1932

Abstract

There is a broad consensus that accretion onto supermassive black holes and consequent jet formation power the observed emission from active galactic nuclei (AGNs). However, there has been less agreement about how jets form in accretion flows, their possible relationship to black hole spin, and how they interact with the surrounding medium. There have also been theoretical concerns about instabilities in standard accretion disk models and lingering discrepancies with observational constraints. Despite seemingly successful applications to X-ray binaries, the standard accretion disk model faces a growing list of observational constraints that challenge its application to AGNs. Theoretical exploration of these questions has become increasingly reliant on numerical simulations owing to the dynamic nature of these flows and the complex interplay between hydrodynamics, magnetic fields, radiation transfer, and curved spacetime. We conclude the following:

  • ▪   The advent of general relativistic magnetohydrodynamics (MHD) simulations has greatly improved our understanding of jet production and its dependence on black hole spin.
  • ▪   Simulation results show both disks and jets are sensitive to the magnetic flux threading the accretion flow as well as possible misalignment between the angular momentum of the accretion flow and the black hole spin.
  • ▪   Radiation MHD simulations are providing new insights into the stability of luminous accretion flows and highlighting the potential importance of radiation viscosity, UV opacity from atoms, and spiral density waves in AGNs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-081817-051905
2020-08-18
2025-02-14
Loading full text...

Full text loading...

/deliver/fulltext/astro/58/1/annurev-astro-081817-051905.html?itemId=/content/journals/10.1146/annurev-astro-081817-051905&mimeType=html&fmt=ahah

Literature Cited

  1. Abramowicz MA, Czerny B, Lasota JP, Szuszkiewicz E 1988. Ap. J. 332:646–58
    [Google Scholar]
  2. Balbus SA, Hawley JF 1991. Ap. J. 376:214–33
    [Google Scholar]
  3. Balbus SA, Hawley JF 1998. Rev. Mod. Phys. 70:1–53
    [Google Scholar]
  4. Balbus SA, Papaloizou JCB 1999. Ap. J. 521:650–58
    [Google Scholar]
  5. Bardeen JM, Petterson JA 1975. Ap. J. Lett. 195:L65–67
    [Google Scholar]
  6. Barniol Duran R, Tchekhovskoy A, Giannios D 2017. MNRAS 469:4957–78
    [Google Scholar]
  7. Baron D, Stern J, Poznanski D, Netzer H 2016. Ap. J. 832:8
    [Google Scholar]
  8. Beckwith K, Hawley JF, Krolik JH 2008. Ap. J. 678:1180–99
    [Google Scholar]
  9. Beckwith K, Hawley JF, Krolik JH 2009. Ap. J. 707:428–45
    [Google Scholar]
  10. Begelman MC, Pringle JE 2007. MNRAS 375:1070–76
