [Crossref] [Google Scholar]
  20. Blandford RD, Narayan R. 1992. Annu. Rev. Astron. Astrophys. 30:311–58
    [Crossref] [Google Scholar]
  21. Boone K. 2019. Astron. J. 158:6257
    [Crossref] [Google Scholar]
  22. Borucki WJ, Koch D, Basri G et al. 2010. Science 327:5968977–80
    [Crossref] [Google Scholar]
  23. Brook PR, Karastergiou A, Johnston S et al. 2016. MNRAS 456:21374–93
    [Crossref] [Google Scholar]
  24. Brook PR, Karastergiou A, Johnston S. 2019. MNRAS 488:45702–12
    [Crossref] [Google Scholar]
  25. Camacho JD, Faria JP, Viana PTP. 2022. MNRAS 519:45439–53
    [Crossref] [Google Scholar]
  26. Carter JA, Winn JN. 2009. Ap. J. 704:51–67
    [Crossref] [Google Scholar]
  27. Champion D, Cognard I, Cruces M et al. 2020. MNRAS 498:46044–56
    [Crossref] [Google Scholar]
  28. Charbonneau D, Brown TM, Latham DW, Mayor M. 2000. Ap. J. Lett. 529:L45–48
    [Crossref] [Google Scholar]
  29. Claeskens G, Hjort NL. 2008. Model Selection and Model Averaging Cambridge Ser. Statistical Probabilistic Math Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  30. Conroy KE, Kochoska A, Hey D, Pablo H, Hambleton KM et al. 2020. Ap. J. Suppl. 250:234
    [Crossref] [Google Scholar]
  31. Constable CG, Parker RL. 1988. J. Geophys. Res. 93:B1011569–81
    [Crossref] [Google Scholar]
  32. Crossfield IJM, Ciardi DR, Petigura EA et al. 2016. Ap. J. Suppl. 226:7
    [Crossref] [Google Scholar]
  33. Cunningham JP, Shenoy KV, Sahani M. 2008. Proc. 25th Intl. Conf. Mach. Learn., Helsinki, Finland A McCallum, S Roweis 192–99. https://icml.cc/Conferences/2008/papers/icml2008proceedings.pdf
    [Google Scholar]
  34. Czekala I, Andrews SM, Mandel KS, Hogg DW, Green GM. 2015. Ap. J. 812:2128
    [Crossref] [Google Scholar]
  35. David TJ, Petigura EA, Luger R et al. 2019. Ap. J. Lett. 885:L12
    [Crossref] [Google Scholar]
  36. Delisle JB, Hara N, Ségransan D. 2020. Astron. Astrophys. 638:A95
    [Crossref] [Google Scholar]
  37. Delisle JB, Unger N, Hara NC, Ségransan D. 2022. Astron. Astrophys. 659:A182
    [Crossref] [Google Scholar]
  38. Deming D, Knutson H, Kammer J et al. 2015. Ap. J. 805:2132
    [Crossref] [Google Scholar]
  39. Dharmawardena TE, Bailer-Jones CAL, Fouesneau M, Foreman-Mackey D. 2022. Astron. Astrophys. 658:A166
    [Crossref] [Google Scholar]
  40. Dumusque X, Pepe F, Lovis C et al. 2012. Nature 491:7423207–11
    [Crossref] [Google Scholar]
  41. Dvorak R, Edelman C 1976. Mitt. Astron. Ges. Hambg. 38:192
    [Google Scholar]
  42. Evans TM, Aigrain S, Gibson N et al. 2015. MNRAS 451:680–94
    [Crossref] [Google Scholar]
  43. Evans TM, Pont F, Sing DK et al. 2013. Ap. J. Lett. 772:2L16
    [Google Scholar]
  44. Evans TM, Sing DK, Goyal JM et al. 2018. Astron. J. 156:6283
    [Crossref] [Google Scholar]
  45. Evans TM, Sing DK, Kataria T et al. 2017. Nature 548:766558–61
    [Crossref] [Google Scholar]
  46. Farr WM, Pope BJS, Davies GR et al. 2018. Ap. J. Lett. 865:2L20
    [Google Scholar]
  47. Foreman-Mackey D, Agol E, Ambikasaran S, Angus R. 2017. Astron. J. 154:6220
    [Crossref] [Google Scholar]
  48. Foreman-Mackey D, Montet BT, Hogg DW et al. 2015. Ap. J. 806:2215
    [Crossref] [Google Scholar]
  49. Gabry J, Simpson D, Vehtari A, Betancourt M, Gelman A. 2019. J. R. Stat. Soc.: Ser. A 182:2389–402
    [Crossref] [Google Scholar]
  50. Gardner JP, Mather JC, Clampin M et al. 2006. Space Sci. Rev. 123:4485–606
    [Crossref] [Google Scholar]
  51. Gardner JR, Pleiss G, Bindel D, Weinberger KQ, Wilson AG. 2018. Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018 S Bengio 7587–97. Red Hook, NY: Curran Assoc.
