1932

Abstract

There is a broad consensus that accretion onto supermassive black holes and consequent jet formation power the observed emission from active galactic nuclei (AGNs). However, there has been less agreement about how jets form in accretion flows, their possible relationship to black hole spin, and how they interact with the surrounding medium. There have also been theoretical concerns about instabilities in standard accretion disk models and lingering discrepancies with observational constraints. Despite seemingly successful applications to X-ray binaries, the standard accretion disk model faces a growing list of observational constraints that challenge its application to AGNs. Theoretical exploration of these questions has become increasingly reliant on numerical simulations owing to the dynamic nature of these flows and the complex interplay between hydrodynamics, magnetic fields, radiation transfer, and curved spacetime. We conclude the following:

  • ▪   The advent of general relativistic magnetohydrodynamics (MHD) simulations has greatly improved our understanding of jet production and its dependence on black hole spin.
  • ▪   Simulation results show both disks and jets are sensitive to the magnetic flux threading the accretion flow as well as possible misalignment between the angular momentum of the accretion flow and the black hole spin.
  • ▪   Radiation MHD simulations are providing new insights into the stability of luminous accretion flows and highlighting the potential importance of radiation viscosity, UV opacity from atoms, and spiral density waves in AGNs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-081817-051905
2020-08-18
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/astro/58/1/annurev-astro-081817-051905.html?itemId=/content/journals/10.1146/annurev-astro-081817-051905&mimeType=html&fmt=ahah

Literature Cited

  1. Abramowicz MA, Czerny B, Lasota JP, Szuszkiewicz E 1988. Ap. J. 332:646–58
  2. Balbus SA, Hawley JF 1991. Ap. J. 376:214–33
  3. Balbus SA, Hawley JF 1998. Rev. Mod. Phys. 70:1–53
  4. Balbus SA, Papaloizou JCB 1999. Ap. J. 521:650–58
  5. Bardeen JM, Petterson JA 1975. Ap. J. Lett. 195:L65–67
  6. Barniol Duran R, Tchekhovskoy A, Giannios D 2017. MNRAS 469:4957–78
  7. Baron D, Stern J, Poznanski D, Netzer H 2016. Ap. J. 832:8
  8. Beckwith K, Hawley JF, Krolik JH 2008. Ap. J. 678:1180–99
  9. Beckwith K, Hawley JF, Krolik JH 2009. Ap. J. 707:428–45
  10. Begelman MC, Pringle JE 2007. MNRAS 375:1070–76
  11. Begelman MC, Silk J 2017. MNRAS 464:2311–17
  12. Beskin VS, Nokhrina EE 2006. MNRAS 367:375–86
  13. Blackburne JA, Pooley D, Rappaport S, Schechter PL 2011. Ap. J. 729:34
  14. Blandford RD, Begelman MC 1999. MNRAS 303:L1–5
  15. Blandford RD, Payne DG 1982. MNRAS 199:883–903
  16. Blandford RD, Znajek RL 1977. MNRAS 179:433–56
  17. Bloom JS, Giannios D, Metzger BD et al 2011. Science 333:203–6
  18. Bonning EW, Cheng L, Shields GA, Salviander S, Gebhardt K 2007. Ap. J. 659:211–17
  19. Brandenburg A, Nordlund A, Stein RF, Torkelsson U 1995. Ap. J. 446:741–54
  20. Broderick AE, Tchekhovskoy A 2015. Ap. J. 809:97
