1932

Abstract

The (NH) flyby of the Pluto–Charon binary planet and its system of four small surrounding satellites in mid-2015 revolutionized our knowledge of this distant planet and its moons. Beyond providing rich geo-logical, compositional, and atmospheric data sets, NH demonstrated that Pluto has been surprisingly geologically and climatologically active throughout the past 4+ Gyr and that the planet exhibits a remarkably complex range of atmospheric phenomenology and geological expressions that rival Mars in their richness. In contrast, Pluto's large, planet-sized satellite Charon, though also geologically complex, has no detected active surface volatiles, has no detectable atmosphere, has much more muted colors, has lower albedo, and exhibits only ancient terrains. Pluto's system of four small satellites orbiting outside of Charon is itself dynamically complex and geologically interesting. Here, we review both what was known about the Pluto system before NH and what it has taught us about the Pluto system specifically and, by inference, other small planets in the Kuiper Belt. We go on to examine the natural next steps in Kuiper Belt exploration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-081817-051935
2018-09-14
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/astro/56/1/annurev-astro-081817-051935.html?itemId=/content/journals/10.1146/annurev-astro-081817-051935&mimeType=html&fmt=ahah

Literature Cited

  1. Andersson LE 1978. Eclipse phenomena of Pluto and its satellite. Bull. Am. Astron. Soc. 10:586 (Abstr.)
    [Google Scholar]
  2. Bagenal F, Horányi M, McComas DJ et al. 2016. Pluto's interaction with its space environment: solar wind, energetic particles, and dust. Science 351:aad9045
    [Google Scholar]
  3. Barr AC, Collins GC 2015. Tectonic activity on Pluto after the Charon-forming impact. Icarus 246:146–55
    [Google Scholar]
  4. Barucci MA, Boehnhardt H, Cruikshank D, Morbidelli A, eds. 2008. The Solar System Beyond Neptune Tucson: Univ. Arizona Press
  5. Belton MJ, Porco C, A'Hearn M et al. 2003. New Frontiers in the Solar System: An Integrated Exploration Strategy 2003–2013 Washington, DC: Natl. Acad. Press
  6. Bertrand T, Forget F 2016. Observed glacier and volatile distribution on Pluto from atmosphere-topography processes. Nature 540:86–89
    [Google Scholar]
  7. Bertrand T, Forget F 2017. 3D modeling of organic haze in Pluto's atmosphere. Icarus 287:72–86
    [Google Scholar]
  8. Beyer RA, Nimmo F, McKinnon WB et al. 2017. Charon tectonics. Icarus 287:161–74
    [Google Scholar]
  9. Bieler A, Altwegg K, Balsiger H et al. 2015. Abundant molecular oxygen in the coma of comet 67P/Churyumov-Gerasimenko. Nature 526:678–81
    [Google Scholar]
  10. Bierson CJ, Nimmo F, McKinnon WB 2018. Implications of the observed Pluto-Charon density contrast. Icarus 309:207–19
    [Google Scholar]
  11. Binzel RP 1989. Pluto-Charon mutual events. Geophys. Res. Lett. 16:1205–8
    [Google Scholar]
  12. Binzel RP, Earle AM, Buie MW et al. 2017. Climate zones on Pluto and Charon. Icarus 287:30–36
    [Google Scholar]
  13. Binzel RP, Tholen DJ, Tedesco EF, Buratti BJ, Nelson RM 1985. The detection of eclipses in the Pluto & Charon system. Science 228:1193–95
    [Google Scholar]
  14. Bromley BC, Kenyon SJ 2015. Evolution of a ring around the Pluto–Charon binary. Astrophys. J. 809:88
    [Google Scholar]
  15. Brozović M, Showalter M, Jacobson RA, Buie MW 2015. The orbits and masses of satellites of Pluto. Icarus 246:317–29
    [Google Scholar]
  16. Buhler PB, Ingersoll AP 2018. Sublimation pit distribution indicates convection cell surface velocity of 10 centimeters per year in Sputnik Planitia, Pluto. Icarus 300:327–340
    [Google Scholar]
  17. Buie MW, Cruikshank DP, Lebofsky LA, Tedesco EF 1987. Water frost on Charon. Nature 329:522–23
    [Google Scholar]
  18. Buie MW, Elliot JL, Kidger M et al. 2002. Changes in Pluto's atmosphere revealed by the P126A occultation. Bull. Am. Astron. Soc. 34:877 (Abstr.)