    [Google Scholar]
  52. Gelfand AE, Dey DK, Chang H. 1992. Model determination using predictive distributions with implementation via sampling-based methods. Tech. Rep Stanford Univ CA Dept of Statistics
    [Google Scholar]
  53. Gelman A, Carlin JB, Stern HS, Rubin DB. 1995. Bayesian Data Analysis Boca Raton, FL: Chapman and Hall/CRC
    [Google Scholar]
  54. Gelman A, Meng XL, Stern H. 1996. Stat. Sinica 6:733–60
    [Google Scholar]
  55. Gibson NP. 2014. MNRAS 445:43401–14
    [Crossref] [Google Scholar]
  56. Gibson NP, Aigrain S, Roberts S et al. 2012. MNRAS 419:32683–94
    [Crossref] [Google Scholar]
  57. Gibson NP, Pont F, Aigrain S. 2011. MNRAS 411:42199–213
    [Crossref] [Google Scholar]
  58. Gillen E, Briegal JT, Hodgkin ST et al. 2020. MNRAS 492:1008–24
    [Crossref] [Google Scholar]
  59. Gillon M, Pont F, Demory BO et al. 2007. Astron. Astrophys. 472:2L13–16
    [Crossref] [Google Scholar]
  60. Gordon TA, Agol E, Foreman-Mackey D. 2020. Astron. J. 160:5240
    [Crossref] [Google Scholar]
  61. Gordon TA, Davenport JRA, Angus R et al. 2021. Ap. J. 913:70
    [Crossref] [Google Scholar]
  62. Grunblatt SK, Huber D, Gaidos E et al. 2017. Astron. J. 154:6254
    [Crossref] [Google Scholar]
  63. Haywood RD, Collier Cameron A, Queloz D et al. 2014. MNRAS 443:32517–31
    [Crossref] [Google Scholar]
  64. Henry GW, Marcy GW, Butler RP, Vogt SS. 2000. Ap. J. Lett. 529:L41–44
    [Crossref] [Google Scholar]
  65. Hippke M, David TJ, Mulders GD, Heller R. 2019. Astron. J. 158:4143
    [Crossref] [Google Scholar]
  66. Hoffman MD, Gelman A. 2014. J. Mach. Learn. Res. 15:471593–623
    [Google Scholar]
  67. Hogg DW, Bovy J, Lang D. 2010. arXiv:1008.4686
  68. Hogg DW, Foreman-Mackey D. 2018. Ap. J. Suppl. 236:11
    [Crossref] [Google Scholar]
  69. Hogg DW, Villar S. 2021. Publ. Astron. Soc. Pac. 133:1027093001
    [Crossref] [Google Scholar]
  70. Holman MJ, Murray NW. 2005. Science 307:57131288–91
    [Crossref] [Google Scholar]
  71. Horne K 2003. Scientific Frontiers in Research on Extrasolar Planets, Vol. 294 Astron. Soc. Pac. Conf. Ser. D Deming, S Seager 361–70. San Francisco: ASP
    [Google Scholar]
  72. Howell SB, Sobeck C, Haas M et al. 2014. Publ. Astron. Soc. Pac. 126:938398–408
    [Crossref] [Google Scholar]
  73. Hu Z, Tak H. 2020. Astron. J. 160:6265
    [Crossref] [Google Scholar]
  74. Hübner M, Huppenkothen D, Lasky PD et al. 2022. Ap. J. 936:17
    [Crossref] [Google Scholar]
  75. Ingram A, Motta S. 2019. New Astron. Rev. 85:101524
    [Crossref] [Google Scholar]
  76. Isi M, Farr WM. 2021. arXiv:2107.05609
  77. Jekeli C. 1991. Manuscr. Geod. 16:5313–25
    [Crossref] [Google Scholar]
  78. Jordán A, Eyheramendy S, Buchner J. 2021. Res. Notes Am. Astron. Soc. 5:5107
    [Google Scholar]
  79. Kasliwal VP, Vogeley MS, Richards GT. 2017. MNRAS 470:33027–48
    [Crossref] [Google Scholar]
