1932

Abstract

Over a decade ago, a group of supernova explosions with peak luminosities far exceeding (often by >100 times) those of normal events has been identified. These superluminous supernovae (SLSNe) have been a focus of intensive study. I review the accumulated observations and discuss the implications for the physics of these extreme explosions.

  • ▪  SLSNe can be classified into hydrogen-poor (SLSNe-I) and hydrogen-rich (SLSNe-II) events.
  • ▪  Combining photometric and spectroscopic analysis of samples of nearby SLSNe-I and lower-luminosity events, a threshold of mag at peak appears to separate SLSNe-I from the normal population.
  • ▪  SLSN-I light curves can be quite complex, presenting both early bumps and late postpeak undulations.
  • ▪  SLSNe-I spectroscopically evolve from an early hot photospheric phase with a blue continuum and weak absorption lines, through a cool photospheric phase resembling spectra of SNe Ic, and into the late nebular phase.
  • ▪  SLSNe-II are not nearly as well studied, lacking information based on large-sample studies.
Proposed models for the SLSN power source are challenged to explain all the observations. SLSNe arise from massive progenitors, with some events associated with very massive stars ( M). Host galaxies of SLSNe in the nearby Universe tend to have low mass and subsolar metallicity. SLSNe are rare, with rates <100 times lower than ordinary supernovae. SLSN cosmology and their use as beacons to study the high-redshift Universe offer exciting prospects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-081817-051819
2019-08-18
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/astro/57/1/annurev-astro-081817-051819.html?itemId=/content/journals/10.1146/annurev-astro-081817-051819&mimeType=html&fmt=ahah

Literature Cited

  1. Alsabti A, Murdin P 2017.Handbook of Supernovae Cham: Springer
  2. Anderson JP, Pessi PJ, Dessart L 2018.Astron. Astrophys. 620:A67
  3. Angus CR, Levan AJ, Perley DA 2016. MNRAS 458:84
    [Google Scholar]
  4. Arcavi I, Gal-Yam A, Kasliwal MM 2010. Ap. J. 721:777
    [Google Scholar]
  5. Arcavi I, Howell DA, Kasen D 2017. Nature 551:210
    [Google Scholar]
  6. Barkat Z, Rakavy G, Sack N 1967. Phys. Rev. Lett. 18:379
    [Google Scholar]
  7. Ben-Ami S, Gal-Yam A, Mazzali PA 2014. Ap. J. 785:37
    [Google Scholar]
  8. Benetti S, Nicholl M, Cappellaro E 2014. MNRAS 441:289
    [Google Scholar]
  9. Berger E, Chornock R, Lunnan R 2012. Ap. J. Lett. 755:L29
    [Google Scholar]
  10. Bhirombhakdi K, Chornock R, Miller AA 2018. arXiv:1807.07859
  11. Bose S, Dong S, Pastorello A 2018. Ap. J. 853:57
    [Google Scholar]
  12. Chambers KC, Magnier EA, Metcalfe N 2016. arXiv:1612.05560
  13. Chatzopoulos E, Wheeler JC, Vinko J 2012. Ap. J. 746:121
    [Google Scholar]
  14. Chatzopoulos E, Wheeler JC, Vinko J 2011. Ap. J. 729:143
    [Google Scholar]
  15. Chen T-W, Nicholl M, Smartt SJ 2017a. Astron. Astrophys. 602:A9
    [Google Scholar]