    [Google Scholar]
  19. Buie MW, Grundy WM, Tholen DJ 2013. Astrometry and orbits of Nix, Kerberos, and Hydra. Astron. J. 146:152–64
    [Google Scholar]
  20. Buie MW, Grundy WM, Young EF, Young LA, Stern SA 2006. Orbits and photometry of Pluto's satellites: Charon, S/2005 P1, and S/2005 P2. Astron. J. 132:290–98
    [Google Scholar]
  21. Buie MW, Grundy WM, Young EF et al. 2010.a Pluto and Charon with the Hubble Space Telescope. I. Monitoring global change and improved surface properties from light curves. Astron. J. 139:1117–27
    [Google Scholar]
  22. Buie MW, Grundy WM, Young EF et al. 2010.b Pluto and Charon with the Hubble Space Telescope. II. Resolving changes on Pluto's surface and a map for Charon. Astron. J. 139:1128–43
    [Google Scholar]
  23. Buie MW, Tholen DJ, Grundy WM 2012. The orbit of Charon is circular. Astron. J. 144:15–33
    [Google Scholar]
  24. Buratti BJ, Hicks MD, Dalba PA et al. 2015. Photometry of Pluto 2008–2014: evidence of ongoing seasonal volatile transport and activity. Astrophys. J. Lett. 804:L6
    [Google Scholar]
  25. Buratti BJ, Hofgartner JD, Hicks MD et al. 2017. Global albedos of Pluto and Charon from LORRI New Horizons observations. Icarus 287:207–17
    [Google Scholar]
  26. Canup RM 2005. A giant impact origin of Pluto-Charon. Science 307:546–50
    [Google Scholar]
  27. Canup RM 2011. On a giant impact origin of Charon, Nix, and Hydra. Astron. J. 141:35–44
    [Google Scholar]
  28. Cheng AF, Summers ME, Gladstone GR et al. 2017. Haze in Pluto's atmosphere. Icarus 290:112–33
    [Google Scholar]
  29. Cheng AF, Weaver HA, Conard SJ et al. 2008. Long-Range Reconnaissance Imager on New Horizons. Space Sci. Rev. 140:189–215
    [Google Scholar]
  30. Cheng WH, Lee MH, Peale SJ 2014.a Complete tidal evolution of Pluto-Charon. Icarus 233:242–58
    [Google Scholar]
  31. Cheng WH, Peale SJ, Lee MH 2014.b On the origin of Pluto's small satellites by resonant transport. Icarus 241:180–89
    [Google Scholar]
  32. Collins GC, McKinnon WB, Moore JM et al. 2010. Tectonics of the outer planet satellites. Planetary Tectonics RA Schultz, TR Watters 264–350 Cambridge: Cambridge Univ Press
    [Google Scholar]
  33. Cook JA, Dalle Ore CM, Protopapa S et al. 2018.a Composition of Pluto's small satellites: analysis of New Horizons spectral images. Icarus 315:30–45
    [Google Scholar]
  34. Cook JA, Dalle Ore CM, Protopapa S et al. 2018.b The distribution of H2O, CH3OH, and hydrocarbon-ices on Pluto: analysis of New Horizons spectral images. Icarus Submitted
  35. Cook JC, Desch SJ, Roush TL, Trujillo CA, Geballe TR 2007. Near-infrared spectroscopy of Charon: possible evidence for cryovolcanism on Kuiper Belt objects. Astrophys. J. 663:1406–19
    [Google Scholar]
  36. Christy JW, Harrington RS 1978. The satellite of Pluto. Astron. J. 83:1005–8
    [Google Scholar]
  37. Cruikshank DP, Pilcher CB, Morrison D 1976. Pluto: evidence for methane frost. Science 194:835–37
    [Google Scholar]
  38. Dalle Ore CM, Protopapa S, Cook JA et al. 2018. Ices on Charon: Distribution of H2O and NH3 from New Horizons LEISA observations. Icarus 300:21–32
    [Google Scholar]
  39. Davidsson BJR, Sierks H, Güttler C et al. 2016. The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 592:A63
    [Google Scholar]
  40. Davies EJ, Stewart ST 2016. Beating up Pluto: modeling large impacts with strength. Lun. Planet. Sci. 47:2938 (Abstr.)
    [Google Scholar]
  41. Dobrovolskis AR, Peale SJ, Harris AW 1997. Dynamics of the Pluto-Charon binary. Pluto and Charon SA Stern, DJ Tholen 159–90 Tucson: Univ. Arizona Press
    [Google Scholar]
  42. Dumas C, Merlin F, Barucci MA et al. 2007. Surface composition of the largest dwarf planet 136199 Eris (2003 UB313). Astron. Astrophys. 471:331–34
    [Google Scholar]
  43. Duncan M, Quinn T, Tremaine S 1987. The formation and extent of the Solar System comet cloud. Astron. J. 94:1330–38
    [Google Scholar]
  44. Durham WB, Prieto-Ballesteros O, Goldsby DL, Kargel JS 2010. Rheological and thermal properties of icy materials. Space Sci. Rev. 153:273–98
    [Google Scholar]
  45. Earle AM, Binzel RP 2015. Pluto's insolation history: latitudinal variations and effects on atmospheric pressure. Icarus 250:405–12
    [Google Scholar]
  46. Edgeworth KE 1943. The evolution of our planetary system. J. Br. Astron. Assoc. 53:181–88
    [Google Scholar]
  47. Edgeworth KE 1949. The origin and evolution of the Solar System. MNRAS 109:600–9
    [Google Scholar]
  48. Elliot JL, Dunham EW, Bosh AS et al. 1989. Pluto's atmosphere. Icarus 77:148–70
    [Google Scholar]
  49. Elliot JL, Person MJ, Gulbis AA et al. 2006. The size of Pluto's atmosphere as revealed by the 2006 June 12 occultation. Bull. Am. Astron. Soc. 38:541 (Abstr.)