  80. Keeling CD, Whorf TP 2004. Atmospheric CO2Records from Sites in the SIO Air Sampling Network. In Trends: A Compendium of Data on Global Change Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy Oak Ridge: https://data.ess-dive.lbl.gov/datasets/doi:10.3334/CDIAC/ATG.012
    [Google Scholar]
  81. Kelly BC, Bechtold J, Siemiginowska A. 2009. Ap. J. 698:895–910
    [Crossref] [Google Scholar]
  82. Kelly BC, Becker AC, Sobolewska M, Siemiginowska A, Uttley P. 2014. Ap. J. 788:33
    [Crossref] [Google Scholar]
  83. Kostov VB, Schlieder JE, Barclay T et al. 2019. Astron. J. 158:32
    [Crossref] [Google Scholar]
  84. Kozłowski S, Kochanek CS, Udalski A et al. 2010. Ap. J. 708:2927–45
    [Crossref] [Google Scholar]
  85. Kreidberg L 2018. Handbook of Exoplanets HJ Deeg, JA Belmonte 2083–105. Cham, Switz: Springer
    [Google Scholar]
  86. Krige DG. 1951. A statistical approach to some mine valuations and allied problems at the Witwatersrand. Master's Thesis Univ. Witwatersrand Johannesburg:
    [Google Scholar]
  87. Kundić T, Colley WN, Gott J., Richard I et al. 1995. Ap. J. Lett. 455:L5–8
    [Crossref] [Google Scholar]
  88. Kundić T, Turner EL, Colley WN et al. 1997. Ap. J. 482:75–82
    [Crossref] [Google Scholar]
  89. Li T, Davies GR, Lyttle AJ et al. 2022. MNRAS 511:45597–610
    [Crossref] [Google Scholar]
  90. Lochner M, McEwen JD, Peiris HV, Lahav O, Winter MK. 2016. Ap. J. Suppl. 225:231
    [Crossref] [Google Scholar]
  91. Loper J, Blei D, Cunningham JP, Paninski L. 2021. J. Mach. Learn. Res. 22:2341–36
    [Google Scholar]
  92. Luger R, Agol E, Kruse E et al. 2016. Astron. J. 152:4100
    [Crossref] [Google Scholar]
  93. Luger R, Foreman-Mackey D, Hedges C 2021a. Astron. J. 162:3124
    [Crossref] [Google Scholar]
  94. Luger R, Foreman-Mackey D, Hedges C, Hogg DW. 2021b. Astron. J. 162:3123
    [Crossref] [Google Scholar]
  95. Luger R, Kruse E, Foreman-Mackey D, Agol E, Saunders N. 2018. Astron. J. 156:399
    [Crossref] [Google Scholar]
  96. MacLeod CL, Ivezić Ž, Kochanek CS et al. 2010. Ap. J. 721:21014–33
    [Crossref] [Google Scholar]
  97. MacLeod CL, Ivezić Ž, Sesar B et al. 2012. Ap. J. 753:2106
    [Crossref] [Google Scholar]
  98. Mandel K, Agol E. 2002. Ap. J. Lett. 580:2L171–75
    [Crossref] [Google Scholar]
  99. Margossian CC. 2019. Wiley Interdiscip. Rev.: Data Min. Knowledge Discov. 9:4e1305
    [Crossref] [Google Scholar]
  100. Matthews AGdG, van der Wilk M, Nickson T et al. 2017. J. Mach. Learn. Res. 18:401–6
    [Google Scholar]
  101. Meunier N, Desort M, Lagrange AM. 2010. Astron. Astrophys. 512:A39
    [Crossref] [Google Scholar]
  102. Meyer AD, van Dyk DA, Tak H, Siemiginowska A. 2022. arXiv:2207.09327
  103. Miller AC, Anderson L, Leistedt B et al. 2022. arXiv:2202.06797
  104. Moore CJ, Berry CPL, Chua AJK, Gair JR. 2016. Phys. Rev. D 93:6064001
    [Crossref] [Google Scholar]
  105. Moreno J, Vogeley MS, Richards GT, Yu W. 2019. Publ. Astron. Soc. Pac. 131:1000063001
    [Crossref] [Google Scholar]
