1932

Abstract

The nuclei of most normal galaxies contain supermassive black holes, which can accrete gas through a disk and become active. These active galactic nuclei (AGNs) can form jets that are observed on scales from astronomical units to megaparsecs and from meter wavelengths to TeV energies. High-resolution radio imaging and multiwavelength/messenger campaigns are elucidating the conditions under which this happens. Evidence is presented that:

  • ▪  Relativistic AGN jets are formed when the black hole spins and the the accretion disk is strongly magnetized, perhaps on account of gas accreting at high latitude beyond the black hole sphere of influence.
  • ▪  AGN jets are collimated close to the black hole by magnetic stress associated with a disk wind.
  • ▪  Higher-power jets can emerge from their galactic nuclei in a relativistic, supersonic, and proton-dominated state, and they terminate in strong, hot spot shocks; lower-power jets are degraded to buoyant plumes and bubbles.
  • ▪  Jets may accelerate protons to EeV energies, which contribute to the cosmic ray spectrum and may initiate pair cascades that can efficiently radiate synchrotron γ-rays.
  • ▪  Jets were far more common when the Universe was a few billion years old and black holes and massive galaxies were growing rapidly.
  • ▪  Jets can have a major influence on their environments, stimulating and limiting the growth of galaxies.
The observational prospects for securing our understanding of AGN jets are bright.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-081817-051948
2019-08-18
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/astro/57/1/annurev-astro-081817-051948.html?itemId=/content/journals/10.1146/annurev-astro-081817-051948&mimeType=html&fmt=ahah

Literature Cited

  1. Aartsen MG, Abraham K, Ackermann M 2017. Ap. J. 835:45–62
    [Google Scholar]
  2. Abdo AA, Ackermann M 2011. Ap. J. 736:131–52
    [Google Scholar]
  3. Abeysekara AU, Albert A, Alfaro R 2018. Nature 562:82–85
    [Google Scholar]
  4. Abramowicz MA, Fragile PC 2013. Living Rev. Relativ. 16:1–88
    [Google Scholar]
  5. Abuter R, Amorim A, Bauböck M 2018. Astron. Astrophys. 618:L10–L24
    [Google Scholar]
  6. Ackermann M, Ajello M, Atwood WB 2015. Ap. J. 810:14–48
    [Google Scholar]
  7. Ackermann M, Anantua R, Asano K 2016. Ap. J. 824:L20–24
    [Google Scholar]
  8. Ajello M, Romani RW, Gasparrini D 2014. Ap. J. 780:73–96
    [Google Scholar]
  9. Akiyama K, Alberdi A, Alef W 2019a. Ap. J. 875:L1
    [Google Scholar]
  10. Akiyama K, Alberdi A, Alef W 2019b. Ap. J.875:L5
    [Google Scholar]
  11. Algaba JC, Nakamura M, Asada K, Lee SS 2017. Ap. J. 834:65–75
    [Google Scholar]
  12. Aller MF, Aller HD, Hughes PA 2017. Galaxies 5:75–94
    [Google Scholar]
  13. Antonucci RRJ, Miller J 1985. Ap. J. 297:621–32
    [Google Scholar]
  14. Araudo AT, Bell AR, Blundell KM, Matthews JH 2018. MNRAS 473:3500–6
    [Google Scholar]
  15. Asada K, Nakamura M 2012. Ap. J. 745:L28–32
    [Google Scholar]
  16. Asada K, Nakamura M, Doi A, Nagai H, Inoue M 2014. Ap. J. 781:L2–6
    [Google Scholar]
  17. Avachat SS, Perlman ES, Sparks WB 2015. Proceedings, IAU Symposium 313: Extragalactic Jets from Every Angle F Massaro, CC Cheng, D Lopez, A Siemiginowska116–21 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  18. Baade W, Minkowski R 1954. Ap. J. 119:206–14
    [Google Scholar]
  19. Balbus SA, Hawley JF 1998. Rev. Mod. Phys. 70:1–53
    [Google Scholar]
  20. Balick B, Brown R 1974. Ap. J. 194:265–70
    [Google Scholar]
  21. Bally J 2016. Annu. Rev. Astron. Astrophys. 54:491–528
    [Google Scholar]
  22. Balokovic M, Paneque D, Madejski G 2016. Ap. J. 819:156–86
    [Google Scholar]
  23. Bardeen JM 1970. Nature 226:64–65
    [Google Scholar]
  24. Barniol Duran R, Tchekhovskoy A, Giannios D 2017. MNRAS 469:4957–78
    [Google Scholar]
  25. Barvainis R, Lehár J, Birkinshaw M 2005. Ap. J. 618:108–22
    [Google Scholar]
  26. Beasley AJ, Gordon D, Peck AB 2002. Ap. J. 141:13–21
    [Google Scholar]
  27. Bednarek W 1997. MNRAS 285:69–81
    [Google Scholar]
  28. Begelman MC 1998. Ap. J. 493:291–300
    [Google Scholar]
  29. Begelman MC, Blandford RD, Rees MJ 1984. Rev. Mod. Phys. 56:255–351
    [Google Scholar]
  30. Begelman MC, Ergun RE, Rees MJ 2005. Ap. J. 625:51–59
    [Google Scholar]
  31. Bellido J, Pierre Auger Collab 2018. Proceedings of the 35th International Cosmic Ray Conference artic. 506 Trieste, Italy: Proc. Sci.