  21. Bromberg O, Tchekhovskoy A 2016. MNRAS 456:1739–60
  22. Burrows DN, Kennea JA, Ghisellini G et al 2011. Nature 476:421–24
  23. Capellupo DM, Netzer H, Lira P, Trakhtenbrot B, Mejía-Restrepo J 2015. MNRAS 446:3427–46
  24. Cardall CY, Endeve E, Mezzacappa A 2013. Phys. Rev. D 88:023011
  25. Castor JI, Abbott DC, Klein RI 1975. Ap. J. 195:157–74
  26. Chatterjee K, Liska M, Tchekhovskoy A, Markoff SB 2019. MNRAS 490:22200–18
  27. Chen AY, Yuan Y, Yang H 2018. Ap. J. Lett. 863:L31
  28. Clarke DA, Norman ML, Burns JO 1986. Ap. J. Lett. 311:L63–67
  29. Cowling TG 1981. Annu. Rev. Astron. Astrophys. 19:115–35
  30. Dai L, McKinney JC, Roth N, Ramirez-Ruiz E, Miller MC 2018. Ap. J. Lett. 859::L20
  31. Davis SW, Blaes OM, Hubeny I, Turner NJ 2005. Ap. J. 621:372–87
  32. Davis SW, Done C, Blaes OM 2006. Ap. J. 647:525–38
  33. Davis SW, Laor A 2011. Ap. J. 728::98
  34. Davis SW, Woo JH, Blaes OM 2007. Ap. J. 668:682–98
  35. De Villiers JP, Hawley JF, Krolik JH 2003. Ap. J. 599:1238–53
  36. De Villiers JP, Hawley JF, Krolik JH, Hirose S 2005. Ap. J. 620:878–88
  37. Dexter J, Begelman MC 2019. MNRAS 483:L17–21
  38. Done C, Gierliński M, Kubota A 2007. Astron. Astrophys. Rev. 15:1–66
  39. Duffell PC, MacFadyen AI 2011. Ap. J. Suppl. 197::15
  40. Dunn RJH, Fender RP, Körding EG, Belloni T, Merloni A 2011. MNRAS 411:337–48
  41. Edelson R, Gelbord JM, Horne K et al 2015. Ap. J. 806::129
  42. Esin AA, McClintock JE, Narayan R 1997. Ap. J. 489:865–89
  43. Evans CR, Hawley JF 1988. Ap. J. 332:659–77
  44. Event Horizon Telesc. Collab., Akiyama K, Alberdi A et al 2019. Ap. J. Lett. 875::L1
  45. Fanaroff BL, Riley JM 1974. MNRAS 167::31P–36P
  46. Fender RP, Belloni TM, Gallo E 2004. MNRAS 355:1105–18
  47. Fragile PC, Anninos P 2005. Ap. J. 623:347–61
  48. Fragile PC, Blaes OM, Anninos P, Salmonson JD 2007. Ap. J. 668:417–29
  49. Fromang S, Papaloizou J 2007. Astron. Astrophys. 476:1113–22
  50. Gammie CF, McKinney JC, Tóth G 2003. Ap. J. 589:444–57
  51. Gaskell CM, Goosmann RW, Antonucci RRJ, Whysong DH 2004. Ap. J. 616:147–56
  52. Ghisellini G, Tavecchio F, Maraschi L, Celotti A, Sbarrato T 2014. Nature 515:376–78
  53. Grzdzielski M, Janiuk A, Czerny B 2017. Ap. J. 845::20
  54. Guan X, Li H, Li S 2014. Ap. J. 781::48
  55. Hawley JF, Balbus SA 2002. Ap. J. 573:738–48
  56. Hawley JF, Gammie CF, Balbus SA 1995. Ap. J. 440:742–63
  57. Hawley JF, Krolik JH 2006. Ap. J. 641:103–16
  58. Hawley JF, Krolik JH 2019. Ap. J. 878::149
  59. Hawley JF, Smarr LL, Wilson JR 1984. Ap. J. 277:296–311
  60. Hirose S, Krolik JH, Blaes O 2009. Ap. J. 691:16–31
  61. Hirose S, Krolik JH, Stone JM 2006. Ap. J. 640:901–17
  62. Hirotani K, Okamoto I 1998. Ap. J. 497:563–72
  63. Hirotani K, Pu HY 2016. Ap. J. 818::50
  64. Homayouni Y, Trump JR, Grier CJ et al 2019. Ap. J. 880::126
  65. Hubeny I, Blaes O, Krolik JH, Agol E 2001. Ap. J. 559:680–702
  66. Iglesias CA, Rogers FJ 1996. Ap. J. 464:943–53
  67. Igumenshchev IV 2008. Ap. J. 677:317–26
  68. Igumenshchev IV, Narayan R, Abramowicz MA 2003. Ap. J. 592:1042–59
  69. Janiuk A, Czerny B, Siemiginowska A 2002. Ap. J. 576:908–22
  70. Jiang YF, Blaes O, Stone J, Davis SW 2019. Ap. J. 885::144