    [Google Scholar]
  11. Begelman MC, Silk J 2017. MNRAS 464:2311–17
    [Google Scholar]
  12. Beskin VS, Nokhrina EE 2006. MNRAS 367:375–86
    [Google Scholar]
  13. Blackburne JA, Pooley D, Rappaport S, Schechter PL 2011. Ap. J. 729:34
    [Google Scholar]
  14. Blandford RD, Begelman MC 1999. MNRAS 303:L1–5
    [Google Scholar]
  15. Blandford RD, Payne DG 1982. MNRAS 199:883–903
    [Google Scholar]
  16. Blandford RD, Znajek RL 1977. MNRAS 179:433–56
    [Google Scholar]
  17. Bloom JS, Giannios D, Metzger BD et al 2011. Science 333:203–6
    [Google Scholar]
  18. Bonning EW, Cheng L, Shields GA, Salviander S, Gebhardt K 2007. Ap. J. 659:211–17
    [Google Scholar]
  19. Brandenburg A, Nordlund A, Stein RF, Torkelsson U 1995. Ap. J. 446:741–54
    [Google Scholar]
  20. Broderick AE, Tchekhovskoy A 2015. Ap. J. 809:97
    [Google Scholar]
  21. Bromberg O, Tchekhovskoy A 2016. MNRAS 456:1739–60
    [Google Scholar]
  22. Burrows DN, Kennea JA, Ghisellini G et al 2011. Nature 476:421–24
    [Google Scholar]
  23. Capellupo DM, Netzer H, Lira P, Trakhtenbrot B, Mejía-Restrepo J 2015. MNRAS 446:3427–46
    [Google Scholar]
  24. Cardall CY, Endeve E, Mezzacappa A 2013. Phys. Rev. D 88:023011
    [Google Scholar]
  25. Castor JI, Abbott DC, Klein RI 1975. Ap. J. 195:157–74
    [Google Scholar]
  26. Chatterjee K, Liska M, Tchekhovskoy A, Markoff SB 2019. MNRAS 490:22200–18
    [Google Scholar]
  27. Chen AY, Yuan Y, Yang H 2018. Ap. J. Lett. 863:L31
    [Google Scholar]
  28. Clarke DA, Norman ML, Burns JO 1986. Ap. J. Lett. 311:L63–67
    [Google Scholar]
  29. Cowling TG 1981. Annu. Rev. Astron. Astrophys. 19:115–35
    [Google Scholar]
  30. Dai L, McKinney JC, Roth N, Ramirez-Ruiz E, Miller MC 2018. Ap. J. Lett. 859::L20
    [Google Scholar]
  31. Davis SW, Blaes OM, Hubeny I, Turner NJ 2005. Ap. J. 621:372–87
    [Google Scholar]
  32. Davis SW, Done C, Blaes OM 2006. Ap. J. 647:525–38
    [Google Scholar]
  33. Davis SW, Laor A 2011. Ap. J. 728::98
    [Google Scholar]
  34. Davis SW, Woo JH, Blaes OM 2007. Ap. J. 668:682–98
    [Google Scholar]
  35. De Villiers JP, Hawley JF, Krolik JH 2003. Ap. J. 599:1238–53
    [Google Scholar]
  36. De Villiers JP, Hawley JF, Krolik JH, Hirose S 2005. Ap. J. 620:878–88
    [Google Scholar]
  37. Dexter J, Begelman MC 2019. MNRAS 483:L17–21
    [Google Scholar]
  38. Done C, Gierliński M, Kubota A 2007. Astron. Astrophys. Rev. 15:1–66
    [Google Scholar]
  39. Duffell PC, MacFadyen AI 2011. Ap. J. Suppl. 197::15
    [Google Scholar]
  40. Dunn RJH, Fender RP, Körding EG, Belloni T, Merloni A 2011. MNRAS 411:337–48
    [Google Scholar]
  41. Edelson R, Gelbord JM, Horne K et al 2015. Ap. J. 806::129