    [Google Scholar]
  50. Fernandez JA, Ip W-H 1983. On the time evolution of the cometary influx in the region of the terrestrial planets. Icarus 54:377–87
    [Google Scholar]
  51. Forget F, Bertrand T, Vangvichith M et al. 2017. A post-New Horizons global climate model of Pluto including the N2, CH4, and CO cycles. Icarus 287:54–71
    [Google Scholar]
  52. Foust JA, Elliot JL, Olkin CB et al. 1997. Determination of the Charon/Pluto mass ratio from center-of-light astrometry. Icarus 126:362–72
    [Google Scholar]
  53. Fraser WC, Bannister MT, Pike RE et al. 2017. All planetesimals born near the Kuiper Belt formed as binaries. Nat. Astron. 1:0088
    [Google Scholar]
  54. Fulle M, Della Corte V, Rotundi A et al. 2016. Comet 67P/Churyumov-Gerasimenko preserved the pebbles that formed planetesimals. MNRAS 462:S132–37
    [Google Scholar]
  55. Gao P, Fan S, Wong MS et al. 2017. Constraints on the microphysics of Pluto's photochemical haze from New Horizons observations. Icarus 287:116–23
    [Google Scholar]
  56. Gladstone GR, Stern SA, Ennico K et al. 2016. The atmosphere of Pluto as observed by New Horizons. Science 351:1284–93
    [Google Scholar]
  57. Goldreich P, Lithwick Y, Sari R 2002. Formation of Kuiper Belt binaries by dynamical friction and three-body encounters in the early Solar System. Nature 420:643–46
    [Google Scholar]
  58. Greenstreet S, Gladman B, McKinnon WB 2015. Impact and cratering rates onto Pluto. Icarus 258:366–67
    [Google Scholar]
  59. Grundy WM, Binzel RP, Buratti BJ et al. 2016.a Surface compositions across Pluto and Charon. Science 351:aad9189
    [Google Scholar]
  60. Grundy WM, Cruikshank DP, Gladstone GR et al. 2016.b Formation of Charon's red poles from seasonally cold-trapped volatiles. Nature 539:65–68
    [Google Scholar]
  61. Grundy WM, Young LA, Stansberry JA et al. 2010. Near-infrared spectral monitoring of Triton with IRTF/SpeX II: spatial distribution and evolution of ices. Icarus 205:594–604
    [Google Scholar]
  62. Grundy WM, Bertrand T, Binzel RP et al. 2018. Pluto's haze as a surface material. Icarus 314:232–45
    [Google Scholar]
  63. Hamilton DP, Stern SA, Moore JM, Young LA. New Horizons Geology, Geophysics & Imaging Theme Team. 2016. The rapid formation of Sputnik Planitia early in Pluto's history. Nature 540:97–99
    [Google Scholar]
  64. Hammond NP, Barr AC, Parmentier EM 2016. Recent tectonic activity on Pluto driven by phase changes in the ice shell. Geophys. Res. Lett. 43:6775–82
    [Google Scholar]
  65. Hansen CJ, Paige DA 1996. Seasonal nitrogen cycles on Pluto. Icarus 120:247–65
    [Google Scholar]
  66. Hinson DP, Linscott IR, Strobel DF et al. 2017.a An upper limit on Pluto ionosphere from radio occultation measurements with New Horizons. Icarus 307:17–24
    [Google Scholar]
  67. Hinson DP, Linscott IR, Young LA et al. 2017.b Radio occultation measurements of Pluto's neutral atmosphere with New Horizons. Icarus 290:96–111
    [Google Scholar]
  68. Hoey WA, Yeoh SK, Trafton LM, Goldstein DB, Varghese PL 2017. Rarefied gas dynamic simulation of transfer and escape in the Pluto-Charon system. Icarus 287:87–102
    [Google Scholar]
  69. Horányi M, Hoxle V, James D et al. 2008. The Student Dust Counter on the New Horizons mission. Space Sci. Rev. 140:387–402
    [Google Scholar]
  70. Howard AD, Moore JM, Umurhan OM et al. 2017.a Present and past glaciation on Pluto. Icarus 287:287–300
    [Google Scholar]
  71. Howard AD, Moore JM, White OL et al. 2017.b Pluto: pits and mantles on uplands north and east of Sputnik Planitia. Icarus 293:218–230
    [Google Scholar]
  72. Hubbard WB, Yelle RV, Lunine JI 1990. Nonisothermal Pluto atmosphere models. Icarus 84:1–11
    [Google Scholar]
  73. Janes DM, Melosh HJ 1990. Tectonics of planetary loading—a general model and results. J. Geophys. Res. 95:21345–55
    [Google Scholar]
  74. Johansen A, Blum J, Tanaka H et al. 2014. The multifaceted planetesimal formation process. Protostars and Planets VI H Beuther, RS Klessen, CP Dullemond, T Henning 547–70 Tucson: Univ. Ariz. Press
    [Google Scholar]
  75. Johansen A, Mac Low M-M, Lacerda P, Bizzarro M 2015. Growth of asteroids, planetary embryos, and Kuiper Belt objects by chondrule accretion. Sci. Adv. 1:e1500109
    [Google Scholar]