    [Google Scholar]
  32. Beloborodov AM 2017. Ap. J. 850:141–51
    [Google Scholar]
  33. Bicknell GV 1995. Ap. J. Suppl. 101:29–39
    [Google Scholar]
  34. Bicknell GV, Begelman MC 1996. Ap. J. 467:597–621
    [Google Scholar]
  35. Bignami GF, Bennett K, Buccheri R 1981. Astron. Astrophys. 93:71–75
    [Google Scholar]
  36. Bird J, Martini P, Kaiser C 2008. Ap. J. 676:147–62
    [Google Scholar]
  37. Biretta JA, Sparks W, Macchetto F 1999. Ap. J. 520:621–26
    [Google Scholar]
  38. Blandford RD 1976. MNRAS 176:465–81
    [Google Scholar]
  39. Blandford RD, Begelman MC 1999. MNRAS 303:L1–5
    [Google Scholar]
  40. Blandford RD, Königl A 1979. Ap. J. 232:34–48
    [Google Scholar]
  41. Blandford RD, Payne DG 1982. MNRAS 199:883–903
    [Google Scholar]
  42. Blandford RD, Rees MJ 1974. MNRAS 169:395–415
    [Google Scholar]
  43. Blandford RD, Rees MJ 1978. Pittsburgh Conference on BL Lac Objects AM Wolfe328–47 Pittsburgh, PA: Univ. Pittsbg. Press
    [Google Scholar]
  44. Blandford RD, Yuan Y, Hoshino M, Sironi L 2017. Space Sci. Rev. 207:291–317
    [Google Scholar]
  45. Blandford RD, Znajek RL 1977. MNRAS 179:433–56
    [Google Scholar]
  46. Blinov D, Pavlidou V, Papadakis I 2018. MNRAS 474:1296–306
    [Google Scholar]
  47. Boccardi B, Krichbaum TP, Ros E, Zensus JA 2017. Astron. Astrophys. Rev. 25:4–5
    [Google Scholar]
  48. Bondi H 1952. MNRAS 112:195–204
    [Google Scholar]
  49. Böttcher M, Reimer A, Zhang H 2013. Proceedings of The Innermost Regions of Relativistic Jets and Their Magnetic Fields JL Gomez London: EDP Sci.