  106. Newton ER, Rampalli R, Kraus AL et al. 2022. Astron. J. 164:3115
    [Crossref] [Google Scholar]
  107. Nicholson BA, Aigrain S. 2022. MNRAS 515:5251–66
    [Crossref] [Google Scholar]
  108. Nocedal J, Wright SJ. 1999. Numerical Optimization New York: Springer
    [Google Scholar]
  109. Parthasarathy A, Shannon RM, Johnston S et al. 2019. MNRAS 489:33810–26
    [Crossref] [Google Scholar]
  110. Peebles PJE. 1997. Ap. J. Lett. 483:L1–4
    [Crossref] [Google Scholar]
  111. Phan D, Pradhan N, Jankowiak M. 2019. arXiv:1912.11554
  112. Pont F, Zucker S, Queloz D. 2006. MNRAS 373:231–42
    [Crossref] [Google Scholar]
  113. Posselt B, Karastergiou A, Johnston S et al. 2021. MNRAS 508:34249–68
    [Crossref] [Google Scholar]
  114. Press WH. 1997. Understanding data better with Bayesian and global statistical methods Paper presented at Unsolved Problems in Astrophysics Conference Princeton: April 1995. astro-ph/9604126
    [Google Scholar]
  115. Press WH, Rybicki GB, Hewitt JN. 1992a. Ap. J. 385:404–15
    [Crossref] [Google Scholar]
  116. Press WH, Rybicki GB, Hewitt JN. 1992b. Ap. J. 385:416–20
    [Crossref] [Google Scholar]
  117. Pruzhinskaya MV, Malanchev KL, Kornilov MV et al. 2019. MNRAS 489:33591–608
    [Google Scholar]
  118. Quinonero-Candela J, Rasmussen CE. 2005. J. Mach. Learn. Res. 6:1939–59
    [Google Scholar]
  119. Rajpaul V, Aigrain S, Osborne MA, Reece S, Roberts S. 2015. MNRAS 452:32269–91
    [Crossref] [Google Scholar]
  120. Rajpaul V, Aigrain S, Roberts S. 2016. MNRAS 456:L6–10
    [Crossref] [Google Scholar]
  121. Rasmussen CE, Williams CKI. 2006. Gaussian Processes for Machine Learning Cambridge, MA: MIT Press
    [Google Scholar]
  122. Rauer H, Catala C, Aerts C et al. 2014. Exp. Astron. 38:1–2249–330
    [Crossref] [Google Scholar]
  123. Ricker GR, Winn JN, Vanderspek R et al. 2015. J. Astron. Telesc. Instrum. Syst. 1:014003
    [Crossref] [Google Scholar]
  124. Romano JD, Cornish NJ. 2017. Living Rev. Relativ. 20:2
    [Crossref] [Google Scholar]
  125. Rybicki GB, Press WH. 1995. Phys. Rev. Lett. 74:71060–63
    [Crossref] [Google Scholar]
  126. Särkkä S, García-Fernández ÁF. 2020. IEEE Trans. Autom. Control 66:299–306
    [Crossref] [Google Scholar]
  127. Särkkä S, Solin A. 2019. Applied Stochastic Differential Equations, Vol. 10: Cambridge, UK: Cambridge Univ. Press
    [Crossref] [Google Scholar]
  128. Seager S, Mallén-Ornelas G. 2003. Ap. J. 585:21038–55
    [Crossref] [Google Scholar]
  129. Seager S, Sasselov DD. 2000. Ap. J. 537:2916–21
    [Crossref] [Google Scholar]
  130. Shah A, Wilson A, Ghahramani Z 2014. Proceedings of the Seventeenth Conference on Artificial Intelligence and Statistics, Vol. 33: Proc. Mach. Learn. Res. S Kaski, J Corander 877–85. Reykjavik, Icel: PMLR
    [Google Scholar]
  131. Shaw B, Stappers BW, Weltevrede P et al. 2022. MNRAS 513:45861–80
    [Crossref] [Google Scholar]