  76. Johnson BC, Bowling TJ, Trowbridge AJ, Freed AM 2016. Formation of the Sputnik Planum basin and the thickness of Pluto's subsurface ocean. Geophys. Res. Lett. 43:10068–77
    [Google Scholar]
  77. Jewitt DC, Luu JX 1993. Discovery of the candidate Kuiper Belt object 1992 QB1. Nature 362:730–32
    [Google Scholar]
  78. Kammer JA, Stern SA, Young LA et al. 2017. New Horizons upper limits on O2 in Pluto's present day atmosphere. Astron J 154:55
    [Google Scholar]
  79. Keane JT, Matsuyama I, Kamata S, Steckloff JK 2016. Reorientation and faulting of Pluto due to volatile loading within Sputnik Planitia. Nature 540:90–93
    [Google Scholar]
  80. Kenyon SC, Bromley BC 2012. Coagulation calculations of icy planet formation at 15–150 AU: a correlation between the maximum radius and the slope of the size distribution for trans-neptunian objects. Astron. J. 143:63
    [Google Scholar]
  81. Kenyon SC, Bromley BC 2014. The formation of Pluto's low-mass satellites. Astron. J. 147:8
    [Google Scholar]
  82. Khare BN, Sagan C, Arakawa ET et al. 1984. Optical constants of organic tholins produced in a simulated Titanian atmosphere: from soft X-ray to microwave frequencies. Icarus 60:127–37
    [Google Scholar]
  83. Kuiper GP 1951. On the origin of the Solar System. PNAS 37:1–14
    [Google Scholar]
  84. Lauer TR, Throop HB, Showalter MR et al. 2017. The New Horizons and Hubble Space Telescope search for rings, dust, and debris in the Pluto-Charon system. Icarus 301:155–72
    [Google Scholar]
  85. Lellouch E, Gurwell M, Butler B et al. 2016. Detection of CO and HCN in Pluto's atmosphere with ALMA. Icarus 286:289–307
    [Google Scholar]
  86. Lellouch E, Santos-Sanz P, Lacerda P et al. 2013. “TNOs are Cool”: a survey of the trans-Neptunian region. IX. Thermal properties of Kuiper Belt objects and Centaurs from combined Herschel and Spitzer observations. Astron. Astrophys. 557:A60
    [Google Scholar]
  87. Levison HF, Morbidelli A, Van Laerhoven C, Gomes R, Tsiganis K 2008. Origin of the structure of the Kuiper Belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196:258–73
    [Google Scholar]
  88. Licandro J, Grundy WM, Pinilla-Alonso N, Leisy P 2006. Visible spectroscopy of 2003 UB313: Evidence for N2 ice on the surface of the largest TNO. ? Astron. Astrophys. 458:L5–8
    [Google Scholar]
  89. Lithwick Y, Wu Y 2008. On the origin of Pluto's minor moons, Nix and Hydra. astro-ph:08022951
  90. Lunine JI, Cruikshank D, Galeev AAA et al. 1995. Pluto Express: Report of the Science Definition Team Washington, DC: NASA
  91. Lyttleton RA 1936. On the possible results of an encounter of Pluto with the Neptunian system. MNRAS 97:108–15
    [Google Scholar]
  92. Malhotra R 1993. The origin of Pluto's peculiar orbit. Nature 365:819–21
    [Google Scholar]
  93. Malhotra R 1995. The origin of Pluto's orbit: implications for the Solar System beyond Neptune. Astron. J. 110:420–29
    [Google Scholar]
  94. Massironi M, Simioni E, Marzari F et al. 2015. Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature 526:402–5
    [Google Scholar]
  95. Materese CK, Cruikshank DP, Sandford SA, Imanaka H, Nuevo M 2015. Ice chemistry on outer Solar System bodies: electron radiolysis of N2-, CH4-, and CO-containing ices. Astrophys. J. 812:150
    [Google Scholar]
  96. Materese CK, Cruikshank DP, Sandford SA et al. 2014. Ice chemistry on outer Solar System bodies: carboxylic acids, nitriles, and urea detected in refractory residues produced from the UV-photolysis of N2:CH4:CO containing ices. Astrophys. J. 788:111
    [Google Scholar]
  97. McComas D, Allegrini F, Bagenal F et al. 2008. The Solar Wind Around Pluto (SWAP) instrument aboard New Horizons. Space Sci. Rev. 140:261–313
    [Google Scholar]
  98. McComas DJ, Elliot HA, Weidner S et al. 2016. Pluto's interaction with the solar wind. J. Geophys. Res. Space Phys. 121:4232–46
    [Google Scholar]
  99. McKinnon WB 1984. On the origin of Triton and Pluto. Nature 311:355–58
    [Google Scholar]
  100. McKinnon WB 1989. Origin of the Pluto-Charon binary. Astrophys. J. 344:L41–44
    [Google Scholar]
  101. McKinnon WB 2015. Introduction to ‘Pluto, Charon, and the Kuiper Belt objects’: Pluto on the Eve of the New Horizons encounter. Treatise on Geophysics 10 G Schubert 637–51 Amsterdam: Elsevier, 2nd ed..