  16. Chen T-W, Smartt SJ, Jerkstrand A 2015. MNRAS 452:1567
    [Google Scholar]
  17. Chen T-W, Smartt SJ, Yates RM 2017b. MNRAS 470:3566
    [Google Scholar]
  18. Cooke J, Sullivan M, Gal-Yam A 2012. Nature 491:228
    [Google Scholar]
  19. Curtin C, Cooke J, Moriya TJ 2019. Ap. J. 241:17
    [Google Scholar]
  20. De Cia A, Gal-Yam A, Rubin A 2018. Ap. J. 860:100 https://doi.org/10.3847/1538-4357/aab9b6
    [Crossref] [Google Scholar]
  21. Dessart L, Hillier DJ, Waldman R 2012. MNRAS 426:L76
    [Google Scholar]
  22. Dexter J, Kasen D 2013. Ap. J. 772:30
    [Google Scholar]
  23. Dong S, Shappee BJ, Prieto JL 2016. Science 351:257
    [Google Scholar]
  24. Drake AJ, Djorgovski SG, Mahabal A 2009. Ap. J. 696:870
    [Google Scholar]
  25. Gal-Yam A 2012. Science 337:927
    [Google Scholar]
  26. Gal-Yam A 2017. See Alsabti & Murdin (2017) p. 195
  27. Gal-Yam A 2018. arXiv:1806.08224
  28. Gal-Yam A, Mazzali P, Ofek EO 2009. Nature 462:624
    [Google Scholar]
  29. Gal-Yam A, Mazzali PA, Manulis I, Bishop D 2013. Publ. Astron. Soc. Pac. 125:749
    [Google Scholar]
  30. Gezari S, Halpern JP, Grupe D 2009. Ap. J. 690:1313
    [Google Scholar]
  31. Greiner J, Mazzali PA, Kann DA 2015. Nature 523:189
    [Google Scholar]
  32. Guetta D, Della Valle M 2007. Ap. J. Lett. 657:L73
    [Google Scholar]
  33. Heger A, Woosley SE 2002. Ap. J. 567:532
    [Google Scholar]
  34. Howell DA 2017. See Alsabti & Murdin (2017) 431
  35. Howell DA, Kasen D, Lidman C 2013. Ap. J. 779:98
    [Google Scholar]
  36. Inserra C, Bulla M, Sim SA, Smartt SJ 2016. Ap. J. 831:79
    [Google Scholar]
  37. Inserra C, Nichol RC, Scovacricchi D 2018a.. Astron. Astrophys. 609:A83
  38. Inserra C, Nicholl M, Chen T-W 2017. MNRAS 468:4642
    [Google Scholar]
  39. Inserra C, Prajs S, Gutierrez CP 2018b.. Ap. J. 854:175
    [Google Scholar]
  40. Inserra C, Smartt SJ 2014. Ap. J. 796:87
    [Google Scholar]
  41. Inserra C, Smartt SJ, Gall EEE 2018c. MNRAS 475:1046
    [Google Scholar]
  42. Inserra C, Smartt SJ, Jerkstrand A 2013. Ap. J. 770:128
    [Google Scholar]
  43. Jerkstrand A, Smartt SJ, Inserra C 2017. Ap. J. 835:13
    [Google Scholar]
  44. Kangas T, Blagorodnova N, Mattila S 2017. MNRAS 469:1246
    [Google Scholar]
  45. Kasen D, Bildsten L 2010. Ap. J. 717:245
    [Google Scholar]
  46. Kasen D, Metzger BD, Bildsten L 2016. Ap. J. 821:36
    [Google Scholar]
  47. Kasen D, Woosley SE, Heger A 2011. Ap. J. 734:102
    [Google Scholar]
  48. Kelly PL, Kirshner RP 2012. Ap. J. 759:107
    [Google Scholar]
  49. Kozyreva A, Blinnikov S 2015. MNRAS 454:4357
    [Google Scholar]
  50. Kozyreva A, Gilmer M, Hirschi R 2017. MNRAS 464:2854
    [Google Scholar]
  51. Kozyreva A, Kromer M, Noebauer UM, Hirschi R 2018. MNRAS 479:3106
    [Google Scholar]
  52. Kushnir D 2015. arXiv:1506.02655
  53. Langer N 2012. Annu. Rev. Astron. Astrophys. 50:107
    [Google Scholar]
  54. Langer N, Norman CA, de Koter A 2007. Astron. Astrophys. 475:L19
    [Google Scholar]