    [Google Scholar]
  50. Bottorff M, Koroista KT, Shlosman I, Blandford RD 1997. Ap. J. 479:200–21
    [Google Scholar]
  51. Brandt WN, Alexander DM 2015. Astron. Astrophys. Rev. 23:1–93
    [Google Scholar]
  52. Braun PS 2012. Adv. Space Res. 50:96–100
    [Google Scholar]
  53. Bridle AH, Perley RA 1984. Annu. Rev. Astron. Astrophys. 22:319–58
    [Google Scholar]
  54. Burbidge GR 1956. Ap. J. 124:416–29
    [Google Scholar]
  55. Campbell WW, Moore JH 1918. Publ. Lick Obs. 13:75–184
    [Google Scholar]
  56. Chen AY, Yuan Y, Yang H 2018. Ap. J. 863:L31–36
    [Google Scholar]
  57. Cheung CC, Harris DE, Stawarz L 2007. Ap. J. 663:L65–68
    [Google Scholar]
  58. Clarke DA, Norman ML, Burns JO 1986. Ap. J. 311:L63–67
    [Google Scholar]
  59. Clautice D, Perlman ES, Georganopoulos M 2016. Ap. J. 826:109–21
    [Google Scholar]
  60. Cohen MH, Aller HD, Aller MF 2018. Ap. J. 862:1–18
    [Google Scholar]
  61. Cohen MH, Canon W, Purcell GH 1971. Ap. J. 170:207–17
    [Google Scholar]
  62. Cohen MH, Kellermann KI, Shaffer DB 1977. Nature 268:405–9
    [Google Scholar]
  63. Cohen MH, Meier DL, Arshakian TG 2014. Ap. J. 787:151–60
    [Google Scholar]
  64. Cohen MH, Meier DL, Arshakian TG 2015. Ap. J. 803:3–18
    [Google Scholar]
  65. Contopoulos I, Nathanail N, Sadowski A 2018. MNRAS 473:721–27
    [Google Scholar]
  66. Curtis HD 1918. Publ. Lick Obs. 13:9–42
    [Google Scholar]
  67. De Villiers J-P, Hawley JF 2003. Ap. J. 589:458–80
    [Google Scholar]
  68. De Young DS 1993. Ap. J. 405:L13–16
    [Google Scholar]
  69. Dent WA 1965. Science 148:1458–60
    [Google Scholar]
  70. Di Mauro M, Manconi S, Zechlin H-S 2018. Ap. J. 856:106–18
    [Google Scholar]
  71. Doeleman SS 2012. Science 361:848–49
    [Google Scholar]
  72. Doeleman SS, Fish VL, Schenk DE 2012. Science 338:355–58
    [Google Scholar]
  73. Drury LO'C 1983. Rep. Prog. Phys. 46:973–1027
    [Google Scholar]
  74. Durant M, Kargaltsev O, Pavlov GG 2013. Ap. J. 763:72–76
    [Google Scholar]
  75. EHT (Event Horizon Telesc.) Collab 2019. Ap. J. Lett. 875:L1
    [Google Scholar]
  76. Elvis M, Risaliti G, Zamorani G 2002. Ap. J. 565:L75–77
    [Google Scholar]
  77. Emmering RT, Blandford RD, Shlosman I 1992. Ap. J. 385:460–77
    [Google Scholar]
  78. Fabian AC 2012. Annu. Rev. Astron. Astrophys. 50:455–89
    [Google Scholar]
  79. Fanaroff BL, Riley JM 1974. MNRAS 167:31P–36P
    [Google Scholar]
  80. Fath EA 1909. Publ. Astron. Soc. Pac. 17:504–8
    [Google Scholar]
  81. Fender RP, Belloni TM, Gallo E 2004. MNRAS 355:1105–18
    [Google Scholar]
  82. Fossati G, Maraschi L, Celotti A 1998. MNRAS 299:433–48
    [Google Scholar]
  83. Fuhrmann L, Larsson S, Chang J 2014. MNRAS 441:1899–909
    [Google Scholar]
  84. Funk S 2014. Annu. Rev. Nucl. Part. Sci. 65:245–77
    [Google Scholar]
  85. Gabuzda DC 2014. The Formation and Disruption of Black Hole Jets I Contopoulos, D Gabuzda, N Kylafis117–48 Heidelberg, Ger.: Springer
    [Google Scholar]
  86. Gabuzda DC, Murray É, Cronin P 2004. MNRAS 351:L89–93
    [Google Scholar]
  87. Gabuzda DC, Roche N, Kirwan A 2017. MNRAS 472:1792–801
    [Google Scholar]
  88. Gammie CF, McKinney JC, Tóth G 2003. Ap. J. 589:444–57
    [Google Scholar]
  89. Garrington ST, Leahy JP, Conway RG 1988. Nature 331:147–49
    [Google Scholar]
  90. Gehrels N, Ramirez-Ruiz E, Fox DB 2009. Annu. Rev. Astron. Astrophys. 47:567–617
    [Google Scholar]
  91. Georganopoulos M, Meyer ET, Perlman ES 2017. Galaxies 4:65–73
    [Google Scholar]