    [Google Scholar]
  42. Esin AA, McClintock JE, Narayan R 1997. Ap. J. 489:865–89
    [Google Scholar]
  43. Evans CR, Hawley JF 1988. Ap. J. 332:659–77
    [Google Scholar]
  44. Event Horizon Telesc. Collab., Akiyama K, Alberdi A et al 2019. Ap. J. Lett. 875::L1
    [Google Scholar]
  45. Fanaroff BL, Riley JM 1974. MNRAS 167::31P–36P
    [Google Scholar]
  46. Fender RP, Belloni TM, Gallo E 2004. MNRAS 355:1105–18
    [Google Scholar]
  47. Fragile PC, Anninos P 2005. Ap. J. 623:347–61
    [Google Scholar]
  48. Fragile PC, Blaes OM, Anninos P, Salmonson JD 2007. Ap. J. 668:417–29
    [Google Scholar]
  49. Fromang S, Papaloizou J 2007. Astron. Astrophys. 476:1113–22
    [Google Scholar]
  50. Gammie CF, McKinney JC, Tóth G 2003. Ap. J. 589:444–57
    [Google Scholar]
  51. Gaskell CM, Goosmann RW, Antonucci RRJ, Whysong DH 2004. Ap. J. 616:147–56
    [Google Scholar]
  52. Ghisellini G, Tavecchio F, Maraschi L, Celotti A, Sbarrato T 2014. Nature 515:376–78
    [Google Scholar]
  53. Grzdzielski M, Janiuk A, Czerny B 2017. Ap. J. 845::20
    [Google Scholar]
  54. Guan X, Li H, Li S 2014. Ap. J. 781::48
    [Google Scholar]
  55. Hawley JF, Balbus SA 2002. Ap. J. 573:738–48
    [Google Scholar]
  56. Hawley JF, Gammie CF, Balbus SA 1995. Ap. J. 440:742–63
    [Google Scholar]
  57. Hawley JF, Krolik JH 2006. Ap. J. 641:103–16
    [Google Scholar]
  58. Hawley JF, Krolik JH 2019. Ap. J. 878::149
    [Google Scholar]
  59. Hawley JF, Smarr LL, Wilson JR 1984. Ap. J. 277:296–311
    [Google Scholar]
  60. Hirose S, Krolik JH, Blaes O 2009. Ap. J. 691:16–31
    [Google Scholar]
  61. Hirose S, Krolik JH, Stone JM 2006. Ap. J. 640:901–17
    [Google Scholar]
  62. Hirotani K, Okamoto I 1998. Ap. J. 497:563–72
    [Google Scholar]
  63. Hirotani K, Pu HY 2016. Ap. J. 818::50
    [Google Scholar]
  64. Homayouni Y, Trump JR, Grier CJ et al 2019. Ap. J. 880::126
    [Google Scholar]
  65. Hubeny I, Blaes O, Krolik JH, Agol E 2001. Ap. J. 559:680–702
    [Google Scholar]
  66. Iglesias CA, Rogers FJ 1996. Ap. J. 464:943–53
    [Google Scholar]
  67. Igumenshchev IV 2008. Ap. J. 677:317–26
    [Google Scholar]
  68. Igumenshchev IV, Narayan R, Abramowicz MA 2003. Ap. J. 592:1042–59
    [Google Scholar]
  69. Janiuk A, Czerny B, Siemiginowska A 2002. Ap. J. 576:908–22
    [Google Scholar]
  70. Jiang YF, Blaes O, Stone J, Davis SW 2019. Ap. J. 885::144
    [Google Scholar]
  71. Jiang YF, Cantiello M, Bildsten L et al 2018. Nature 561:498–501
    [Google Scholar]
  72. Jiang YF, Davis SW, Stone JM 2016. Ap. J. 827::10
    [Google Scholar]
  73. Jiang YF, Green PJ, Greene JE et al 2017. Ap. J. 836::186
    [Google Scholar]
  74. Jiang YF, Stone JM, Davis SW 2012. Ap. J. Suppl. 199::14