    [Google Scholar]
  102. McKinnon WB, Mueller S 1988. Pluto's structure and composition suggest origin in the solar, not planetary, nebula. Nature 335:240–43
    [Google Scholar]
  103. McKinnon WB, Nimmo F, Wong T et al. 2016. Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour. Nature 534:82–85
    [Google Scholar]
  104. McKinnon WB, Prialnik D, Stern SA, Coradini A 2008. Structure and evolution of Kuiper Belt objects and dwarf planets. Barucci et al. 2008 213–41
  105. McKinnon WB, Simonelli D, Schubert G 1997. Composition, internal structure, and thermal evolution of Pluto and Charon. Pluto and Charon SA Stern, DJ Tholen 295–343 Tucson: Univ. Arizona Press
    [Google Scholar]
  106. McKinnon WB, Stern SA, Weaver HA et al. 2017. Origin of the Pluto-Charon system: constraints from the New Horizons flyby. Icarus 287:2–11
    [Google Scholar]
  107. McNutt RL, Livi SA, Gurnee RS et al. 2008. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons mission. Space Sci. Rev. 140:315–85
    [Google Scholar]
  108. Melosh HJ 1989. Impact Cratering: A Geologic Process New York: Oxford Univ. Press
  109. Moore JM, Howard AD, Umurhan OM et al. 2017.a Bladed terrain on Pluto: possible origins and evolution. Icarus 300:129–44
    [Google Scholar]
  110. Moore JM, Howard AD, White OL et al. 2017.b Sublimation as a landform-shaping process on Pluto. Icarus 287:320–33
    [Google Scholar]
  111. Moore JM, McKinnon WB, Spencer JR et al. 2016. The geology of Pluto and Charon through the eyes of New Horizons. Science 351:1284–93
    [Google Scholar]
  112. Moore JM, Pappalardo RT 2011. Titan: An exogenic world. ? Icarus 212:790–806
    [Google Scholar]
  113. Moores JE, Smith CL, Toigo AD, Guzewich SD 2017. Penitentes as the origin of the bladed terrain of Tartarus Dorsa on Pluto. Nature 541:188–90
    [Google Scholar]
  114. Mumma MJ, Charnley SB 2011. The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49:471–524
    [Google Scholar]
  115. Nagy I, Sulli A, Erdi B 2006. A stability study of Pluto's moon system. MNRAS 370:L19–23
    [Google Scholar]
  116. Nesvorný D 2015. Evidence for slow migration of Neptune from the inclination distribution of Kuiper Belt objects. Astron. J. 150:73
    [Google Scholar]
  117. Nesvorný D, Morbidelli A 2012. Statistical study of the early Solar System's instability with four, five, and six giant planets. Astron. J. 144:117
    [Google Scholar]
  118. Nesvorný D, Vokrouhlický D 2016. Neptune's orbital migration was grainy, not smooth. Astrophys. J. 825:94
    [Google Scholar]
  119. Nesvorný D, Vokrouhlický D, Roig F 2016. The orbital distribution of trans-Neptunian objects beyond 50 au. Astrophys. J. Lett. 827:L35
    [Google Scholar]
  120. Nesvorný D, Youdin AN, Richardson DC 2010. Formation of Kuiper Belt binaries by gravitational collapse. Astron. J. 140:785–93
    [Google Scholar]
  121. Neufeld MJ 2016. The difficult birth of NASA's Pluto mission. Phys. Today 69:40–47
    [Google Scholar]
  122. Neveu M, Desch SJ, Shock EL, Glein CR 2015. Prerequisites for explosive cryovolcanism on dwarf planet-class Kuiper Belt objects. Icarus 246:48–64
    [Google Scholar]
  123. Nimmo F, Hamilton DP, McKinnon WB et al. 2016. Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540:94–96
    [Google Scholar]
  124. Nimmo F, Umurhan O, Lisse CM et al. 2017. Mean radius and shape of Pluto and Charon from New Horizons images. Icarus 287:12–29
    [Google Scholar]
  125. Nogueira E, Brasser R, Gomes R 2011. Reassessing the origin of Triton. Icarus 214:113–30
    [Google Scholar]
  126. Noll KS, Grundy WM, Chiang EI, Margot J-L, Kern SD 2008. Binaries in the Kuiper Belt. Barucci et al. 2008 345–63
  127. Null GW, Owen WM, Synnott SP 1993. Masses and densities of Pluto and Charon. Astron. J. 105:2319–35
    [Google Scholar]
  128. Olkin CB, Wasserman LH, Franz OG 2003. The mass ratio of Charon to Pluto from Hubble Space Telescope astrometry with the fine guidance sensors. Icarus 164:254–59
    [Google Scholar]
  129. Ortiz JL, Santos-Sanz P, Sicardy B et al. 2017. The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature 550:219–23
    [Google Scholar]
  130. Owen TC, Roush TL, Cruikshank DP et al. 1993. Surface ices and atmospheric composition of Pluto. Science 261:745–48
    [Google Scholar]
  131. Peale SJ, Canup RM 2015. The origin of the natural satellites. Treatise on Geophysics 10 G Schubert 559–604 Amsterdam: Elsevier, 2nd ed..