  92. Ghisellini G 2016. Galaxies 4:36–46
    [Google Scholar]
  93. Ghisellini G, Celotti A, Fossti G 1998. MNRAS 301:451–68
    [Google Scholar]
  94. Giovannini G, Savolainen T, Orienti M 2018. Nat. Astron. 2:472–7
    [Google Scholar]
  95. Giroletti M, Hada K, Giovannini G 2012. Astron. Astrophys. 538:L10–13
    [Google Scholar]
  96. Globus N, Levinson A 2016. MNRAS 461:2605–15
    [Google Scholar]
  97. Globus N, Piran T, Hoffman Y, Carlesi E, Pomarède D 2019. MNRAS 484:4167–73
    [Google Scholar]
  98. Gonzalez JB 2015. Astrophysical Jets from Every Angle F Massaro, CC Cheng, D Lopez, A Siemiginowska64–69 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  99. Gopal-Krishna, Wiita PJ 2000. Astron. Astrophys. 363:507–16
    [Google Scholar]
  100. Gubbay J, Legg AJ, Robertson DS 1969. Nature 224:1094–95
    [Google Scholar]
  101. Gugliucci NE, Taylor GB, Peck AB, Giroletti M 2005. Ap. J. 622:136–48
    [Google Scholar]
  102. Hada K, Giroletti M, Kino M 2014. Ap. J. 788:165–77
    [Google Scholar]
  103. Hargrave P, Ryle M 1974. MNRAS 166:305–27
    [Google Scholar]
  104. Harris DE, Krawczynski H 2006. Annu. Rev. Astron. Astrophys. 44:463–506
    [Google Scholar]
  105. Hayashida M, Madejski GM, Nalewajko K 2012. Ap. J. 754:114–36
    [Google Scholar]
  106. Hazard C, Mackey MB, Shimmins AJ 1963. Nature 197:1037–39
    [Google Scholar]
  107. Hillas AM 1984. Annu. Rev. Astron. Astrophys. 22:425–44
    [Google Scholar]
  108. Hine RG, Longair MS 1979. MNRAS 188:111–30
    [Google Scholar]
  109. Ho LC ed 2004. Coevolution of Black Holes and Galaxies Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  110. Hodgson JA, Ranu B, Lee S-S 2018. arXiv:1802.02763 [astro-ph.HE]
  111. Homan DC, Hovatta T, Kovalev Y 2018. Galaxies 6:17–24
    [Google Scholar]
  112. Homan DC, Lister ML 2006. Ap. J. 131:1262–79
    [Google Scholar]
  113. Hovatta T, Lister ML, Aller MF 2012. Astron. J. 144:105–39
    [Google Scholar]
  114. Hoyle F, Burbidge GR, Sargent WLW 1966. Nature 209:751–53
    [Google Scholar]
  115. Hughes MP 1965. Nature 207:178–79
    [Google Scholar]
  116. Hughes PA, Aller HD, Aller MF 1989. Ap. J. 341:54–67
    [Google Scholar]
  117. IceCube Collab 2018. Science 361:147–51
    [Google Scholar]
  118. Ivezić Z, Menou K, Knapp GR 2002. Astron. J. 124:2364–400
    [Google Scholar]
  119. Jackson CA, Wall JV 1999. MNRAS 304:160–74
    [Google Scholar]
  120. Jansky KG 1933. Nature 132:66
    [Google Scholar]
  121. Jauncey D, Bignall H, Kedziora-Chudzer L 2016. Galaxies 4:62–71
    [Google Scholar]
  122. Jennison RC, Das Gupta MK 1953. Nature 172:996–97
    [Google Scholar]
  123. Jorstad S, Marscher A 2016. Galaxies 4:47–57
    [Google Scholar]
  124. Jorstad SG, Marscher AP, Mattox JR 2001. Ap. J. 556:738–48
    [Google Scholar]
  125. Karouzos M, Britzen S, Witzel A 1983. Astron. Astrophys. 529:A16–28
    [Google Scholar]
  126. Keel WC 1983. Ap. J. 269:466–86
    [Google Scholar]
  127. Kellermann KI, Condon JJ, Kimball AE 2016. Ap. J. 831:168–80
    [Google Scholar]
  128. Kellermann KI, Pauliny-Toth IIK 1969. Ap. J. 155:L71–78
    [Google Scholar]
  129. Kerr RP 1963. Phys. Rev. Lett. 11:237–38
    [Google Scholar]
  130. Kharb P, Stanley E, Lister M 2014. Proceedings, IAU Symposium 313: Extragalactic Jets from Every Angle F Massaro, CC Cheng, D Lopez, A Siemiginowska211–18 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  131. Kim J-Y, Krichbaum TP, Lu R-S 2018. Astron. Astrophys. 616:A188–201
    [Google Scholar]