  132. Skilling J. 2006. Bayesian Anal. 1:4833–59
    [Crossref] [Google Scholar]
  133. Sliski DH, Kipping DM. 2014. Ap. J. 788:2148
    [Crossref] [Google Scholar]
  134. Stone Z, Shen Y, Burke CJ et al. 2022. MNRAS 514:164–84
    [Crossref] [Google Scholar]
  135. Talbot C, Thrane E. 2020. Phys. Rev. Res. 2:4043298
    [Crossref] [Google Scholar]
  136. Tracey BD, Wolpert D. 2018. 2018 AIAA Non-Deterministic Approaches Conference, Kissimmee, FL, Jan. 8–12, AIAA 2018-1659
    [Google Scholar]
  137. Trotta R. 2008. Contemp. Phys. 49:271–104
    [Crossref] [Google Scholar]
  138. Udalski A, Paczynski B, Zebrun K et al. 2002. Acta Astron. 52:1–37
    [Google Scholar]
  139. Uhlenbeck GE, Ornstein LS. 1930. Phys. Rev. 36:5823–41
    [Crossref] [Google Scholar]
  140. Unser M. 1984. Signal Proc. 7:3231–49
    [Crossref] [Google Scholar]
  141. van der Wilk M, Dutordoir V, John S et al. 2020. arXiv:2003.01115
  142. van Haasteren R, Vallisneri M. 2014. Phys. Rev. D 90:10104012
    [Crossref] [Google Scholar]
  143. Vanderburg A, Johnson JA. 2014. Publ. Astron. Soc. Pac. 126:944948–58
    [Crossref] [Google Scholar]
  144. Vanderriest C, Schneider J, Herpe G et al. 1989. Astron. Astrophys. 215:1–13
    [Google Scholar]
  145. Vanhatalo J, Jylänki P, Vehtari A 2009. Gaussian process regression with Student-t likelihood. Advances in Neural Information Processing Systems, Vol. 22 Y Bengio, D Schuurmans, J Lafferty, C Williams, A Culotta 3227–57 Red Hook, NY: Curran Associates, Inc.
    [Google Scholar]
  146. Villar VA, Cranmer M, Berger E et al. 2021. Ap. J. Suppl. 255:224
    [Crossref] [Google Scholar]
  147. Villar VA, Hosseinzadeh G, Berger E et al. 2020. Ap. J. 905:294
    [Crossref] [Google Scholar]
  148. Virtanen P, Gommers R, Oliphant TE et al. 2020. Nat. Methods 17:261–72
    [Crossref] [Google Scholar]
  149. von der Heide K 1978. Astron. Astrophys. 70:6777–84
    [Google Scholar]
  150. Wakeford HR, Sing DK, Evans T, Deming D, Mandell A. 2016. Ap. J. 819:10
    [Crossref] [Google Scholar]
  151. Way MJ, Srivastava AN. 2006. Ap. J. 647:102–15
    [Crossref] [Google Scholar]
  152. Wilson A, Nickisch H. 2015. Proc. 32nd Int. Conf. Mach. Learn., pp. 1775–84 Lille, Fr.: PMLR
    [Google Scholar]
  153. Wilson AG, Dann C, Nickisch H. 2015. arXiv:1511.01870
  154. Yang S, Yan D, Zhang P, Dai B, Zhang L. 2021. Ap. J. 907:2105
    [Crossref] [Google Scholar]
  155. Yu W, Richards GT, Vogeley MS, Moreno J, Graham MJ. 2022. Ap. J. 936:2132
    [Crossref] [Google Scholar]
  156. Zhang H, Yan D, Zhang L. 2022. Ap. J. 930:2157
    [Crossref] [Google Scholar]
  157. Zicher N, Barragán O, Klein B et al. 2022. MNRAS 512:23060–78
    [Crossref] [Google Scholar]
  158. Zu Y, Kochanek CS, Peterson BM. 2011. Ap. J. 735:280
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-astro-052920-103508
Loading
/content/journals/10.1146/annurev-astro-052920-103508
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error