  71. Jiang YF, Cantiello M, Bildsten L et al 2018. Nature 561:498–501
  72. Jiang YF, Davis SW, Stone JM 2016. Ap. J. 827::10
  73. Jiang YF, Green PJ, Greene JE et al 2017. Ap. J. 836::186
  74. Jiang YF, Stone JM, Davis SW 2012. Ap. J. Suppl. 199::14
  75. Jiang YF, Stone JM, Davis SW 2013. Ap. J. 778::65
  76. Jiang YF, Stone JM, Davis SW 2014a.. Ap. J. 796:106
  77. Jiang YF, Stone JM, Davis SW 2014b. Ap. J. 784:169
  78. Jiang YF, Stone JM, Davis SW 2019. Ap. J. 880::67
  79. Kaiser CR, Alexander P 1997. MNRAS 286:215–22
  80. Kelley LZ, Tchekhovskoy A, Narayan R 2014. MNRAS 445:3919–38
  81. Kitaki T, Mineshige S, Ohsuga K, Kawashima T 2018. Publ. Astron. Soc. Jpn. 70::108
  82. Kolykhalov PI, Sunyaev RA 1984. Adv. Space Res. 3:249–54
  83. Komissarov SS 1994. MNRAS 269:394–402
  84. Komissarov SS 2001. MNRAS 326:L41–44
  85. Koratkar A, Blaes O 1999. Publ. Astron. Soc. Pac. 111:1–30
  86. Krolik JH 1999. Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment Princeton, NJ: Princeton Univ. Press
  87. Kubota A, Done C 2018. MNRAS 480:1247–62
  88. Kulkarni AK, Penna RF, Shcherbakov RV et al 2011. MNRAS 414:1183–94
  89. LaMassa SM, Cales S, Moran EC et al 2015. Ap. J. 800::144
  90. Laor A, Davis SW 2014. MNRAS 438:3024–38
  91. Laor A, Netzer H 1989. MNRAS 238:897–916
  92. Lasota JP 2001. New Astron. Rev. 45:449–508
  93. Lawrence A 2012. MNRAS 423:451–63
  94. Lawrence A 2018. Nat. Astron. 2:102–3
  95. Levan AJ, Tanvir NR, Cenko SB et al 2011. Science 333:199–202
  96. LeVeque RJ 2002. Finite Volume Methods for Hyperbolic Problems Cambridge, UK: Cambridge Univ. Press
  97. Levermore CD, Pomraning GC 1981. Ap. J. 248:321–34
  98. Levinson A, Segev N 2017. Phys. Rev. D 96::123006
  99. Li ZY, Chiueh T, Begelman MC 1992. Ap. J. 394:459–71
  100. Lightman AP, Eardley DM 1974. Ap. J. Lett. 187:L1–3
  101. Liska M, Chatterjee K, Tchekhovskoy A 2019a. MNRAS Submitted. arXiv:1912.10192
  102. Liska M, Hesp C, Tchekhovskoy A 2018. MNRAS 474:L81–85
  103. Liska M, Hesp C, Tchekhovskoy A 2019b. MNRAS Submitted. arXiv:1901.05970
  104. Liska M, Hesp C, Tchekhovskoy A 2020a. MNRAS In press. https://doi.org/10.1093/mnras/staa099
    [Crossref]
  105. Liska M, Tchekhovskoy A, Ingram A, van der Klis M 2019c. MNRAS 484:45094–101
  106. Liska M, Tchekhovskoy A, Quataert E 2020b. MNRAS 494:33656–62
  107. Liu G, Liu M 2003. Smoothed Particle Hydrodynamics: A Meshfree Particle Method Singapore: World Sci.
  108. Lubow SH, Papaloizou JCB, Pringle JE 1994. MNRAS 267:235–40
  109. Lynden-Bell D 1969. Nature 223:690–94
  110. Lynden-Bell D, Pringle JE 1974. MNRAS 168:603–37
  111. MacLeod CL, Ross NP, Lawrence A et al 2016. MNRAS 457:389–404
  112. Masaki I 1971. Publ. Astron. Soc. Jpn. 23:425–28
  113. McKernan B, Ford KES, Lyra W, Perets HB 2012. MNRAS 425:460–69
  114. McKinney JC 2005. Ap. J. Lett. 630:L5–8
  115. McKinney JC, Dai L, Avara MJ 2015. MNRAS 454:L6–10
  116. McKinney JC, Gammie CF 2004. Ap. J. 611:977–95
  117. McKinney JC, Tchekhovskoy A, Blandford RD 2012. MNRAS 423:3083–117
  118. McKinney JC, Tchekhovskoy A, Blandford RD 2013. Science 339:49–52