  132. Kim J-Y, Krichbaum TP, Marscher AP 2019. Astron. Astrophys. 622:196–214
    [Google Scholar]
  133. King A, Pounds K 2015. Annu. Rev. Astron. Astrophys. 53:115–54
    [Google Scholar]
  134. Königl A 1981. Ap. J. 243:700–9
    [Google Scholar]
  135. Königl A, Kartje JF 1994. Ap. J. 434:446–67
    [Google Scholar]
  136. Kormendy J, Ho LC 2013. Annu. Rev. Astron. Astrophys. 51:511–653
    [Google Scholar]
  137. Kulsrud RM 2004. Plasma Physics for Astrophysics Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  138. Laing RA 1996. Energy Transport in Radio Galaxies and Quasars PE Hardee, AH Bridle, JA Zensus241–52 San Francisco: Publ. Astron. Soc. Pac.
    [Google Scholar]
  139. Laing RA, Bridle AH 2014. MNRAS 437:3405–41
    [Google Scholar]
  140. Landau LD, Lifshitz EM 1975. The Classical Theory of Fields Oxford, UK: Butterworth-Heinemann
    [Google Scholar]
  141. Lauer RJ 2015. Proceedings, IAU Symposium 313: Extragalactic Jets from Every Angle F Massaro, CC Cheng, D Lopez, A Siemiginowska27–32 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  142. Levinson A, Blandford R 1995. MNRAS 274:717–29
    [Google Scholar]
  143. Levinson A, Globus N 2017. MNRAS 465:1608–12
    [Google Scholar]
  144. Levinson A, Segev N 2017. Phys. Rev. D. 96:123006–19
    [Google Scholar]
  145. Lind KR, Payne DG, Meier DL, Blandford RD 1989. Ap. J. 344:89–103
    [Google Scholar]
  146. Lindfors E 2015. Proceedings, IAU Symposium 313: Extragalactic Jets from Every Angle F Massaro, CC Cheng, D Lopez, A Siemiginowska27–32 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  147. Lister ML 2016. Galaxies 4:29–38
    [Google Scholar]
  148. Lister ML, Aller MF, Aller HD 2016. Astron. J. 152:1–16
    [Google Scholar]
  149. Longair MS 2011. High Energy Astrophysics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  150. Lott B, Cavazzuti E, Ciprini S 2015. Extragalactic Jets from Every Angle F Massaro, CC Cheng, D Lopez, A Siemiginowska11–16 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  151. Lovelace RVE 1976. Nature 262:649–52
    [Google Scholar]
  152. Lynden-Bell D 1969. Nature 223:690–94
    [Google Scholar]
  153. Madejski GM, Sikora M 2016. Annu. Rev. Astron. Astrophys. 54:725–60
    [Google Scholar]
  154. Madsen KK, Fürst F, Walton D 2015. Ap. J. 812:14–25
    [Google Scholar]
  155. Marscher AP 2014. Ap. J. 780:87–96
    [Google Scholar]
  156. Marscher AP, Jorstad SG, D'Arcangelo FD 2008. Nature 452:966–69
    [Google Scholar]
  157. Marscher A, Jorstad SG, Larionov VM 2011. J. Astrophys. Astron. 32:233–37
    [Google Scholar]
  158. Marshall HL, Miller BP, Davis DS 2002. Ap. J. 564:683–87
    [Google Scholar]
  159. Matthews JH, Bell AR, Blundell KM, Araudo AT 2018. MNRAS 479:L76–80
    [Google Scholar]
  160. Max-Moerbeck W, Hovatta T, Richards JL 2014. MNRAS 445:428–36
    [Google Scholar]
  161. McKinney JC 2006. MNRAS 368:1561–82
    [Google Scholar]
  162. McKinney JC, Dai M, Avara MJ 2015. MNRAS 411:L6–10
    [Google Scholar]
  163. McKinney JC, Narayan R 2007. MNRAS 375:531–47
    [Google Scholar]
  164. McKinney JC, Tchekhovskoy A, Blandford RD 2012. MNRAS 423:3083–117
    [Google Scholar]
  165. McKinney JC, Tchekhovskoy A, Sadowski A, Narayan R 2014. MNRAS 441:3177–208
    [Google Scholar]
  166. Meier DL 2012. Black Hole Astrophysics: The Engine Paradigm Berlin: Springer
    [Google Scholar]
  167. Meier DL 2013. Proceedings of The Innermost Regions of Relativistic Jets and Their Magnetic Fields JL Gomez London: EDP Sci.