    [Google Scholar]
  75. Jiang YF, Stone JM, Davis SW 2013. Ap. J. 778::65
    [Google Scholar]
  76. Jiang YF, Stone JM, Davis SW 2014a.. Ap. J. 796:106
    [Google Scholar]
  77. Jiang YF, Stone JM, Davis SW 2014b. Ap. J. 784:169
    [Google Scholar]
  78. Jiang YF, Stone JM, Davis SW 2019. Ap. J. 880::67
    [Google Scholar]
  79. Kaiser CR, Alexander P 1997. MNRAS 286:215–22
    [Google Scholar]
  80. Kelley LZ, Tchekhovskoy A, Narayan R 2014. MNRAS 445:3919–38
    [Google Scholar]
  81. Kitaki T, Mineshige S, Ohsuga K, Kawashima T 2018. Publ. Astron. Soc. Jpn. 70::108
    [Google Scholar]
  82. Kolykhalov PI, Sunyaev RA 1984. Adv. Space Res. 3:249–54
    [Google Scholar]
  83. Komissarov SS 1994. MNRAS 269:394–402
    [Google Scholar]
  84. Komissarov SS 2001. MNRAS 326:L41–44
    [Google Scholar]
  85. Koratkar A, Blaes O 1999. Publ. Astron. Soc. Pac. 111:1–30
    [Google Scholar]
  86. Krolik JH 1999. Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  87. Kubota A, Done C 2018. MNRAS 480:1247–62
    [Google Scholar]
  88. Kulkarni AK, Penna RF, Shcherbakov RV et al 2011. MNRAS 414:1183–94
    [Google Scholar]
  89. LaMassa SM, Cales S, Moran EC et al 2015. Ap. J. 800::144
    [Google Scholar]
  90. Laor A, Davis SW 2014. MNRAS 438:3024–38
    [Google Scholar]
  91. Laor A, Netzer H 1989. MNRAS 238:897–916
    [Google Scholar]
  92. Lasota JP 2001. New Astron. Rev. 45:449–508
    [Google Scholar]
  93. Lawrence A 2012. MNRAS 423:451–63
    [Google Scholar]
  94. Lawrence A 2018. Nat. Astron. 2:102–3
    [Google Scholar]
  95. Levan AJ, Tanvir NR, Cenko SB et al 2011. Science 333:199–202
    [Google Scholar]
  96. LeVeque RJ 2002. Finite Volume Methods for Hyperbolic Problems Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  97. Levermore CD, Pomraning GC 1981. Ap. J. 248:321–34
    [Google Scholar]
  98. Levinson A, Segev N 2017. Phys. Rev. D 96::123006
    [Google Scholar]
  99. Li ZY, Chiueh T, Begelman MC 1992. Ap. J. 394:459–71
    [Google Scholar]
  100. Lightman AP, Eardley DM 1974. Ap. J. Lett. 187:L1–3
    [Google Scholar]
  101. Liska M, Chatterjee K, Tchekhovskoy A 2019a. MNRAS Submitted. arXiv:1912.10192
    [Google Scholar]
  102. Liska M, Hesp C, Tchekhovskoy A 2018. MNRAS 474:L81–85
    [Google Scholar]
  103. Liska M, Hesp C, Tchekhovskoy A 2019b. MNRAS Submitted. arXiv:1901.05970
    [Google Scholar]
  104. Liska M, Hesp C, Tchekhovskoy A 2020a. MNRAS In press. https://doi.org/10.1093/mnras/staa099
    [Crossref] [Google Scholar]
  105. Liska M, Tchekhovskoy A, Ingram A, van der Klis M 2019c. MNRAS 484:45094–101
    [Google Scholar]
  106. Liska M, Tchekhovskoy A, Quataert E 2020b. MNRAS 494:33656–62
    [Google Scholar]