    [Google Scholar]
  132. Petit J-M, Kavelaars JJ, Gladman BJ et al. 2011. The Canada-France Ecliptic Plane Survey—full data release: the orbital structure of the Kuiper belt. Astron. J. 142:131–55
    [Google Scholar]
  133. Pires dos Santos PM, Winter SMG, Sfair R 2011. Gravitational effects of Nix and Hydra in the external region of the Pluto–Charon system. MNRAS 410:273–79
    [Google Scholar]
  134. Porter SB, Spencer JR, Showalter M et al. 2017. Poles and densities of the small satellites of Pluto Paper presented at Asteroids, Comets, and Meteors 2017 April 10–14 Montevideo, Urug.:
  135. Protopapa S, Grundy WM, Reuter DC et al. 2017. Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus 287:218–28
    [Google Scholar]
  136. Quillen AC, Nichols-Fleming F, Chen Y-Y, Noyelles B 2017. Obliquity evolution of the minor satellites of Pluto and Charon. Icarus 293:94–113
    [Google Scholar]
  137. Reuter DC, Stern SA, Scherrer J et al. 2008. Ralph: a visible/infrared imager for the New Horizons Pluto/Kuiper Belt mission. Space Sci. Rev. 140:129–54
    [Google Scholar]
  138. Robbins SJ, Singer KN, Bray VJ et al. 2017. Craters of the Pluto-Charon system. Icarus 287:187–206
    [Google Scholar]
  139. Robuchon G, Nimmo F 2011. Thermal evolution of Pluto and implications for surface tectonics and a subsurface ocean. Icarus 216:426–39
    [Google Scholar]
  140. Rubin M, Altwegg M, Balsiger H et al. 2015. Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science 348:232–35
    [Google Scholar]
  141. Runyon KD, Stern SA, Lauer TR et al. 2017. A geophysical planet definition. Lun. Planet. Sci. 48:1448 (Abstr.)
    [Google Scholar]
  142. Schenk PM, Beyer RA, McKinnon WB et al. 2018.a Basins, fractures, and volcanoes: global cartography and topography of Pluto from New Horizons. Icarus 314:400–33
    [Google Scholar]
  143. Schenk PM, Beyer RA, McKinnon WB et al. 2018.b Breaking up is hard to do: Global cartography and topography of Pluto's mid-sized icy moon Charon from New Horizons. Icarus 315:124–45
    [Google Scholar]
  144. Schlichting HE, Sari R 2008. The ratio of retrograde to prograde orbits: a test for Kuiper Belt binary formation theories. Astrophys. J. 686:741–47
    [Google Scholar]
  145. Schmitt B, Philippe S, Grundy WM et al. 2017. Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus 287:229–60
    [Google Scholar]
  146. Scott TA 1976. Solid and liquid nitrogen. Phys. Rep. 27:89–157
    [Google Scholar]
  147. Sekine Y, Genda H, Kamata S, Funatsu T 2017. The Charon-forming giant impact as a source of Pluto's dark equatorial regions. Nat. Astron. 1:31
    [Google Scholar]
  148. Showalter MR, Hamilton DP 2015. Resonant interactions and chaotic rotation of Pluto's small moons. Nature 522:45–49
    [Google Scholar]
  149. Showalter MR, Hamilton DP, Stern SA et al. 2011. New satellite of (134340) Pluto: S/2011 (134340) 1. Int. Astron. Union Circ. 92211 Paris: Int. Astron. Union
    [Google Scholar]
  150. Showalter MR, Weaver HA, Stern SA et al. 2012. New satellite of (134340) Pluto: S/2012 (134340) 1. Int. Astron. Union Circ. 92531 Paris: Int. Astron. Union
    [Google Scholar]
  151. Sicardy B, Bellucci A, Gendron E et al. 2006. Charon's size and an upper limit on its atmosphere from a stellar occultation. Nature 439:52–54
    [Google Scholar]
  152. Sicardy B, Ortiz JL, Assafin M et al. 2011. A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation. Nature 478:493–96
    [Google Scholar]