    [Google Scholar]
  168. Mertens F, Lobanov AP, Walker RC, Hardee PE 2016. Astron. Astrophys. 595:A54–73
    [Google Scholar]
  169. Meyer M, Scargle JD, Blandford RD 2019. Ap. J. 877:1
    [Google Scholar]
  170. Mignone A, Rossi P, Bodo G 2010. MNRAS 402:7–12
    [Google Scholar]
  171. Mirabel IF, Rodriguez LF 1999. Annu. Rev. Astron. Astrophys. 37:409–43
    [Google Scholar]
  172. Mooley KP, Deller AT, Gottlieb O 2018. Nature 7723:355–9
    [Google Scholar]
  173. Muecke A, Protheroe RJ, Engel R 2003. Astropart. Phys. 18:593–613
    [Google Scholar]
  174. Nakamura M, Asada K 2013. Ap. J. 775:118–28
    [Google Scholar]
  175. Nakamura M, Asada K, Hada K 2018. Ap. J. 868:146–73
    [Google Scholar]
  176. Nakamura M, Garofalo D, Meier DL 2010. Ap. J. 721:1783–89
    [Google Scholar]
  177. Nakamura M, Meier DL 2004. Ap. J. 617:123–54
    [Google Scholar]
  178. Nalewajko K, Begelman MC, Sikora M 2014. Ap. J. 789:161–80
    [Google Scholar]
  179. Narayan R, Igumenschev IV, Abramowicz MA 2003. Publ. Astron. Soc. Jpn. 55:L69–72
    [Google Scholar]
  180. Narayan R, McClintock JE 2012. MNRAS 419:L69–73
    [Google Scholar]
  181. Norman ML, Winckler K-HA, Smarr LL, Smith MD 1982. Astron. Astrophys. 113:285–302
    [Google Scholar]
  182. O'Dea CP 2002. New Astron. Rev. 46:41–46
    [Google Scholar]
  183. Orr MJL, Browne IWA 1982. MNRAS 200:1067–80
    [Google Scholar]
  184. Osterbrock DE, Ferland GJ 2005. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei Mill Valley, CA: Univ. Sci.
    [Google Scholar]
  185. Padovani P 2016. Astron. Astrophys. Rev. 24:13–48
    [Google Scholar]
  186. Pauliny-Toth IIK, Witzel A, Preuss E 1978. Astron. J. 83:451–74
    [Google Scholar]
  187. Penna RF, Narayan R, Sadowski A 2013. MNRAS 436:3741–58
    [Google Scholar]
  188. Penrose R 1969. Riv. Nuovo Cim. 1:252–76
    [Google Scholar]
  189. Petropoulou M, Mastichiadis A 2012. MNRAS 426:462–72
    [Google Scholar]
  190. Petrov L 2017. Trans. Inst. Appl. Astron. Russ. Acad. Sci. 40:64–67
    [Google Scholar]
  191. Petrov L, Phillips C, Bertarini A 2011. MNRAS 414:2528–39
    [Google Scholar]
  192. Plavin AV, Kovalelv YY, Pushkarev AB, Lobanov AP 2018.arXiv:1811.02544v1 [astro-ph.GA]
  193. Pooley GG, Ryle M 1967. MNRAS 139:515–28
    [Google Scholar]
  194. Potter WJ 2018. MNRAS 473:4107–21
    [Google Scholar]
  195. Potter WJ, Cotter G 2015. MNRAS 453:4070–88
    [Google Scholar]
  196. Prandini E 2017.arXiv:1706.01670v2 [astro-ph.HE]
  197. Prieto MA, Fernandez-Ontiveros JA, Markoff S, Espada D, González-Martin O 2016. MNRAS 457:3801–16
    [Google Scholar]
  198. Punch M, Akerlof CW, Cawley MF 1992. Nature 358:477–78
    [Google Scholar]
  199. Pushkarev A, Kovalev Y, Lister M 2017. Galaxies 5:93–99
    [Google Scholar]
  200. Qian Q, Fendt C, Vourellis C 2018. Ap. J. 859:28–51
    [Google Scholar]
  201. Rani B, Jorstad SG, Marscher AP 2018. Ap. J. 858:80–95