  107. Liu G, Liu M 2003. Smoothed Particle Hydrodynamics: A Meshfree Particle Method Singapore: World Sci.
    [Google Scholar]
  108. Lubow SH, Papaloizou JCB, Pringle JE 1994. MNRAS 267:235–40
    [Google Scholar]
  109. Lynden-Bell D 1969. Nature 223:690–94
    [Google Scholar]
  110. Lynden-Bell D, Pringle JE 1974. MNRAS 168:603–37
    [Google Scholar]
  111. MacLeod CL, Ross NP, Lawrence A et al 2016. MNRAS 457:389–404
    [Google Scholar]
  112. Masaki I 1971. Publ. Astron. Soc. Jpn. 23:425–28
    [Google Scholar]
  113. McKernan B, Ford KES, Lyra W, Perets HB 2012. MNRAS 425:460–69
    [Google Scholar]
  114. McKinney JC 2005. Ap. J. Lett. 630:L5–8
    [Google Scholar]
  115. McKinney JC, Dai L, Avara MJ 2015. MNRAS 454:L6–10
    [Google Scholar]
  116. McKinney JC, Gammie CF 2004. Ap. J. 611:977–95
    [Google Scholar]
  117. McKinney JC, Tchekhovskoy A, Blandford RD 2012. MNRAS 423:3083–117
    [Google Scholar]
  118. McKinney JC, Tchekhovskoy A, Blandford RD 2013. Science 339:49–52
    [Google Scholar]
  119. McKinney JC, Tchekhovskoy A, Sdowski A, Narayan R 2014. MNRAS 441:3177–208
    [Google Scholar]
  120. Meliani Z, Keppens R 2009. Ap. J. 705:1594–606
    [Google Scholar]
  121. Mertens F, Lobanov AP, Walker RC, Hardee PE 2016. Astron. Astrophys. 595::A54
    [Google Scholar]
  122. Mihalas D, Mihalas BW 1984. Foundations of Radiation Hydrodynamics. New York: Oxford Univ. Press
    [Google Scholar]
  123. Miralda-Escudé J, Kollmeier JA 2005. Ap. J. 619:30–40
    [Google Scholar]
  124. Mishra B, Begelman MC, Armitage PJ, Simon JB 2020. MNRAS 492:21855–68
    [Google Scholar]
  125. Mishra B, Fragile PC, Johnson LC, Kluźniak W 2016. MNRAS 463:3437–48
    [Google Scholar]
  126. Misner CW, Thorne KS, Wheeler JA 1973. Gravitation Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  127. Mocz P, Vogelsberger M, Hernquist L 2014. MNRAS 442:43–55
    [Google Scholar]
  128. Morgan CW, Hyer GE, Bonvin V et al 2018. Ap. J. 869::106
    [Google Scholar]
  129. Morgan CW, Kochanek CS, Morgan ND, Falco EE 2010. Ap. J. 712:1129–36
    [Google Scholar]
  130. Mościbrodzka M, Falcke H 2013. Astron. Astrophys. 559::L3
    [Google Scholar]
  131. Murray N, Chiang J, Grossman SA, Voit GM 1995. Ap. J. 451:498–509
    [Google Scholar]
  132. Nakamura M, Asada K 2013. Ap. J. 775::118
    [Google Scholar]
  133. Narayan R, Igumenshchev IV, Abramowicz MA 2003. Publ. Astron. Soc. Jpn. 55:L69–72
    [Google Scholar]
  134. Narayan R, McClintock JE 2012. MNRAS 419:L69–73
    [Google Scholar]
  135. Narayan R, Yi I 1994. Ap. J. Lett. 428:L13–16
    [Google Scholar]
  136. Nayakshin S, Rappaport S, Melia F 2000. Ap. J. 535:798–814
    [Google Scholar]
  137. Nealon R, Nixon C, Price DJ, King A 2016. MNRAS 455:L62–66
    [Google Scholar]
  138. Nelson RP, Papaloizou JCB 2000. MNRAS 315:570–86
    [Google Scholar]
  139. Nemmen RS, Tchekhovskoy A 2015. MNRAS 449:316–27
    [Google Scholar]
  140. Netzer H, Trakhtenbrot B 2014. MNRAS 438:672–79
    [Google Scholar]
  141. Nixon C, King A, Price D, Frank J 2012. Ap. J. Lett. 757::L24
    [Google Scholar]
  142. Noble SC, Krolik JH, Hawley JF 2010. Ap. J. 711:959–73
    [Google Scholar]
  143. Novikov ID, Thorne KS 1973.. In Black Holes (Les Astres Occlus), ed. C Dewitt, BS Dewitt, pp. 343–450 New York: Gordon Breach Sci. Publ.