  55. Law NM, Kulkarni SR, Dekany RG 2009. Publ. Astron. Soc. Pac. 121:1395
    [Google Scholar]
  56. Leloudas G, Chatzopoulos E, Dilday B 2012. Astron. Astrophys. 541:A129
    [Google Scholar]
  57. Leloudas G, Fraser M, Stone NC 2016. Nat. Astron. 1:0002
    [Google Scholar]
  58. Leloudas G, Maund JR, Gal-Yam A 2017. Ap. J. Lett. 837:L14 https://doi.org/10.3847/2041-8213/aa6157
    [Crossref] [Google Scholar]
  59. Leloudas G, Patat F, Maund JR 2015a. Ap. J. Lett. 815:L10
    [Google Scholar]
  60. Leloudas G, Schulze S, Krühler T 2015b. MNRAS 449:917
    [Google Scholar]
  61. Levan AJ, Read AM, Metzger BD 2013. Ap. J. 771:136
    [Google Scholar]
  62. Levan AJ, Tanvir NR, Starling RLC 2014. Ap. J. 781:13
    [Google Scholar]
  63. Li W, Chornock R, Leaman J 2011. MNRAS 412:1473
    [Google Scholar]
  64. Liu L-D, Wang S-Q, Wang L-J 2017. Ap. J. 842:26
    [Google Scholar]
  65. Liu Y-Q, Modjaz M, Bianco FB 2017. Ap. J. 845:85
    [Google Scholar]
  66. Lunnan R, Chornock R, Berger E 2014. Ap. J. 787:138
    [Google Scholar]
  67. Lunnan R, Chornock R, Berger E 2015. Ap. J. 804:90
    [Google Scholar]
  68. Lunnan R, Chornock R, Berger E 2016. Ap. J. 831:144
    [Google Scholar]
  69. Lunnan R, Chornock R, Berger E 2018a. Ap. J. 852:81
    [Google Scholar]
  70. Lunnan R, Fransson C, Vreeswijk PM 2018b. Nat. Astron. 2:887–95
    [Google Scholar]
  71. Maeda K, Tanaka M, Nomoto K 2007. Ap. J. 666:1069
    [Google Scholar]
  72. Margutti R, Chornock R, Metzger BD 2018. Ap. J. 864:45
    [Google Scholar]
  73. Mazzali PA, Sullivan M, Pian E 2016. MNRAS 458:3455
    [Google Scholar]
  74. Metzger BD, Vurm I, Hascoët R, Beloborodov AM 2014. MNRAS 437:703
    [Google Scholar]
  75. Miller AA, Chornock R, Perley DA 2009. Ap. J. 690:1303
    [Google Scholar]
  76. Miller AA, Silverman JM, Butler NR 2010. MNRAS 404:305
    [Google Scholar]
  77. Modjaz M, Liu YQ, Bianco FB, Graur O 2016. Ap. J. 832:108
    [Google Scholar]
  78. Moriya TJ, Sorokina EI, Chevalier RA 2018. Space Sci. Rev. 214:59
    [Google Scholar]
  79. Neill JD, Sullivan M, Gal-Yam A 2011. Ap. J. 727:15
    [Google Scholar]
  80. Nicholl M, Berger E, Blanchard PK 2019. Ap. J. 871:102
    [Google Scholar]
  81. Nicholl M, Berger E, Margutti R 2016a. Ap. J. Lett. 828:L18
    [Google Scholar]
  82. Nicholl M, Berger E, Margutti R 2017a. Ap. J. Lett. 835:L8
    [Google Scholar]
  83. Nicholl M, Berger E, Smartt SJ 2016b. Ap. J. 826:39
    [Google Scholar]
  84. Nicholl M, Guillochon J, Berger E 2017b. Ap. J. 850:55
    [Google Scholar]
  85. Nicholl M, Smartt SJ 2016. MNRAS 457:L79
    [Google Scholar]
  86. Nicholl M, Smartt SJ, Jerkstrand A 2013. Nature 502:346
    [Google Scholar]
  87. Nicholl M, Smartt SJ, Jerkstrand A 2015a. Ap. J. Lett. 807:L18
    [Google Scholar]
  88. Nicholl M, Smartt SJ, Jerkstrand A 2015b. MNRAS 452:3869
    [Google Scholar]
  89. Ofek EO, Cameron PB, Kasliwal MM 2007. Ap. J. Lett. 659:L13
    [Google Scholar]