    [Google Scholar]
  202. Rani P, Stalin CS, Rakshit S 2017. MNRAS 466:3309–22
    [Google Scholar]
  203. Readhead ACS 1980. Objects of High Redshift GO Abell, PJE Peebles165–76 Dordrecht, Neth.: Reidel
    [Google Scholar]
  204. Readhead ACS 1994. Ap. J. 426:51–59
    [Google Scholar]
  205. Readhead ACS, Cohen MH, Blandford RD 1978. Nature 272:131–34
    [Google Scholar]
  206. Readhead ACS, Cohen MH, Pearson TJ, Wilkinson PN 1978. Nature 276:768–71
    [Google Scholar]
  207. Readhead ACS, Taylor GB, Xu W 1996. Ap. J. 460:612–33
    [Google Scholar]
  208. Readhead ACS, Wilkinson PN 1978. Ap. J. 223:25–36
    [Google Scholar]
  209. Reber G 1940. Ap. J. 91:621
    [Google Scholar]
  210. Rees MJ 1966. Nature 211:468–70
    [Google Scholar]
  211. Rees MJ 1967. MNRAS 135:345–60
    [Google Scholar]
  212. Rees MJ 1971. Nature 229:312–17
    [Google Scholar]
  213. Rees MJ 1984. Annu. Rev. Astron. Astrophys. 22:471–506
    [Google Scholar]
  214. Rees MJ, Schmidt M 1971. MNRAS 154:1–7
    [Google Scholar]
  215. Reimer A 2012. J. Phys. Conf. Ser. 355:12011–22
    [Google Scholar]
  216. Reynolds CS 2014. Space Sci. Rev. 183:277–94
    [Google Scholar]
  217. Richards JL, Max-Moerbeck W, Pavlidou V 2011. Ap. J. Suppl. 194:29–51
    [Google Scholar]
  218. Rybicki G, Lightman A 1979. Radiative Processes in Astrophysics New York: Wiley
    [Google Scholar]
  219. Sadowski A, Narayan R 2015. MNRAS 453:3213
    [Google Scholar]
  220. Sadowski A, Narayan R, MacKinney JF, Tchekhovskoy A 2014. MNRAS 439:503–20
    [Google Scholar]
  221. Salpeter EE 1964. Ap. J. 140:796–80
    [Google Scholar]
  222. Sambruna R, Harris DE 2012. Relativistic Jets from Active Galactic Nuclei M Boettcher, DE Harris, H Krawczynski185–214 New York: Wiley
    [Google Scholar]
  223. Sandage A 1965. Ap. J. 141:1560–78
    [Google Scholar]
  224. Scheuer PAG 1974. MNRAS 166:513–28
    [Google Scholar]
  225. Scheuer PAG 1982. Extragalactic Radio Sources DS Heeschen, CM Wade163–65 Dordrecht, Neth.: Reidel
    [Google Scholar]
  226. Schmidt M 1963. Nature 197:1040
    [Google Scholar]
  227. Schmidt M 1968. Ap. J. 151:393–409
    [Google Scholar]
  228. Schmidt M 1972. Ap. J. 176:289–301
    [Google Scholar]
  229. Schreier EJ, Gorenstein P, Feigelson ED 1982. Ap. J. 261:42–50
    [Google Scholar]
  230. Schwartz D, Marshall H, Worrall D 2015. Proceedings, IAU Symposium 313: Extragalactic Jets from Every Angle F Massaro, CC Cheng, D Lopez, A Siemiginowska219–24 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  231. Seyfert CK 1943. Ap. J. 97:28–41
    [Google Scholar]
  232. Shakura NI, Sunyaev RA 1973. Astron. Astrophys. 24:337–55
    [Google Scholar]
  233. Shklovsky IS 1955. Astron. J. USSR 32:215–25
    [Google Scholar]
  234. Sironi L, Spitkovsky A 2014. Ap. J. 783:L21–26
    [Google Scholar]
  235. Smith HJ, Hoffleit D 1963. Nature 198:650–51
    [Google Scholar]
  236. Sol H, Pelletier G, Asseo E 1989. MNRAS 237:411–29