  144. Ohsuga K, Mineshige S 2011. Ap. J. 736::2
    [Google Scholar]
  145. Ohsuga K, Mineshige S, Mori M, Kato Y 2009. Publ. Astron. Soc. Jpn. 61:L7–11
    [Google Scholar]
  146. Ohsuga K, Mori M, Nakamoto T, Mineshige S 2005. Ap. J. 628:368–81
    [Google Scholar]
  147. Pan Z, Yu C 2015. Ap. J. 812::57
    [Google Scholar]
  148. Parfrey K, Philippov A, Cerutti B 2019. Phys. Rev. Lett. 122::035101
    [Google Scholar]
  149. Penna RF, McKinney JC, Narayan R et al 2010. MNRAS 408:752–82
    [Google Scholar]
  150. Perucho M, Martí JM, Cela JM et al 2010. Astron. Astrophys. 519::A41
    [Google Scholar]
  151. Perucho M, Martí JM, Hanasz M 2005. Astron. Astrophys. 443:863–81
    [Google Scholar]
  152. Perucho M, Martí JM, Laing RA, Hardee PE 2014. MNRAS 441:1488–503
    [Google Scholar]
  153. Pessah ME, Chan Ck, Psaltis D 2007. Ap. J. Lett. 668:L51–54
    [Google Scholar]
  154. Piran T 1978. Ap. J. 221:652–60
    [Google Scholar]
  155. Porth O, Chatterjee K, Narayan R et al 2019. Ap. J. Suppl. 243::26
    [Google Scholar]
  156. Proga D, Kallman TR 2004. Ap. J. 616:688–95
    [Google Scholar]
  157. Proga D, Stone JM, Kallman TR 2000. Ap. J. 543:686–96
    [Google Scholar]
  158. Ptitsyna K, Neronov A 2016. Astron. Astrophys. 593::A8
    [Google Scholar]
  159. Remillard RA, McClintock JE 2006. Annu. Rev. Astron. Astrophys. 44:49–92
    [Google Scholar]
  160. Ressler SM, Tchekhovskoy A, Quataert E, Gammie CF 2017. MNRAS 467:3604–19
    [Google Scholar]
  161. Richards GT, Hall PB, Vanden Berk DE et al 2003. Astron. J. 126:1131–47
    [Google Scholar]
  162. Russell DM, Gallo E, Fender RP 2013. MNRAS 431:405–14
    [Google Scholar]
  163. Ryan BR, Dolence JC, Gammie CF 2015. Ap. J. 807::31
    [Google Scholar]
  164. Ryan BR, Gammie CF, Fromang S, Kestener P 2017. Ap. J. 840::6
    [Google Scholar]
  165. Ryan BR, Ressler SM, Dolence JC, Gammie C, Quataert E 2018. Ap. J. 864::126
    [Google Scholar]
  166. Rybicki GB, Lightman AP 1986. Radiative Processes in Astrophysics. Weinheim, Ger.: Wiley-VCH
    [Google Scholar]
  167. Sakimoto PJ, Coroniti FV 1981. Ap. J. 247:19–31
    [Google Scholar]
  168. Salpeter EE 1964. Ap. J. 140:796–800
    [Google Scholar]
  169. Sdowski A 2016. MNRAS 459:4397–407
    [Google Scholar]
  170. Sdowski A, Narayan R 2016. MNRAS 456:3929–47
    [Google Scholar]
  171. Sdowski A, Narayan R, Tchekhovskoy A et al 2015. MNRAS 447:49–71
    [Google Scholar]
  172. Sdowski A, Narayan R, Tchekhovskoy A, Zhu Y 2013. MNRAS 429:3533–50
    [Google Scholar]
  173. Schmidt M 1963. Nature 197::1040
    [Google Scholar]
  174. Schnittman JD, Krolik JH, Noble SC 2013. Ap. J. 769::156
    [Google Scholar]
  175. Shafee R, McKinney JC, Narayan R et al 2008. Ap. J. Lett. 687:L25–28
    [Google Scholar]
  176. Shakura NI, Sunyaev RA 1973. Astron. Astrophys. 24:337–55
    [Google Scholar]
  177. Shakura NI, Sunyaev RA 1976. MNRAS 175:613–32
    [Google Scholar]