  90. Ofek EO, Fox D, Cenko SB 2013. Ap. J. 763:42
    [Google Scholar]
  91. Ofek EO, Sullivan M, Shaviv NJ 2014. Ap. J. 789:104
    [Google Scholar]
  92. Pastorello A, Smartt SJ, Botticella MT 2010. Ap. J. Lett. 724:L16
    [Google Scholar]
  93. Perley DA, Quimby RM, Yan L 2016. Ap. J. 830:13
    [Google Scholar]
  94. Prajs S, Sullivan M, Smith M 2017. MNRAS 464:3568
    [Google Scholar]
  95. Prentice SJ, Mazzali PA, Pian E 2016. MNRAS 458:2973
    [Google Scholar]
  96. Quimby RM, Aldering G, Wheeler JC 2007. Ap. J. Lett. 668:L99
    [Google Scholar]
  97. Quimby RM, De Cia A, Gal-Yam A 2018. Ap. J. 855:2
    [Google Scholar]
  98. Quimby RM, Kulkarni SR, Kasliwal MM 2011. Nature 474:487
    [Google Scholar]
  99. Quimby RM, Yuan F, Akerlof C, Wheeler JC 2013. MNRAS 431:912
    [Google Scholar]
  100. Rakavy G, Shaviv G 1967. Ap. J. 148:803
    [Google Scholar]
  101. Richardson D, Branch D, Casebeer D 2002. Astron. J. 123:745
    [Google Scholar]
  102. Schulze S, Krühler T, Leloudas G 2018. MNRAS 473:1258
    [Google Scholar]
  103. Smartt SJ 2015. Publ. Astron. Soc. Aust. 32:e016
    [Google Scholar]
  104. Smith M, Sullivan M, D'Andrea CB 2016. Ap. J. Lett. 818:L8
    [Google Scholar]
  105. Smith M, Sullivan M, Nichol RC 2018. Ap. J. 854:37
    [Google Scholar]
  106. Smith N 2014. Annu. Rev. Astron. Astrophys. 52:487
    [Google Scholar]
  107. Smith N, Chornock R, Li W 2008. Ap. J. 686:467
    [Google Scholar]
  108. Smith N, Chornock R, Silverman JM 2010. Ap. J. 709:856
    [Google Scholar]
  109. Smith N, Li W, Foley RJ 2007. Ap. J. 666:1116
    [Google Scholar]
  110. Sukhbold T, Woosley SE 2016. Ap. J. Lett. 820:L38
    [Google Scholar]
  111. Thöne CC, de Ugarte Postigo A, García-Benito R 2015. MNRAS 451:L65
    [Google Scholar]
  112. Valenti S, Elias-Rosa N, Taubenberger S 2008. Ap. J. Lett. 673:L155
    [Google Scholar]
  113. Vreeswijk PM, Leloudas G, Gal-Yam A 2017. Ap. J. 835:58
    [Google Scholar]
  114. Vreeswijk PM, Savaglio S, Gal-Yam A 2014. Ap. J. 797:24
    [Google Scholar]
  115. Waldman R 2008. Ap. J. 685:1103
    [Google Scholar]
  116. Wang L, Baade D, Baron E 2017. arXiv:1710.07005
  117. Woosley SE 2010. Ap. J. Lett. 719:L204
    [Google Scholar]
  118. Woosley SE 2017. Ap. J. 836:244
    [Google Scholar]
  119. Woosley SE, Blinnikov S, Heger A 2007. Nature 450:390
    [Google Scholar]
  120. Yan L, Lunnan R, Perley DA 2017a. Ap. J. 848:6
    [Google Scholar]
  121. Yan L, Perley DA, De Cia A 2018. Ap. J. 858:91
    [Google Scholar]
  122. Yan L, Quimby R, Gal-Yam A 2017b. Ap. J. 840:57
    [Google Scholar]
  123. Yan L, Quimby R, Ofek E 2015. Ap. J. 814:108
    [Google Scholar]
  124. Yaron O, Gal-Yam A 2012. Publ. Astron. Soc. Pac. 124:668
    [Google Scholar]
  125. Yaron O, Perley DA, Gal-Yam A 2017. Nat. Phys. 13:510
    [Google Scholar]
/content/journals/10.1146/annurev-astro-081817-051819
Loading
/content/journals/10.1146/annurev-astro-081817-051819
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error