  119. McKinney JC, Tchekhovskoy A, Sdowski A, Narayan R 2014. MNRAS 441:3177–208
  120. Meliani Z, Keppens R 2009. Ap. J. 705:1594–606
  121. Mertens F, Lobanov AP, Walker RC, Hardee PE 2016. Astron. Astrophys. 595::A54
  122. Mihalas D, Mihalas BW 1984. Foundations of Radiation Hydrodynamics. New York: Oxford Univ. Press
  123. Miralda-Escudé J, Kollmeier JA 2005. Ap. J. 619:30–40
  124. Mishra B, Begelman MC, Armitage PJ, Simon JB 2020. MNRAS 492:21855–68
  125. Mishra B, Fragile PC, Johnson LC, Kluźniak W 2016. MNRAS 463:3437–48
  126. Misner CW, Thorne KS, Wheeler JA 1973. Gravitation Princeton, NJ: Princeton Univ. Press
  127. Mocz P, Vogelsberger M, Hernquist L 2014. MNRAS 442:43–55
  128. Morgan CW, Hyer GE, Bonvin V et al 2018. Ap. J. 869::106
  129. Morgan CW, Kochanek CS, Morgan ND, Falco EE 2010. Ap. J. 712:1129–36
  130. Mościbrodzka M, Falcke H 2013. Astron. Astrophys. 559::L3
  131. Murray N, Chiang J, Grossman SA, Voit GM 1995. Ap. J. 451:498–509
  132. Nakamura M, Asada K 2013. Ap. J. 775::118
  133. Narayan R, Igumenshchev IV, Abramowicz MA 2003. Publ. Astron. Soc. Jpn. 55:L69–72
  134. Narayan R, McClintock JE 2012. MNRAS 419:L69–73
  135. Narayan R, Yi I 1994. Ap. J. Lett. 428:L13–16
  136. Nayakshin S, Rappaport S, Melia F 2000. Ap. J. 535:798–814
  137. Nealon R, Nixon C, Price DJ, King A 2016. MNRAS 455:L62–66
  138. Nelson RP, Papaloizou JCB 2000. MNRAS 315:570–86
  139. Nemmen RS, Tchekhovskoy A 2015. MNRAS 449:316–27
  140. Netzer H, Trakhtenbrot B 2014. MNRAS 438:672–79
  141. Nixon C, King A, Price D, Frank J 2012. Ap. J. Lett. 757::L24
  142. Noble SC, Krolik JH, Hawley JF 2010. Ap. J. 711:959–73
  143. Novikov ID, Thorne KS 1973.. In Black Holes (Les Astres Occlus), ed. C Dewitt, BS Dewitt, pp. 343–450 New York: Gordon Breach Sci. Publ.
  144. Ohsuga K, Mineshige S 2011. Ap. J. 736::2
  145. Ohsuga K, Mineshige S, Mori M, Kato Y 2009. Publ. Astron. Soc. Jpn. 61:L7–11
  146. Ohsuga K, Mori M, Nakamoto T, Mineshige S 2005. Ap. J. 628:368–81
  147. Pan Z, Yu C 2015. Ap. J. 812::57
  148. Parfrey K, Philippov A, Cerutti B 2019. Phys. Rev. Lett. 122::035101
  149. Penna RF, McKinney JC, Narayan R et al 2010. MNRAS 408:752–82
  150. Perucho M, Martí JM, Cela JM et al 2010. Astron. Astrophys. 519::A41
  151. Perucho M, Martí JM, Hanasz M 2005. Astron. Astrophys. 443:863–81
  152. Perucho M, Martí JM, Laing RA, Hardee PE 2014. MNRAS 441:1488–503
  153. Pessah ME, Chan Ck, Psaltis D 2007. Ap. J. Lett. 668:L51–54
  154. Piran T 1978. Ap. J. 221:652–60
  155. Porth O, Chatterjee K, Narayan R et al 2019. Ap. J. Suppl. 243::26
  156. Proga D, Kallman TR 2004. Ap. J. 616:688–95
  157. Proga D, Stone JM, Kallman TR 2000. Ap. J. 543:686–96
  158. Ptitsyna K, Neronov A 2016. Astron. Astrophys. 593::A8
  159. Remillard RA, McClintock JE 2006. Annu. Rev. Astron. Astrophys. 44:49–92
  160. Ressler SM, Tchekhovskoy A, Quataert E, Gammie CF 2017. MNRAS 467:3604–19
  161. Richards GT, Hall PB, Vanden Berk DE et al 2003. Astron. J. 126:1131–47
  162. Russell DM, Gallo E, Fender RP 2013. MNRAS 431:405–14
  163. Ryan BR, Dolence JC, Gammie CF 2015. Ap. J. 807::31
  164. Ryan BR, Gammie CF, Fromang S, Kestener P 2017. Ap. J. 840::6