  178. Shang Z, Brotherton MS, Green RF et al 2005. Ap. J. 619:41–59
    [Google Scholar]
  179. Shi JM, Stone JM, Huang CX 2016. MNRAS 456:2273–89
    [Google Scholar]
  180. Shields GA 1978. Nature 272:706–8
    [Google Scholar]
  181. Shull JM, Stevans M, Danforth CW 2012. Ap. J. 752::162
    [Google Scholar]
  182. Simon JB, Beckwith K, Armitage PJ 2012. MNRAS 422:2685–700
    [Google Scholar]
  183. Sincell MW, Krolik JH 1997. Ap. J. 476:605–19
    [Google Scholar]
  184. Slone O, Netzer H 2012. MNRAS 426:656–64
    [Google Scholar]
  185. Springel V 2010. MNRAS 401:791–851
    [Google Scholar]
  186. Steffen AT, Strateva I, Brandt WN et al 2006. Astron. J. 131:2826–42
    [Google Scholar]
  187. Steiner JF, McClintock JE, Narayan R 2013. Ap. J. 762::104
    [Google Scholar]
  188. Stone JM, Hawley JF, Gammie CF, Balbus SA 1996. Ap. J. 463:656–73
    [Google Scholar]
  189. Tchekhovskoy A 2015. The Formation and Disruption of Black Hole Jets, ed. I Contopoulos, D Gabuzda, N Kylafis. Astrophys. Space Sci. Libr. 414:45–82
    [Google Scholar]
  190. Tchekhovskoy A, Bromberg O 2016. MNRAS 461:L46–50
    [Google Scholar]
  191. Tchekhovskoy A, Giannios D 2015. MNRAS 447:327–44
    [Google Scholar]
  192. Tchekhovskoy A, McKinney JC, Narayan R 2008. MNRAS 388:551–72
    [Google Scholar]
  193. Tchekhovskoy A, Metzger BD, Giannios D, Kelley LZ 2014. MNRAS 437:2744–60
    [Google Scholar]
  194. Tchekhovskoy A, Narayan R, McKinney JC 2010. Ap. J. 711:50–63
    [Google Scholar]
  195. Tchekhovskoy A, Narayan R, McKinney JC 2011. MNRAS 418:L79–83
    [Google Scholar]
  196. Tombesi F, Cappi M, Reeves JN et al 2010. Astron. Astrophys. 521::A57
    [Google Scholar]
  197. Turner NJ 2004. Ap. J. Lett. 605:L45–48
    [Google Scholar]
  198. Turner NJ, Stone JM 2001. Ap. J. Suppl. 135:95–107
    [Google Scholar]
  199. Turner NJ, Stone JM, Krolik JH, Sano T 2003. Ap. J. 593:992–1006
    [Google Scholar]
  200. Walter R, Fink HH 1993. Astron. Astrophys. 274:105–22
    [Google Scholar]
  201. Weymann RJ, Morris SL, Foltz CB, Hewett PC 1991. Ap. J. 373:23–53
    [Google Scholar]
  202. White CJ, Stone JM, Quataert E 2019. Ap. J. 874::168
    [Google Scholar]
  203. Wilson JR 1972. Ap. J. 173:431–38
    [Google Scholar]
  204. Wykes S, Hardcastle MJ, Karakas AI, Vink JS 2015. MNRAS 447:1001–13
    [Google Scholar]
  205. Yuan F, Narayan R 2014. Annu. Rev. Astron. Astrophys. 52:529–88
    [Google Scholar]
  206. Zamaninasab M, Clausen-Brown E, Savolainen T, Tchekhovskoy A 2014. Nature 510:126–28
    [Google Scholar]
  207. Zauderer BA, Berger E, Soderberg AM et al 2011. Nature 476:425–28
    [Google Scholar]
  208. Zhu Z, Stone JM 2018. Ap. J. 857::34
    [Google Scholar]
  209. Zhuravlev VV, Ivanov PB, Fragile PC, Morales Teixeira D 2014. Ap. J. 796:104
    [Google Scholar]
/content/journals/10.1146/annurev-astro-081817-051905
Loading
/content/journals/10.1146/annurev-astro-081817-051905
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error