    [Google Scholar]
  237. Soltan A 1982. MNRAS 200:115–22
    [Google Scholar]
  238. Stawarz L, Petrosian V 2008. Ap. J. 681:1725–44
    [Google Scholar]
  239. Tadhunter C 2016. Astron. Astrophys. Rev. 24:10–68
    [Google Scholar]
  240. Tavecchio F, Landoni M, Sironi L, Coppi P 2018. MNRAS 480:2872–80
    [Google Scholar]
  241. Tchekhovskoy A, Bromberg O 2016. MNRAS 461:L46–50
    [Google Scholar]
  242. Tchekhovskoy A, McKinney JC 2012. MNRAS 423:L55–59
    [Google Scholar]
  243. Tchekhovskoy A, Narayan R, McKinney JC 2011. MNRAS 411:L79–83
    [Google Scholar]
  244. Thompson TA, Quataert E, Murray N 2005. Ap. J. 630:167–85
    [Google Scholar]
  245. Thorne KS, Blandford RD 2017. Modern Classical Physics Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  246. Titarchuk L, Seifinab E 2017. Astron. Astrophys. 602:A113–28
    [Google Scholar]
  247. Tremblay SE, Taylor GB, Ortiz AA 2016. MNRAS 459:820–40
    [Google Scholar]
  248. Turland BD 1975. MNRAS 172:181–89
    [Google Scholar]
  249. Urry CM, Padovani P 1995. PASP 107:803–45
    [Google Scholar]
  250. Waggett PC, Warner PJ, Baldwin JE 1977. MNRAS 181:465–74
    [Google Scholar]
  251. Walker RC, Hardee PE, Davis FB 2018. Ap. J. 855:128–64
    [Google Scholar]
  252. Wall JV, Pearson TJ, Longair MS 1977. Radio Astronomy and Cosmology DL Jauncey269–78 Dordrecht, Neth.: Reidel
    [Google Scholar]
  253. Walsh JL, Barth AJ, Ho LC, Sarzi M 2013. Ap. J. 770:86–96
    [Google Scholar]
  254. Wardle J 2018. Galaxies 6:5–13
    [Google Scholar]
  255. Werner GR, Uzdensky DA, Begelman MC 2018. MNRAS 473:4840–61
    [Google Scholar]
  256. Werner MW, Murphy DW, Livingston JH 2012. Ap. J. 759:86–97
    [Google Scholar]
  257. Whitney AR, Shapiro II, Rogers AEE 1971. Science 173:225–30
    [Google Scholar]
  258. Wilkinson PN 1995. PNAS 92:11342–47
    [Google Scholar]
  259. Wilkinson PN, Polatidis AG, Readhead ACS 1994. Ap. J. 432:L87
    [Google Scholar]
  260. Wilkinson PN, Readhead ACS, Purcell GH, Anderson B 1977. Nature 269:764–8
    [Google Scholar]
  261. Wolfe AM 1978. Pittsburgh Conference on BL Lac Objects AM Wolfe343–55 Pittsburgh, PA: Univ. Pittsbg. Press
    [Google Scholar]
  262. Yu Q, Tremaine S 2002. MNRAS 335:965–76
    [Google Scholar]
  263. Yuan F, Narayan R 2014. Annu. Rev. Astron. Astrophys. 52:555–88
    [Google Scholar]
  264. Zavala RT, Taylor GB 2004. Ap. J. 612:749–79
    [Google Scholar]
  265. Zel'dovich YaB, Novikov ID 1964. Dokl. Acad. Nauk. SSSR 155:1033–152
    [Google Scholar]
  266. Zensus JA 1997. Annu. Rev. Astron. Astrophys. 35:607–36
    [Google Scholar]
  267. Zensus JA, Pearson TJ eds 1987. Superluminal Radio Sources Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
/content/journals/10.1146/annurev-astro-081817-051948
Loading
/content/journals/10.1146/annurev-astro-081817-051948
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error