  165. Ryan BR, Ressler SM, Dolence JC, Gammie C, Quataert E 2018. Ap. J. 864::126
  166. Rybicki GB, Lightman AP 1986. Radiative Processes in Astrophysics. Weinheim, Ger.: Wiley-VCH
  167. Sakimoto PJ, Coroniti FV 1981. Ap. J. 247:19–31
  168. Salpeter EE 1964. Ap. J. 140:796–800
  169. Sdowski A 2016. MNRAS 459:4397–407
  170. Sdowski A, Narayan R 2016. MNRAS 456:3929–47
  171. Sdowski A, Narayan R, Tchekhovskoy A et al 2015. MNRAS 447:49–71
  172. Sdowski A, Narayan R, Tchekhovskoy A, Zhu Y 2013. MNRAS 429:3533–50
  173. Schmidt M 1963. Nature 197::1040
  174. Schnittman JD, Krolik JH, Noble SC 2013. Ap. J. 769::156
  175. Shafee R, McKinney JC, Narayan R et al 2008. Ap. J. Lett. 687:L25–28
  176. Shakura NI, Sunyaev RA 1973. Astron. Astrophys. 24:337–55
  177. Shakura NI, Sunyaev RA 1976. MNRAS 175:613–32
  178. Shang Z, Brotherton MS, Green RF et al 2005. Ap. J. 619:41–59
  179. Shi JM, Stone JM, Huang CX 2016. MNRAS 456:2273–89
  180. Shields GA 1978. Nature 272:706–8
  181. Shull JM, Stevans M, Danforth CW 2012. Ap. J. 752::162
  182. Simon JB, Beckwith K, Armitage PJ 2012. MNRAS 422:2685–700
  183. Sincell MW, Krolik JH 1997. Ap. J. 476:605–19
  184. Slone O, Netzer H 2012. MNRAS 426:656–64
  185. Springel V 2010. MNRAS 401:791–851
  186. Steffen AT, Strateva I, Brandt WN et al 2006. Astron. J. 131:2826–42
  187. Steiner JF, McClintock JE, Narayan R 2013. Ap. J. 762::104
  188. Stone JM, Hawley JF, Gammie CF, Balbus SA 1996. Ap. J. 463:656–73
  189. Tchekhovskoy A 2015. The Formation and Disruption of Black Hole Jets, ed. I Contopoulos, D Gabuzda, N Kylafis. Astrophys. Space Sci. Libr. 414:45–82
    [Google Scholar]
  190. Tchekhovskoy A, Bromberg O 2016. MNRAS 461:L46–50
  191. Tchekhovskoy A, Giannios D 2015. MNRAS 447:327–44
  192. Tchekhovskoy A, McKinney JC, Narayan R 2008. MNRAS 388:551–72
  193. Tchekhovskoy A, Metzger BD, Giannios D, Kelley LZ 2014. MNRAS 437:2744–60
  194. Tchekhovskoy A, Narayan R, McKinney JC 2010. Ap. J. 711:50–63
  195. Tchekhovskoy A, Narayan R, McKinney JC 2011. MNRAS 418:L79–83
  196. Tombesi F, Cappi M, Reeves JN et al 2010. Astron. Astrophys. 521::A57
  197. Turner NJ 2004. Ap. J. Lett. 605:L45–48
  198. Turner NJ, Stone JM 2001. Ap. J. Suppl. 135:95–107
  199. Turner NJ, Stone JM, Krolik JH, Sano T 2003. Ap. J. 593:992–1006
  200. Walter R, Fink HH 1993. Astron. Astrophys. 274:105–22
  201. Weymann RJ, Morris SL, Foltz CB, Hewett PC 1991. Ap. J. 373:23–53
  202. White CJ, Stone JM, Quataert E 2019. Ap. J. 874::168
  203. Wilson JR 1972. Ap. J. 173:431–38
  204. Wykes S, Hardcastle MJ, Karakas AI, Vink JS 2015. MNRAS 447:1001–13
  205. Yuan F, Narayan R 2014. Annu. Rev. Astron. Astrophys. 52:529–88
  206. Zamaninasab M, Clausen-Brown E, Savolainen T, Tchekhovskoy A 2014. Nature 510:126–28
  207. Zauderer BA, Berger E, Soderberg AM et al 2011. Nature 476:425–28
  208. Zhu Z, Stone JM 2018. Ap. J. 857::34
  209. Zhuravlev VV, Ivanov PB, Fragile PC, Morales Teixeira D 2014. Ap. J. 796:104
/content/journals/10.1146/annurev-astro-081817-051905
Loading
/content/journals/10.1146/annurev-astro-081817-051905
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error