  153. Sicardy B, Talbot J, Meza E et al. 2016. Pluto's atmosphere from the 2015 June 29 ground-based stellar occultation at the time of the New Horizons flyby. Astrophys. J. 819:L38
    [Google Scholar]
  154. Simonelli DP, Pollack JB, McKay CP, Reynolds RT, Summers AL 1989. The carbon budget in the outer solar nebula. Icarus 82:1–35
    [Google Scholar]
  155. Singer KN, McKinnon WB, Greenstreet S et al. 2016. AAS Div. Planet. Sci. Mtg. #48 id. 213.12 (Abstr.) http://adsabs.harvard.edu/abs/2016DPS....4821312S
  156. Spencer JR, Stansberry JA, Trafton LM et al. 1997. Volatile transport, seasonal cycles, and atmospheric dynamics on Pluto. Pluto and Charon SA Stern, DJ Tholen 435–73 Tucson: Univ. Arizona Press
    [Google Scholar]
  157. Steffl A, Stern A, Gladstone R et al. 2016. The far ultraviolet spectrum of Pluto and the discovery of its ionosphere Paper presented at the 49th Annual American Geophysical Union Fall Meeting San Francisco:
  158. Stern A 1993. The Pluto reconnaissance flyby mission. EOS 74:73–78
    [Google Scholar]
  159. Stern SA 1989. Pluto: comments on crustal composition, evidence for global differentiation. Icarus 81:14–23
    [Google Scholar]
  160. Stern SA 1991. On the number of planets in the outer Solar System: evidence of a substantial population of 1000-km bodies. Icarus 90:271–81
    [Google Scholar]
  161. Stern SA 1992. The Pluto-Charon system. Annu. Rev. Astron. Astrophys. 30:185–233
    [Google Scholar]
  162. Stern SA 2008. The New Horizons Pluto Kuiper Belt mission: an overview with historical context. Space Sci. Rev. 140:3–21
    [Google Scholar]
  163. Stern SA, Bagenal F, Ennico K et al. 2015. The Pluto system: initial results from its exploration by New Horizons. Science 350:292
    [Google Scholar]
  164. Stern SA, Binzel RP, Earle AM et al. 2017.c Past epochs of significantly higher pressure atmospheres on Pluto. Icarus 287:47–53
    [Google Scholar]
  165. Stern SA, Buie MW, Trafton LM 1997.a HST high-resolution images and maps of Pluto. Astron. J. 113:827–43
    [Google Scholar]
  166. Stern A, Grinspoon D 2018. Chasing New Horizons: Inside the Epic First Mission to Pluto Washington, DC: Picador
  167. Stern SA, Kammer JA, Barth EL et al. 2017.a Evidence for possible clouds in Pluto's present day atmosphere. Astron. J. 154:43
    [Google Scholar]
  168. Stern SA, Kammer JA, Gladstone GR et al. 2017.b New Horizons constraints on Charon's present day atmosphere. Icarus 287:124–30
    [Google Scholar]
  169. Stern SA, McKinnon WB, Lunine JL 1997.b On the origin of Pluto, Charon, and the Pluto-Charon binary. Pluto and Charon SA Stern, DJ Tholen 605–63 Tucson: Univ. Ariz. Press
    [Google Scholar]
  170. Stern SA, Parker JW, Duncan MJ, Snowdall JC, Levison HF 1994. Dynamical and observational constraints on satellites in the inner Pluto-Charon system. Icarus 108:234–42
    [Google Scholar]
  171. Stern SA, Slater DC, Scherrer J et al. 2008. ALICE: the ultraviolet imaging spectrograph aboard the New Horizons Pluto-Kuiper Belt mission. Space Sci. Rev. 140:155–87
    [Google Scholar]
  172. Stern SA, Trafton LM, Gladstone GR 1988. Why is Pluto bright? Implications of the albedo and lightcurve behavior of Pluto. Icarus 75:485–98
    [Google Scholar]
  173. Stern SA, Weaver HA, Steffl AJ et al. 2006. A giant impact origin for Pluto's small moons and satellite multiplicity in the Kuiper Belt. Nature 439:946–48
    [Google Scholar]
  174. Stern SA, Whipple AL, Trafton LM 1987. Theoretical considerations and observational constraints on additional satellites of Pluto. Bull. Am. Astron. Soc. 19:1072 (Abstr.)
    [Google Scholar]
  175. Strobel DF, Zhu X 2017. Comparative planetary nitrogen atmospheres: density and thermal structures of Pluto and Triton. Icarus 291:55–64
    [Google Scholar]
  176. Sulli A, Zsigmond Zs 2009. Detailed survey of the phase space around Nix and Hydra. MNRAS 398:2199–2208
    [Google Scholar]
  177. Tegler SC, Cornelison DM, Grundy WM et al. 2010. Methane and nitrogen abundances on Pluto and Eris. Astrophys. J. 725:1296–1305
    [Google Scholar]
  178. Telfer MW, Parteli E, Radebaugh J et al. 2018. Dunes and orthogonal wind streaks on Pluto. Science 360:992–97
    [Google Scholar]
  179. Tholen DJ, Buie MW, Grundy WM, Elliott GT 2008. Masses of Nix and Hydra. Astron. J. 135:777–84
    [Google Scholar]
  180. Tombaugh C, Moore P 1980. Out of the Darkness: The Planet Pluto Harrisburg, PA: Stackpole
  181. Trafton L 1980. Does Pluto have a substantial atmosphere. ? Icarus 44:53–61
    [Google Scholar]
  182. Trafton L, Stern SA 1983. On the global distribution of Pluto's atmosphere. Astrophys. J. 267:872–81
    [Google Scholar]
  183. Trowbridge AJ, Melosh HJ, Steckloff JK, Freed AM 2016. Vigorous convection as the explanation for Pluto's polygonal terrain. Nature 534:79–81
    [Google Scholar]
  184. Tsiganis K, Gomes R, Morbidelli A, Levison HF 2005. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435:459–61
    [Google Scholar]
  185. Tyler GL, Linscott IR, Bird MK et al. 2008. The New Horizons radio science experiment. Space Sci. Rev. 140:217–59
    [Google Scholar]
  186. Umurhan OM, Howard AD, Moore JM et al. 2017. Modeling glacial flow on and onto Pluto's Sputnik Planitia. Icarus 287:301–19
    [Google Scholar]
  187. Vilella K, Deschamps F 2017. Thermal convection as a possible mechanism for the origin of polygonal structure on Pluto's surface. J. Geophys Res. 122:1056–76
    [Google Scholar]
  188. Vilenius E, Kiss C, Mommert M et al. 2012. “TNOs are cool”: a survey of the trans-Neptunian region. VI. Herschel/PACS observations and thermal modeling of 19 classical Kuiper Belt objects. Astron. Astrophys. 541:A94
    [Google Scholar]
  189. Walsh KJ, Levison HF 2015. Formation and evolution of Pluto's small satellites. Astron. J. 150:11
    [Google Scholar]
  190. Ward WR, Canup RM 2006. Forced resonant migration of Pluto's outer satellites by an impact-produced Charon. Science 313:1107–9
    [Google Scholar]
  191. Weaver HA, Buie MW, Buratti BJ et al. 2016. The small satellites of Pluto as observed by New Horizons. Science 351:aae0030
    [Google Scholar]
  192. Weaver HA, Gibson WC, Tapley MB, Young LA, Stern SA 2008. Overview of the New Horizons science payload. Space Sci. Rev. 140:75–91
    [Google Scholar]
  193. Weaver HA, Stern SA 2008. New Horizons: NASA's Pluto-Kuiper Belt mission. In Barucci et al. 2008 557–71
  194. Weaver HA, Stern SA, Mutchler MJ et al. 2006. The discovery of two new satellites of Pluto. Nature 439:943–45
    [Google Scholar]
  195. White OL, Moore JM, McKinnon WB et al. 2017. Geological mapping of Sputnik Planitia on Pluto. Icarus 287:261–86
    [Google Scholar]
  196. Winter SMG, Winter OC, Guimaraes AHF, Silva MR 2010. MNRAS 404:442–50
  197. Wong MH, Lunine JI, Atreya SK et al. 2008. Oxygen and other volatiles in the giant planets and their satellites. Rev. Mineral. Geochem. 68:219–46
    [Google Scholar]
  198. Wong ML, Fan S, Gao P et al. 2017. The photochemistry of Pluto's atmosphere as illuminated by New Horizons. Icarus 287:110–15
    [Google Scholar]
  199. Youdin AN, Goodman J 2005. Streaming instabilities in protoplanetary disks. Astrophys. J. 620:459
    [Google Scholar]
  200. Youdin AN, Kratter KM, Kenyon SJ 2012. Circumbinary chaos: using Pluto's newest moon to constrain the masses of Nix and Hydra. Astrophys. J. 755:17–28
    [Google Scholar]
  201. Young EF, Binzel RP, Stern SA 1992. A frost model for Pluto's surface: implications for Pluto's atmosphere. Lun. Planet. Sci. 23:1563 (Abstr.)
    [Google Scholar]
  202. Young LA 2013. Pluto's seasons: new predictions for New Horizons. Astrophys. J. 766:L22
    [Google Scholar]
  203. Young LA, Kammer JA, Steffl AJ et al. 2018. Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation. Icarus 300:174–99
    [Google Scholar]
  204. Young LA, Stern SA, Weaver HA et al. 2008. New Horizons: anticipated scientific investigations at the Pluto system. Space Sci. Rev. 140:93–127
    [Google Scholar]
  205. Zhang X, Strobel DF, Imanaka H 2017. Haze heats Pluto's atmosphere yet explains its cold temperature. Nature 551:352–55
    [Google Scholar]
  206. Zhu X, Strobel DF, Erwin JT 2014. The density and thermal structure of Pluto's atmosphere and associated escape processes and rates. Icarus 228:301–14
    [Google Scholar]
  207. Zirnstein EJ, McComas DJ, Elliott HA et al. 2016. Interplanetary magnetic field sector from Solar Wind Around Pluto (SWAP) measurements of heavy ion pickup near Pluto. Astrophys. J. 823:L30
    [Google Scholar]
/content/journals/10.1146/annurev-astro-081817-051935
Loading
/content/journals/10.1146/annurev-astro-081817-051935
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error